Advanced Studies in Pure Mathematics 32, 2001 Groups and Combinatorics — in memory of Michio Suzuki pp. 279–288

Rationally Determined Group Modules

Everett C. Dade

Abstract.

Green's correspondence of group modules finds its simplest expression when a finite multiplicative group G has a trivial intersection Sylow p-subgroup P, for some prime p. Then it is between all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} and all isomorphism classes of projective-free $\mathbf{R}G$ -lattices \mathbf{L} is a suitable valuation ring and N is the normalizer of P in G. In that case we show in Theorem 3.2 below that the $\mathbf{R}G$ -lattice \mathbf{L} is determined by its associated lattices over the residue field and field of fractions of \mathbf{R} if and only if \mathbf{K} has this same property. By Theorem 3.7 some important $\mathbf{R}G$ -lattices \mathbf{L} have this property of being "rationally determined." So it would be worthwhile to see if the $\mathbf{R}N$ -lattices with this property (and perhaps with other properties preserved by this Green correspondence) could be classified.

§1. Projective-Free Lattices

Let **S** be any principal ideal domain. As usual, an **S**-order **O** is just an associative **S**-algebra with identity element $1 = 1_{\mathbf{O}}$ such that **O** is free of finite rank when considered as an **S**-module. When we speak of an **O**-lattice **L** we mean a unitary right **O**-module such that **L** is also free of finite rank as an **S**-module. Of course, a homomorphism $\phi: \mathbf{L} \to \mathbf{K}$ of **O**-lattices is just a homomorphism between **O**-modules **L** and **K** which are **O**-lattices. We write any such ϕ on the left, so that it sends any $l \in \mathbf{L}$ to $\phi(l) \in \mathbf{K}$.

In the special case where the principal ideal domain S is a field, an S-order is just a finite-dimensional associative S-algebra O with identity element. Furthermore, an O-lattice is just a unitary right O-module L which is finite-dimensional as a vector space over S.

This research was supported by grant number DMS 96-00106 and by grant number DMS 99-70030, both from the National Science Foundation.

Received May 29, 1999.

Revised May 18, 2000.

E. C. Dade

Throughout this note we fix a finite group G and a prime p. We also fix **R**, **p**, **F** and $\overline{\mathbf{F}}$ satisfying

(1.1) **R** is a local principal ideal domain (i.e., a real discrete valuation ring) with unique maximal ideal **p**, such that the field of fractions **F** of **R** is a splitting field of characteristic zero for every subgroup of G, and the residue class field $\overline{\mathbf{F}} = \mathbf{R}/\mathbf{p}$ of **R** has characteristic p.

Notice that each of \mathbf{R} , \mathbf{F} and $\overline{\mathbf{F}}$ is a principal ideal domain \mathbf{S} , to which all the above definitions apply. Furthermore, the group algebra $\mathbf{S}H$ over \mathbf{S} of any subgroup H of G is an \mathbf{S} -order. The following result says that $\mathbf{S}H$ -lattices have the Krull-Schmidt property.

Proposition 1.2. Suppose that **S** is either **F**, $\overline{\mathbf{F}}$ or **R**, and that H is any subgroup of G. Then any **SH**-lattice **L** is isomorphic to a finite direct sum $\mathbf{L}_1 \oplus \cdots \oplus \mathbf{L}_l$ of indecomposable **SH**-lattices \mathbf{L}_i . Furthermore, this direct sum is uniquely determined to within order and isomorphisms by the **SH**-lattice **L**, *i.e.*, if **L** is also isomorphic to a finite direct sum $\mathbf{K}_1 \oplus \cdots \oplus \mathbf{K}_k$ of indecomposable **SH**-lattices \mathbf{K}_i , then k = l and there is some permutation π of $1, 2, \ldots, k$ such that \mathbf{K}_i is **SH**-isomorphic to $\mathbf{L}_{\pi(i)}$ for $i = 1, 2, \ldots, k$.

Proof. When **S** is a field **F** or $\overline{\mathbf{F}}$, this is the usual Krull-Schmidt Theorem for the finite-dimensional **S**-algebra **S***H*. When **S** is **R**, its field of fractions **F** is a splitting field of characteristic zero for the finite group *H* by (1.1). So **F***H* is a split, semi-simple algebra of finite dimension over **F**. Since **R***H* is an **R**-order spanning **F***H* over **F**, the basic hypotheses [1, 4.1] and [1, 4.2] of [1, §4] are satisfied by $\mathbf{D} = \mathbf{R}H$. The proposition for **S** = **R** now holds by [1, 4.7]. Q.E.D.

In the situation of the preceding proposition we follow Green [2] in saying that an SH-lattice K divides an SH-lattice L if L is isomorphic to the direct sum $\mathbf{K} \oplus \mathbf{M}$ of K and some SH-lattice M. We say that L is projective-free if the only projective SH-lattice P dividing L is $\mathbf{P} = 0$. The Krull-Schmidt property implies that any SH-lattice L is isomorphic to a direct sum $\mathbf{L}_{pf} \oplus \mathbf{L}_{pr}$ of a projective-free SH-lattice \mathbf{L}_{pf} and a projective SH-lattice \mathbf{L}_{pf} , either or both of which could be zero. Furthermore, these conditions determine both \mathbf{L}_{pf} and \mathbf{L}_{pr} to within SH-isomorphisms. We call \mathbf{L}_{pf} and \mathbf{L}_{pr} the projective-free part and the projective part, respectively, of L.

If **L** is an **R***H*-lattice, then we denote by $\overline{\mathbf{L}}$ its residual $\overline{\mathbf{F}}$ *H*-lattice

$$\overline{\mathbf{L}} = \mathbf{L}/(\mathbf{pL}).$$

We write $\eta_{\mathbf{L}}$ for the natural epimorphism of \mathbf{L} onto its factor $\mathbf{R}H$ -module $\overline{\mathbf{L}}$. When \mathbf{L} is the regular $\mathbf{R}H$ -lattice $\mathbf{R}H$, its residual $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{L}}$ can be identified with $\overline{\mathbf{F}}H$. In that case $\eta_{\mathbf{L}}$ is the natural epimorphism $\eta_{\mathbf{R}H}$ of $\mathbf{R}H$ onto $\overline{\mathbf{F}}H$ as \mathbf{R} -algebras.

Our hypotheses (1.1) allow us to lift projective lattices.

Lemma 1.3. If \mathbf{Q} is a projective $\overline{\mathbf{F}}H$ -lattice, for some subgroup H of G, then there is some projective $\mathbf{R}H$ -lattice \mathbf{P} whose residual $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{P}}$ is isomorphic to \mathbf{Q} .

Proof. The completion \mathbf{R}^* of \mathbf{R} is a local principal ideal domain with unique maximal ideal $\mathbf{p}^* = \mathbf{pR}^*$. Since \mathbf{F} is a splitting field of characteristic zero for H (see (1.1)), Heller's Theorem [4, 2.5] tells us that the map sending any $\mathbf{R}H$ -lattice \mathbf{L} to its completion \mathbf{L}^* induces a bijection of the isomorphism classes of $\mathbf{R}H$ -lattices onto those of \mathbf{R}^*H lattices. Clearly any free \mathbf{R}^*H -lattice is the completion of a free $\mathbf{R}H$ lattice. Because completion preserves direct sums, we conclude that any projective \mathbf{R}^*H -lattice (i.e., any direct summand of a free \mathbf{R}^*H -lattice) is the completion of some projective $\mathbf{R}H$ -lattice.

We may identify $\overline{\mathbf{F}} = \mathbf{R}/\mathbf{p}$ with the residue class field $\mathbf{R}^*/\mathbf{p}^*$ of \mathbf{R}^* . Since \mathbf{R}^* is complete, there is some projective \mathbf{R}^*H -lattice \mathbf{P}^* such that $\mathbf{P}^*/\mathbf{p}^*\mathbf{P}^*$ is isomorphic to the projective $\overline{\mathbf{F}}H$ -lattice \mathbf{Q} . As we saw above, \mathbf{P}^* is isomorphic to the completion of some projective $\mathbf{R}H$ -lattice \mathbf{P} . Then $\overline{\mathbf{P}} = \mathbf{P}/\mathbf{p}\mathbf{P}$ is isomorphic to both $\mathbf{P}^*/\mathbf{p}^*\mathbf{P}^*$ and \mathbf{Q} as an $\overline{\mathbf{F}}H$ -lattice.

Once we can lift projective $\overline{\mathbf{F}}H$ -lattices to projective $\mathbf{R}H$ -lattices, all the standard results about **p**-adic lattices become available. As an example we have the following lemma from [5].

Lemma 1.4. Suppose that H is a subgroup of G, that \mathbf{L} is an $\mathbf{R}H$ -lattice, and that \mathbf{Q} is a projective $\overline{\mathbf{F}}H$ -lattice dividing $\overline{\mathbf{L}}$. Then there is some projective $\mathbf{R}H$ -lattice \mathbf{P} such that $\overline{\mathbf{P}}$ is $\overline{\mathbf{F}}H$ -isomorphic to \mathbf{Q} . Furthermore, any such \mathbf{P} divides \mathbf{L} .

Proof. Lemma 1.3 gives us some projective $\mathbf{R}H$ -lattice \mathbf{P} whose residual $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{P}}$ is isomorphic to \mathbf{Q} . Once we know that such a \mathbf{P} exists, the rest of the proof of [5, Lemma 1] can be followed almost word for word to prove the rest of the present lemma. Q.E.D.

The preceding lemma allows us to characterize both projective and projective-free $\mathbf{R}H$ -lattices by their residuals.

Proposition 1.5. Let H be any subgroup of G, and \mathbf{L} be any $\mathbf{R}H$ lattice. Then \mathbf{L} is projective or projective-free if and only if its residual $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{L}}$ is respectively projective or projective-free. *Proof.* If the finitely-generated **R***H*-module **L** is projective, then it divides the direct sum $(\mathbf{R}H)^n$ of *n* copies of the regular **R***H*-module **R***H*, for some integer n > 0. It follows that $\overline{\mathbf{L}}$ divides the direct sum $(\overline{\mathbf{F}}H)^n$ of *n* copies of $\overline{\mathbf{F}}H$. So $\overline{\mathbf{L}}$ is a projective $\overline{\mathbf{F}}H$ -lattice.

Conversely, if $\overline{\mathbf{L}}$ is $\overline{\mathbf{F}}H$ -projective, then Lemma 1.4 with $\mathbf{Q} = \overline{\mathbf{L}}$ gives us some projective $\mathbf{R}H$ -lattice \mathbf{P} dividing \mathbf{L} such that $\overline{\mathbf{P}}$ is $\overline{\mathbf{F}}H$ isomorphic to $\overline{\mathbf{L}}$. This can only happen when $\mathbf{L} \simeq \mathbf{P}$ is projective. Thus \mathbf{L} is projective if and only if $\overline{\mathbf{L}}$ is projective.

If some non-zero projective $\mathbf{R}H$ -lattice \mathbf{P} divides \mathbf{L} , then its residual $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{P}}$ is non-zero and divides $\overline{\mathbf{L}}$. We saw above that $\overline{\mathbf{P}}$ is projective. Hence $\overline{\mathbf{L}}$ is not projective-free whenever \mathbf{L} is not projective-free.

Conversely, suppose that some non-zero projective $\overline{\mathbf{F}}H$ -lattice \mathbf{Q} divides $\overline{\mathbf{L}}$. Then Lemma 1.4 gives us some projective $\mathbf{R}H$ -lattice \mathbf{P} dividing \mathbf{L} such that $\overline{\mathbf{P}} \simeq \mathbf{Q} \neq 0$. Evidently \mathbf{P} is not zero. Thus \mathbf{L} is not projective-free if and only if $\overline{\mathbf{L}}$ is not projective-free. Q.E.D.

Another consequence of Lemma 1.4 is the standard correspondence between projective $\mathbf{R}H$ -lattices and projective $\overline{\mathbf{F}}H$ -lattices.

Proposition 1.6. If H is a subgroup of G, then there is a one to one correspondence between all isomorphism classes of indecomposable projective $\mathbf{R}H$ -lattices \mathbf{P} and all isomorphism classes of indecomposable projective $\overline{\mathbf{F}}H$ -lattices \mathbf{Q} . Here the isomorphism class of \mathbf{P} corresponds to that of \mathbf{Q} if and only if $\overline{\mathbf{P}}$ is $\overline{\mathbf{F}}H$ -isomorphic to \mathbf{Q} .

Proof. Any projective $\mathbf{R}H$ -lattice \mathbf{P} has a projective residual $\overline{\mathbf{F}}H$ lattice $\overline{\mathbf{P}}$ by Proposition 1.5. Any projective $\overline{\mathbf{F}}H$ -lattice \mathbf{Q} is isomorphic to such a residual $\overline{\mathbf{P}}$ by Lemma 1.3. If \mathbf{P}_0 is also a projective $\mathbf{R}H$ -lattice, then any isomorphism $\mathbf{P} \simeq \mathbf{P}_0$ of $\mathbf{R}H$ -lattices induces an isomorphism $\overline{\mathbf{P}} \simeq \overline{\mathbf{P}_0}$ of residual $\overline{\mathbf{F}}H$ -lattices. So we only need show that \mathbf{P} is $\mathbf{R}H$ isomorphic to \mathbf{P}_0 whenever $\overline{\mathbf{P}}$ is $\overline{\mathbf{F}}H$ -isomorphic to $\overline{\mathbf{P}_0}$. But in that case Lemma 1.4, with \mathbf{P}_0 and $\overline{\mathbf{P}_0}$ in place of \mathbf{L} and \mathbf{Q} , respectively, implies that \mathbf{P} divides \mathbf{P}_0 . Since $\overline{\mathbf{P}}$ is isomorphic to $\overline{\mathbf{P}_0}$, this can only happen when \mathbf{P} is isomorphic to \mathbf{P}_0 .

\S **2.** Green Correspondents

Let **S** be either **R** or $\overline{\mathbf{F}}$. Then any integer *n* relatively prime to the characteristic *p* of $\overline{\mathbf{F}} = \mathbf{R}/\mathbf{p}$ has an image $n\mathbf{1}_{\mathbf{S}}$ which is a unit of **S**. This and the Krull-Schmidt property are enough to imply all of Green's theory in [2] and [3] for **S***H*-lattices.

We're going to apply his theory when G has subgroups P and N satisfying

(2.1) *P* is a Sylow p-subgroup of *G*, and *N* is its normalizer $N_G(P)$ in *G*. Furthermore, the intersection $P \cap P^{\sigma}$ of *P* with its conjugate $P^{\sigma} = \sigma^{-1}P\sigma$ by any $\sigma \in G - N$ is the trivial subgroup 1 of *G*.

Of course this last condition just says that P is a *trivial intersection* subgroup of G. Green's correspondence in this case simplifies to

Proposition 2.2. If (2.1) holds and **S** is either **R** or $\overline{\mathbf{F}}$, then there is a one to one correspondence between all isomorphism classes of projective-free **S**G-lattices **L** and all isomorphism classes of projectivefree **S**N-lattices **K**. Here the isomorphism class of **L** corresponds to that of **K** if and only if **L** is isomorphic to the projective-free part $(\mathbf{K}^G)_{pf}$ of the **S**G-lattice \mathbf{K}^G induced by **K**. This happens if and only if **K** is isomorphic to the projective-free part $(\mathbf{L}_N)_{pf}$ of the **S**N-lattice \mathbf{L}_N restricted from **L**.

Proof. Because **S***H*-lattices have the Krull-Schmidt property, for any subgroup *H* of *G*, we may apply all the arguments in [3] to our present situation. Following the notation of that paper as closely as possible, we denote by a(H) the Green ring for the **S***H*-lattices. So a(H)is generated as an additive group by the Green symbols (**U**), one for each **S***H*-lattice **U**, subject only to the relations that (**U**) = (**U**') whenever **U** and **U**' are isomorphic **S***H*-lattices, and that (**U**) + (**U**') = (**U** \oplus **U**') for any **S***G*-lattices **U** and **U**'. (Multiplication in a(H) is irrelevant to our purposes.) The Krull-Schmidt property implies that a(H) is a free additive group with one basis element (**U**) for each isomorphism class of indecomposable **S***H*-lattices **U**. Those (**U**) in this basis for which **U** is projective-free form a basis for an additive subgroup $a_{pf}(H)$ of a(H). Those for which **U** is projective form a basis for another additive subgroup $a_{pr}(H)$. Furthermore, a(H) is the direct sum

(2.3)
$$a(H) = a_{\rm pf}(H) \oplus a_{\rm pr}(H)$$

of these two subgroups.

As the subgroups D and H of G used in [3] we take the present Pand N, respectively. Then H = N contains the normalizer $N_G(D) = N$ of D = P, as required on page 75 of [3]. The index [G:D] of the Sylow p-subgroup D = P is relatively prime to p. Hence its image $[G:D]\mathbf{1}_S$ is a unit of \mathbf{S} . As in [2, Theorem 2], this implies that any $\mathbf{S}G$ -lattice is D-projective. So the additive subgroup $a_D(G)$, generated by the (\mathbf{L}) for D-projective $\mathbf{S}G$ -lattices \mathbf{L} , is all of a(G). Similarly, a(N) is equal to its subgroup $a_D(N)$.

Because D = P is a trivial intersection subgroup of G, the family $\mathbf{X} = \mathbf{X}(D, H)$ of all intersections $D^{\sigma} \cap D$ with $\sigma \in G - H = G - N$

just consists of the trivial subgroup 1 of G. Hence the additive subgroup $a_{\mathbf{X}}(G) = \sum_{D' \in \mathbf{X}} a_{D'}(G)$ of a(G) is just the additive subgroup $a_1(G)$ generated by the (**P**), where **P** runs over the 1-projective **S**G-lattices. Since the 1-projective **S**G-lattices are just the projective ones, we conclude that $a_{\mathbf{X}}(G) = a_{\mathrm{pr}}(G)$. This and (2.3) imply that

$$a_D(G)/a_{\mathbf{X}}(G) = a(G)/a_{pr}(G) \simeq a_{pf}(G)$$

as additive groups. Similarly

$$a_D(N)/a_{\mathbf{X}}(N) = a(N)/a_{\mathrm{pr}}(N) \simeq a_{\mathrm{pf}}(N).$$

In view of these natural isomorphisms, [3, Theorem 1] implies the present proposition. Q.E.D.

When **S** is either **R** or $\overline{\mathbf{F}}$, we say that a projective-free **S***G*-lattice **L** is an **S***G*-*Green correspondent* of a projective-free **S***N*-lattice **K** (or that **K** is an **S***N*-*Green correspondent* of **L**) if the isomorphism classes of **L** and **K** correspond in the above proposition.

Proposition 2.4. Let a projective-free $\mathbf{R}N$ -lattice \mathbf{K} be an $\mathbf{R}N$ -Green correspondent of a projective-free $\mathbf{R}G$ -lattice \mathbf{L} . Then both the residual $\overline{\mathbf{F}}N$ -lattice $\overline{\mathbf{K}}$ of \mathbf{K} and the residual $\overline{\mathbf{F}}G$ -lattice $\overline{\mathbf{L}}$ of \mathbf{L} are projective-free. Furthermore, $\overline{\mathbf{K}}$ is an $\overline{\mathbf{F}}N$ -Green correspondent of $\overline{\mathbf{L}}$.

Proof. Proposition 1.5 implies that both $\overline{\mathbf{K}}$ and $\overline{\mathbf{L}}$ are projectivefree. The isomorphism $\mathbf{L}_N \simeq (\mathbf{L}_N)_{\mathrm{pf}} \oplus (\mathbf{L}_N)_{\mathrm{pr}}$ of $\mathbf{R}N$ -lattices induces an isomorphism

$$\overline{\mathbf{L}_N}\simeq\overline{(\mathbf{L}_N)_{\mathrm{pf}}}\oplus\overline{(\mathbf{L}_N)_{\mathrm{pr}}}$$

of the $\overline{\mathbf{F}}N$ -residuals of those lattices. By Proposition 1.5 the $\overline{\mathbf{F}}N$ -lattices $(\overline{\mathbf{L}}_N)_{\rm pf}$ and $(\overline{\mathbf{L}}_N)_{\rm pr}$ are respectively projective-free and projective. Hence they are respectively isomorphic to the projective free part $(\overline{\mathbf{L}}_N)_{\rm pf}$ and projective part $(\overline{\mathbf{L}}_N)_{\rm pr}$ of $\overline{\mathbf{L}}_N$.

Since **K** is an **R***N*-Green correspondent of **L**, it is **R***N*-isomorphic to $(\mathbf{L}_N)_{pf}$. So $\overline{\mathbf{K}}$ is $\overline{\mathbf{F}}N$ -isomorphic to $(\overline{\mathbf{L}}_N)_{pf} \simeq (\overline{\mathbf{L}}_N)_{pf}$. But $\overline{\mathbf{L}}_N$ is equal to the restriction $\overline{\mathbf{L}}_N$ of $\overline{\mathbf{L}}$ to an $\overline{\mathbf{F}}N$ -lattice. Hence $\overline{\mathbf{K}} \simeq (\overline{\mathbf{L}}_N)_{pf}$ is an $\overline{\mathbf{F}}N$ -Green correspondent of $\overline{\mathbf{L}}$. Q.E.D.

§3. Rationally Determined Lattices

Any **R***H*-lattice **L**, for any subgroup *H* of *G*, extends to an **F***H*lattice **FL** \simeq **F** $\otimes_{\mathbf{R}}$ **L**, determined to within isomorphisms by the fact that any basis for the free module **L** over **R** is also a basis for the vector

284

space **FL** over **F**. Thus any **R***H*-lattice **L** determines both an $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{L}} = \mathbf{L}/(\mathbf{pL})$ and an **F***H*-lattice **FL**. Since $\overline{\mathbf{F}}$ and **F** are the two "domains of rationality" associated with **R**, it is reasonable to make the

Definition 3.1. An **R***H*-lattice **L** is rationally determined if it is determined to within isomorphisms by its associated $\overline{\mathbf{F}}H$ -lattice $\overline{\mathbf{L}}$ and **F***H*-lattice **FL**, i.e., if **L** is **R***H*-isomorphic to any **R***H*-lattice **K** such that $\overline{\mathbf{L}}$ is $\overline{\mathbf{F}}H$ -isomorphic to $\overline{\mathbf{K}}$ and **FL** is **F***H*-isomorphic to **FK**.

The main observation of this note is

Theorem 3.2. Suppose that (1.1) and (2.1) hold, that **K** is a projective-free **R**N-lattice, and that **L** is an **R**G-Green correspondent of **K**. Then the projective-free **R**G-lattice **L** is rationally determined if and only if the **R**N-lattice **K** is rationally determined.

Proof. Assume that \mathbf{L} is rationally determined. We must show that \mathbf{K} is rationally determined. In view of Definition 3.1 it suffices to prove that \mathbf{K} is $\mathbf{R}N$ -isomorphic to \mathbf{K}_0 whenever \mathbf{K}_0 is an $\mathbf{R}N$ -lattice whose residual $\overline{\mathbf{F}}N$ -lattice $\overline{\mathbf{K}_0}$ is isomorphic to $\overline{\mathbf{K}}$, and whose associated $\mathbf{F}N$ -lattice $\mathbf{F}\mathbf{K}_0$ is isomorphic to $\mathbf{F}\mathbf{K}$.

The projective-free $\mathbf{R}N$ -lattice \mathbf{K} has a projective-free residual $\mathbf{\overline{F}}N$ lattice $\mathbf{\overline{K}}$ by Proposition 1.5. The isomorphic $\mathbf{\overline{F}}N$ -lattice $\mathbf{\overline{K}}_0$ is also projective-free. So Proposition 1.5 implies that \mathbf{K}_0 is a projective-free $\mathbf{R}N$ -lattice. Hence some projective-free $\mathbf{R}G$ -lattice \mathbf{L}_0 is a Green correspondent of \mathbf{K}_0 . Since the Green correspondence is the bijection of isomorphism classes in Proposition 2.2, we can prove that \mathbf{K} is $\mathbf{R}N$ isomorphic to \mathbf{K}_0 by showing that \mathbf{L} is $\mathbf{R}G$ -isomorphic to \mathbf{L}_0 . Because \mathbf{L} is rationally determined, it will suffice to show that $\mathbf{\overline{L}}$ is $\mathbf{\overline{F}}G$ -isomorphic to $\mathbf{\overline{L}}_0$, and that $\mathbf{F}\mathbf{L}$ is $\mathbf{F}G$ -isomorphic to \mathbf{FL}_0 .

The isomorphic $\overline{\mathbf{F}}N$ -lattices $\mathbf{\overline{K}} \simeq \mathbf{\overline{K}_0}$ induce isomorphic $\overline{\mathbf{F}}G$ -lattices $\mathbf{\overline{K}}^G \simeq \mathbf{\overline{K}_0}^G$. Hence we have $\mathbf{\overline{F}}G$ -isomorphisms

(3.3)
$$(\overline{\mathbf{K}}^G)_{\mathrm{pf}} \simeq (\overline{\mathbf{K}_0}^G)_{\mathrm{pf}} \quad \mathrm{and} \quad (\overline{\mathbf{K}}^G)_{\mathrm{pr}} \simeq (\overline{\mathbf{K}_0}^G)_{\mathrm{pr}}.$$

By definition $(\overline{\mathbf{K}}^G)_{\mathrm{pf}}$ and $(\overline{\mathbf{K}_0}^G)_{\mathrm{pf}}$ are $\overline{\mathbf{F}}G$ -Green correspondents of $\overline{\mathbf{K}}$ and $\overline{\mathbf{K}_0}$, respectively. So Proposition 2.4 tells us that $(\overline{\mathbf{K}}^G)_{\mathrm{pf}}$ is $\overline{\mathbf{F}}G$ isomorphic to the residual $\overline{\mathbf{L}}$ of the Green correspondent \mathbf{L} of \mathbf{K} . Similarly $(\overline{\mathbf{K}_0}^G)_{\mathrm{pf}}$ is $\overline{\mathbf{F}}G$ -isomorphic to $\overline{\mathbf{L}_0}$. Therefore the first isomorphism in (3.3) implies that $\overline{\mathbf{L}}$ is $\overline{\mathbf{F}}G$ -isomorphic to $\overline{\mathbf{L}_0}$.

Evidently $\overline{\mathbf{K}}^G$ is $\overline{\mathbf{F}}G$ -isomorphic to the residual $\overline{\mathbf{K}^G}$ of the $\mathbf{R}G$ -lattice \mathbf{K}^G induced by \mathbf{K} . As in the proof of Proposition 2.4, this implies that $(\overline{\mathbf{K}}^G)_{\mathrm{pr}}$ is $\overline{\mathbf{F}}G$ -isomorphic to the residual $(\overline{\mathbf{K}^G})_{\mathrm{pr}}$ of $(\mathbf{K}^G)_{\mathrm{pr}}$.

E. C. Dade

Similarly $(\overline{\mathbf{K}_0}^G)_{\rm pr}$ is $\overline{\mathbf{F}}G$ -isomorphic to the residual $(\overline{\mathbf{K}_0^G})_{\rm pr}$ of $(\mathbf{K}_0^G)_{\rm pr}$. So the second isomorphism in (3.3) implies that the projective $\mathbf{R}G$ -lattices $(\mathbf{K}^G)_{\rm pr}$ and $(\mathbf{K}_0^G)_{\rm pr}$ have isomorphic $\overline{\mathbf{F}}G$ -residuals. By Proposition 1.6 this forces $(\mathbf{K}^G)_{\rm pr}$ to be $\mathbf{R}G$ -isomorphic to $(\mathbf{K}_0^G)_{\rm pr}$. It follows that $\mathbf{F}(\mathbf{K}^G)_{\rm pr}$ is $\mathbf{F}G$ -isomorphic to $\mathbf{F}(\mathbf{K}_0^G)_{\rm pr}$.

The isomorphism $\mathbf{F}\mathbf{K} \simeq \mathbf{F}\mathbf{K}_0$ of $\mathbf{F}N$ -lattices induces isomorphisms $\mathbf{F}(\mathbf{K}^G) \simeq (\mathbf{F}\mathbf{K})^G \simeq (\mathbf{F}\mathbf{K}_0)^G \simeq \mathbf{F}(\mathbf{K}_0^G)$ of $\mathbf{F}G$ -lattices. Since \mathbf{K}^G and \mathbf{K}_0^G are $\mathbf{R}G$ -isomorphic to $(\mathbf{K}^G)_{\mathrm{pf}} \oplus (\mathbf{K}^G)_{\mathrm{pr}}$ and $(\mathbf{K}_0^G)_{\mathrm{pf}} \oplus (\mathbf{K}_0^G)_{\mathrm{pr}}$, respectively, this gives us $\mathbf{F}G$ -isomorphisms

 $\mathbf{F}(\mathbf{K}^G)_{\mathrm{pf}} \oplus \mathbf{F}(\mathbf{K}^G)_{\mathrm{pr}} \simeq \mathbf{F}(\mathbf{K}^G) \simeq \mathbf{F}(\mathbf{K}^G_0) \simeq \mathbf{F}(\mathbf{K}^G_0)_{\mathrm{pf}} \oplus \mathbf{F}(\mathbf{K}^G_0)_{\mathrm{pr}}.$

We saw above that $\mathbf{F}(\mathbf{K}^G)_{\mathrm{pr}} \simeq \mathbf{F}(\mathbf{K}^G_0)_{\mathrm{pr}}$ as $\mathbf{F}G$ -lattices. So the Krull-Schmidt property for $\mathbf{F}G$ -lattices implies that $\mathbf{FL} \simeq \mathbf{F}(\mathbf{K}^G)_{\mathrm{pf}}$ is $\mathbf{F}G$ -isomorphic to $\mathbf{FL}_0 \simeq \mathbf{F}(\mathbf{K}^G_0)_{\mathrm{pf}}$.

We have now shown that $\overline{\mathbf{L}}$ is $\overline{\mathbf{F}}G$ -isomorphic to $\overline{\mathbf{L}_0}$, and that \mathbf{FL} is $\mathbf{F}G$ -isomorphic to \mathbf{FL}_0 . As we remarked above, this is enough to imply that \mathbf{K} is rationally determined whenever \mathbf{L} is. A similar argument, using restriction of lattices from G to N instead of induction from N to G, shows that the converse statement also holds. Q.E.D.

Surprisingly enough, for any subgroup H of G there are some important rationally determined **R**H-lattices. After embedding an arbitrary **R**H-lattice **L** in an **F**H-lattice **FL**, we can multiply it by any central idempotent e in **F**H, obtaining an **R**H-sublattice **L**e spanning the **F**Hsubmodule (**FL**) $e = \mathbf{F}(\mathbf{L}e)$ of **FL**.

Proposition 3.4. Suppose that H is a subgroup of G, that \mathbf{P} is a projective $\mathbf{R}H$ -lattice, and that e is a central idempotent of $\mathbf{F}H$. Then the $\mathbf{R}H$ -lattice $\mathbf{L} = \mathbf{P}e$ is rationally determined.

Proof. Let **K** be any **R***H*-lattice such that $\overline{\mathbf{K}}$ is $\overline{\mathbf{F}}H$ -isomorphic to $\overline{\mathbf{L}}$ and $\mathbf{F}\mathbf{K}$ is $\mathbf{F}H$ -isomorphic to $\mathbf{F}\mathbf{L}$. We must prove that **K** is $\mathbf{R}H$ -isomorphic to **L**.

Right multiplication by e is an $\mathbf{R}H$ -epimorphism ρ of \mathbf{P} onto $\mathbf{L} = \mathbf{P}e$. If we follow ρ by the natural epimorphism $\eta_{\mathbf{L}}$ of \mathbf{L} onto $\overline{\mathbf{L}} = \mathbf{L}/(\mathbf{pL})$, and by some $\overline{\mathbf{F}}H$ -isomorphism $\overline{\iota}$ of $\overline{\mathbf{L}}$ onto $\overline{\mathbf{K}}$, we obtain a homomorphism $\overline{\iota} \circ \eta_{\mathbf{L}} \circ \rho \colon \mathbf{P} \to \overline{\mathbf{K}}$ of $\mathbf{R}H$ -modules. We also have the natural epimorphism $\eta_{\mathbf{K}}$ of \mathbf{K} onto $\overline{\mathbf{K}} = \mathbf{K}/(\mathbf{pK})$ as $\mathbf{R}H$ -modules. Because \mathbf{P} is a projective $\mathbf{R}H$ -module, there is some homomorphism $\theta \colon \mathbf{P} \to \mathbf{K}$ of $\mathbf{R}H$ -lattices such that

(3.5)
$$\eta_{\mathbf{K}} \circ \theta = \overline{\iota} \circ \eta_{\mathbf{L}} \circ \rho \colon \mathbf{P} \to \overline{\mathbf{K}}.$$

286

The **R***H*-homomorphism θ : **P** \rightarrow **K** extends by **F**-linearity to an **F***H*-homomorphism $\theta^{\mathbf{F}}$: **FP** \rightarrow **FK**. This last homomorphism commutes with multiplication by the central idempotent e of **F***H*. So it restricts to an **R***H*-homomorphism $\iota = (\theta^{\mathbf{F}})_{\mathbf{L}}$ of $\mathbf{L} = \mathbf{P}e$ into **K***e*. But right multiplication by the idempotent e is the identity on both $\mathbf{L} = \mathbf{P}e$ and $\mathbf{FL} = \mathbf{FP}e$. Hence it is the identity on both the **F***H*-lattice **FK** isomorphic to **FL**, and on the **R***H*-sublattice **K** of **FK**. We conclude that ι is an **R***H*-homomorphism of **L** into **K** = **K***e*. Since the epimorphism ρ in the equation (3.5) is just multiplication by e, that equation implies that

$$\bar{\iota} \circ \eta_{\mathbf{L}} = \eta_{\mathbf{K}} \circ \iota \colon \mathbf{L} \to \mathbf{K}.$$

Thus $\iota \colon \mathbf{L} \to \mathbf{K}$ is a homomorphism of $\mathbf{R}H$ -lattices inducing the isomorphism $\overline{\iota} \colon \overline{\mathbf{L}} \to \overline{\mathbf{K}}$ of $\overline{\mathbf{F}}H$ -lattices. Hence ι is an $\mathbf{R}H$ -isomorphism of \mathbf{L} onto \mathbf{K} . Q.E.D.

The $\mathbf{R}H$ -lattice $\mathbf{P}e$ in the preceding proposition is projective-free in the most important case.

Proposition 3.6. Suppose that H is a subgroup of G, that \mathbf{P} is an indecomposable projective $\mathbf{R}H$ -lattice, and that e is a central idempotent of $\mathbf{F}H$. Then the $\mathbf{R}H$ -lattice $\mathbf{P}e$ is either equal to \mathbf{P} or projective-free.

Proof. Assume that $\mathbf{P}e$ is not projective-free. We must show that it is equal to \mathbf{P} , i.e., that right multiplication by e is the identity on \mathbf{P} . Since right multiplication by the idempotent e is certainly the identity on $\mathbf{P}e$, it will suffice to show that \mathbf{P} is $\mathbf{R}H$ -isomorphic to $\mathbf{P}e$.

Because $\mathbf{P}e$ is not projective-free, it is divisible by some non-zero projective $\mathbf{R}H$ -lattice \mathbf{Q} . So there is some $\mathbf{R}H$ -epimorphism π of $\mathbf{P}e$ onto \mathbf{Q} . Right multiplication by e is an $\mathbf{R}H$ -epimorphism ρ of \mathbf{P} onto $\mathbf{P}e$. Hence the composite map $\pi \circ \rho : \mathbf{P} \to \mathbf{Q}$ is an epimorphism of $\mathbf{R}H$ lattices. Since \mathbf{Q} is $\mathbf{R}H$ -projective, there is some $\mathbf{R}H$ -monomorphism $\mu: \mathbf{Q} \to \mathbf{P}$ such that $\pi \circ \rho \circ \mu$ is the identity map of \mathbf{Q} onto itself. In particular, the non-zero $\mathbf{R}H$ -lattice \mathbf{Q} divides the indecomposable $\mathbf{R}H$ lattice \mathbf{P} . This can only happen when $\pi \circ \rho$ is an isomorphism of \mathbf{P} onto \mathbf{Q} , with μ as its inverse. But then the epimorphism ρ must be an $\mathbf{R}H$ -isomorphism of \mathbf{P} onto $\mathbf{P}e$. As we remarked above, this is enough to prove the proposition. Q.E.D.

Putting the preceding results together, we obtain

Theorem 3.7. Suppose that (1.1) and (2.1) hold, that \mathbf{P} is an indecomposable projective $\mathbf{R}G$ -lattice, and that e is a central idempotent of $\mathbf{F}G$ such that $\mathbf{P}e \neq \mathbf{P}$. Then the $\mathbf{R}G$ -lattice $\mathbf{P}e$ is projective-free, and its $\mathbf{R}N$ -Green correspondents are rationally determined.

E. C. Dade

Proof. The $\mathbf{R}G$ -lattice $\mathbf{P}e$ is projective-free by Proposition 3.6, and is rationally determined by Proposition 3.4. So its $\mathbf{R}N$ -Green correspondents are rationally determined by Theorem 3.2. Q.E.D.

References

- E. C. Dade, Counting characters in blocks, I, Invent. Math., 109 (1992), 187–210.
- [2] J. A. Green, On the indecomposable representations of a finite group, Math. Z., 70 (1959), 430–445.
- [3] J. A. Green, A transfer theorem for modular representations, J. Algebra, 1 (1964), 73–84.
- [4] A. Heller, On group representations over a valuation ring, Proc. Natl. Acad. Sci. USA, 47 (1961), 1194–1197.
- [5] J. G. Thompson, Vertices and sources, J. Algebra, 6 (1967), 1–6.

Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801 U.S.A. e-mail: dade@math.uiuc.edu