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Poincare polynomial of a class of 
signed· complete graphic arrangements 

Guangfeng Jiang, 1 Jianming Yu2 and Jianghua Zhang 

Abstract. 

We compute the Poincare polynomial of hyperplane arrangements 
associated with a class of signed complete graphs. We also make a 
factorization of the Poincare polynomial over the integers. 

§ 1. Introduction 

Let V be an n-dimensional vector space over a field OC. Let S be the 
symmetric algebra over the dual space V* := HomK(V, OC). If x 1 , •.• , Xn 

is a basis of V*, then there are identifications S = OC[xl> ... , Xn] and 
V = ocn. A hyperplane H in ocn is by definition the zero set of a 
degree one polynomial a H in the variables x1, · · · , Xn. An arrangement 
of hyperplanes A in ocn is a finite collection of hyperplanes. 

Let L(A) be the collection of all non-empty intersections of hyper
planes from A, which is a partial ordered set with the order defined 
by the inverse inclusion. The rank of an element X E L(A) is de
fined by r(X) = codim(X). Let J-L be the Mobius function of L(A), and 
denote J-L(X) = J-L(V, X). The Poincare polynomial of L is defined by 
n(L, t) = LxEL J-L(X)( -ty<x). 

If OC is the field C of complex numbers, the complement M of A is 
of interest from topological point of view. One of the central topics in 
studying hyperplane arrangements is to describe the topology of M by 
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the data from L(A). For example, it is well known that the cohomology 
H*(M; C) of M is isomorphic to the Orlik-Solomon algebra Qi'(A) [7] 
and the Poincare polynomial of Qi'(A) equals to rr(L, t). 

Graphic arrangements have been studied by a number of authors [5, 
4, 3, 12], since they are related to the arrangements associated with 
classical groups [1, 2, 9, 10]. We study a special class of arrangements 
associated with signed complete graphs [13] and prove the following fac
torization formula. 

Theorem 1. If a signed complete graph En with n vertices is 
switching equivalent to the signed complete graph E~3) with negative 
part a triangle, the Poincare polynomial of the corresponding arrange
ment A(En) is 

(1) rr(A(En), t) = (t + 1)(2t + 1) · · · [(n- 3)t + 1]Q(t), 

where 

Q(t) := [3(n- 3)(n- 2) + 1] t3 + (n2 - 6)t2 + (2n- 3)t + 1. 

§2. Preliininaries 

2.1. Intersection lattice 

An arrangement A is called central if the intersection of all the 
hyperplanes in A is not empty. If A is central, L = L(A) is a geometric 
lattice. The minimal element of L is denoted by 6 and the maximal 
element is denoted by i. 

The meet of X, Y E Lis defined by X t\Y = n{Z ELI Z ;2 XUY}, 
and if X n Y -!- 0, their join is defined by XV Y = X n Y. A pair 
(X, Y) E L x L is called a modular pair if for all Z S Y one has 
Z V (X t\ Y) == (Z V X) t\ Y. A pair (X, Y) E L x L is modular if and 
only if r(X) + r(Y) = r(X V Y) + r(X t\ Y). An element X is called a 
modular element if it forms a modular pair with each Y E £. 

An element in a geometric lattice L is called an atom if it covers the 
minimal element of L. If Lis the intersection lattice of an arrangement, 
each hyperplane is an atom of L. Let A(L) be the collection of the atoms 
in£. For any X E £,let A(L)x = {Y E A(L) I Y ~X}. 

Lemma 2. For X, Y E L, 

X t\ Y = 6 <==? A(L)x n A(L)v = 0. 
Proof Obviously, the following formula holds. 

A(L)x n A(L)y = A(L)xAY· 

The lemma follows from this formula. 0 
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2.2. Stanley Theorem 

Let L be a geometric lattice, CB(L) the Orlik-Solomon algebra gen
erated by the atoms of L. By [7], CB(L(A)) is the same as CB(A) for a hy
perplane arrangement A. Note that, for Y E L, Ly = {Z ELI Z::::; Y} 
is also a geometric lattice. 
Stanley Theorem [8, 11]. Let L be a geometric lattice, and X E L 
be a modular element. Then 

(2) 1r( CB(L ), t) = 1r( CB(Lx ), t) ~t(Z)( -tr(Z), 

where Jt is the Mobius function of L. 

2.3. Signed complete graph 

A signed complete graph En= (Kn, a) consists of an ordinary com
plete graph Kn with n vertices, and an arc labelling mapping a : E --4 

{±}, where E is the edge set of Kn. Let E+ = a- 1( +)and E_ = a- 1(-) 

denote the sets of the positive and negative edges respectively. An edge 
{ ij} E E+ is denoted by { ij} + and is pictured as a line segment con
necting the vertices i and j. An edge {ij} E E_ is denoted by {ij}
and is pictured as a dashed line segment connecting the vertices i and j. 
For general study of singed graphs we refer the reader to Zaslavsky [13]. 

Given a signed complete graph En= (Kn, a), define an arrangement 
A(En) in ocn as follows: 

{xi- Xj = 0} E A(En) if {ij} E E+ 

and 

{xi +xi= 0} E A(En) if {ij} E E_ 

2.4. Switching equivalence 
For a signed complete graph En= (Kn, a), we consider the following 

operations on En. 

1) A permutation of the labels on the vertices of En; 
2) Switching a vertex io E [n] = {1, 2, ... , n} is to switch the sign 

of the edge { ioi} for each i E Nio := { i E [n] I { ioi} E E}, 
the neighborhood of io. We call this the verlex switching, or, 
switching io. 

The first operation is essentially a permutation on the coordinates, 
which allows one to consider unlabeled graphs. For a vertex v, switch
ing v corresponds to switching the sign of the coordinate Xv. Obviously, 
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the vertex switching operations form a group, which acts on the set of 
signed graphs with fixed number of vertices. Since a coordinate transfor
mation on the vector space V does not affect the intersection lattice of 
an arrangement, the first two operations preserve the modular elements. 

Two signed graphs I:~ and I:~ are switching equivalent if there exists 
a series of vertex switchings such that I:~ can be transformed into I:~ 
up to a permutation of the labels on the vertices. In this case, we also 
say that the corresponding arrangements are switching equivalent. For 
example, the two signed complete graphs with 6 vertices in figure 1 are 
switching equivalent by first switching the vertex 5, then the vertex 3 of 
the graph on the right hand side, one gets the graph on the left hand 
side. 

§3. Modular elements 

Signed complete graphs with at most 6 vertices were classified un
der the switching equivalence in [6]. One class of signed complete graphs 

with n vertices is denoted by 1:~3 ) in which the negative part is a trian
gle. We denote the vertices of the triangle by 1,2,3 and label the other 
vertices by 4, ... , n. The arrangement associated with 1:~3 ) consists of 
the following hyperplanes. 

HI2: 

Him: 
Hij: 

XI+ X2 = 0, 
XI- Xm = 0, 

Xi- Xj = 0, 

HI3: XI+ X3 = 0, 
H2m : X2 - Xm = 0, 

3 :<:; i < j :<:; n. 

For the case of n = 6 see figure 1. 

H23 : X2 + X3 = 0, 
4 :<:; m :<:; n, 
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To simplify notation, in the following we set L = L(A(:E~3))). 

Lemma 3. The element X= n Hij = {x E ocn I X3 = ... = 
3:5i<j$n 

Xn} E L is modular. 

Proof It is enough to prove that for each Y E L with X 1\ Y = 6, 
(X, Y) is modular pair. This is equivalent to r(X) + r(Y) = r(X V Y) 
since r(X 1\ Y) = r(O) = 0. By lemma 2 and the definition of rank 
function, it is sufficient to prove that for each Y E L with A(L)x n 
A(L )y = 0, the equation 

(3) dim Y -dim( X n Y) = n - 3 

holds. 
Let 

Then 

A(L)x n A(L)y = 0 ===} A(L)y c A1 U A2 U A3 

with 
IA(L)y n Ami~ 1, m = 1, 2, IA(L)y n A3l ~ 3. 

Hence, there are 16 possibilities for (IA(L)ynAll, IA(L)ynA2I, IA(L)yn 
A31): 

(4) 

(0,0,0) (0,1,0) (1,0,0) (0,0,1) 
(1,1,0) (0,1,1) (1,0,1) (0,0,2) 
(1,1,1) (0,1,2) (1,0,2) (0,0,3) 
(1, 1, 2) (0, 1, 3) (1, 0, 3) (1, 1, 3) 

The case (0,0,0) can not appear. If (IA(L)y n A1l, IA(L)y n A2l, 
IA(L)y n A3l) = (0, 0, 1), A(Y) consists of one of the hyperplanes from 
A3 . Then dim Y = n- 1, dim( X n Y) = 2, and equation (3) holds. 

If (IA(L)y n A1l, IA(L)y n A2l, IA(L)y n A31) = (0, 0, 2), A(Y) con
sists of two of the hyperplanes from A3 . Then dim Y = n- 2, dim( X n 
Y) = 1, and equation (3) holds. 

If (IA(L)y n A1l, IA(L)y n A2l, IA(L)y n A31) = (0, o, 3), A(Y) = 
A3 . Then dim Y = n- 3, dim( X n Y) = 0, and equation (3) holds. 
Similar treatment will prove the cases (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) 
and (1, 1, 0). 

For the case (0, 1, 2), if A(Y) n A3 = {H12, H13} and A(Y) n A2 = 
{ H23 } for some j ~ 4, then Y is the intersection of X1 + x2 = 0, X1 + 
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x3 = 0, and x2 - Xj = 0. This implies that Y is contained in the 
hyperplane H3i : x3 - Xj = 0, which is impossible since X C H3i· If 
A(Y) n A3 = { H12, H23}, and A(Y) n A2 = { H2i} for some j ~ 4, 
then dim Y = n- 3, dim( X n Y) = 0, and equation (3) holds. Similar 
treatment works for A(Y) n A3 = {H13, H23}. 

One can treat the case (1, 0, 2) in a similar way. 
The cases (0, 1, 3) and (1, 0, 3) do not appear, since otherwise there 

would beY C H3k for some k > 3. 
If (IA(L)y n A1l, IA(L)y n A2l, IA(L)y n A31) = (1, 1, 1), A(Y) con

sists of H1k : x1 - Xk = 0, H2j : x2- x3 = 0 and one of the hyperplanes 
from A3 • It is easy to see that dim Y = n - 3 and dim( X n Y) = 0. 

Let (IA(L)y n A1l, IA(L)y n A2l, IA(L)y n A31) = (1, 1, 2), there are 
four cases for A(Y): 

1) A(Y) = {H1k,H2j,H12,H13} which implies that Y c H33, a 
contradiction; 

2) A(Y) = {H1k,H2j,H12,H23} which implies that Y c H3k, a 
contradiction; 

3) A(Y) = {H1k, H2j, H13, H23} with k =f. j which implies that 
Y C Hkj, a contradiction; 

4) A(Y) = {H1k,H2k,H13,H23} with dimY = n- 3,X n Y = 0, 
hence equation (3) holds. 

The case (IA(L)y nA1I, IA(L)y nA2I, IA(L)y nA31) = (1, 1, 3) does 
not appear since otherwise we would have Y C Hjk· 0 

Let 

and 

Ao = 0, A1 = {H34}, A2 = {Hii 13 ~ i < j ~ 5}, 

... , An-3 = {Hij 13 ~ i < j ~ n}. 

Xk = n H, k = 0,1,2, ... n- 3. 

Note that Xo = 0 and Xn-3 =X. By [4], we have the following 

Lemma 4. There is a chain of modular elements 

0 < X1 < X2 < · · · < Xn-4 < Xn-3 =X. 

For X defined in lemma 3, it follows from lemma 4 that Lx 
L(A(E~3)))x is a modular lattice. By [4], we have . 

(5) 7r((J}(Lx), t) = (t + 1)(2t + 1) · · · ((n- 3)t + 1). 

0 
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§4. Proof of the main result. 

It remains to calculate 

Q= ~-t(Z)( -tt(Z). 

ZEL,ZAX=O 

Note that in our case X is modular with r(X) = n- 3. For Z E 

L,Z /\X= 6, we have 

n?::. r(X V Z) r(X V Z) + r(X 1\ Z) = r(X) + r(Z) 

n- 3 + r(Z) =} r(Z) ::; 3. 

Hence 

(6) 

where 

a= 

Q = a( -t)3 + {3t2 + 1'( -t) + 1, 

L ~-t(Z), {3 = 
ZEL,ZAX=O 

·r(Z)=3 

L ~-t(Z), 1' = 
ZEL,ZAX=fl 

r(Z)=2 

By lemma 2, 

L ~-t(Z). 
ZEL,ZAX=fl 

r(Z)'=l 

(7) 1' = -IA(L) \ A(L)xl =- [(~)- (n~ 2)] = -(2n- 3). 

Next we compute {3. Since A(L)znA(L)x = 0 and r(Z) = 2, for each 
k = 1, 2, A(L)z may contain Hki or Hkj (i =1- j), but does not contain 
both at the same time for, otherwise, there would be Hki n Hkj ::) X. 
Hence, A(L)z contains two hyperplanes, and J-t(Z) = 1. 

There are three cases to be considered. 
1) one of the two hyperplanes in A(L)z comes from {Hli I i = 

4, ... ,n}, and the other one comes from {H2i I i = 4, ... ,n}. Hence 
there are as many as (n- 3)2 possibilities; 

2) the two hyperplanes in A(L)z comes from H12, H2a, H1a, there 
are 3 possibilities; 

3) one of the two hyperplanes in A(L)z comes from {Hki I k = 
1, 2, i = 4, ... , n} and the other one comes from Aa. There are 3 x 2(n-3) 
possibilities. 

Hence 

(8) {3 = (n- 3)2 + 3 + 6(n- 3) = n 2 - 6. 

Now we compute a. The point is that in some cases, A(L)z contains 
more atoms than the the minimal possible. 
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Since r(Z) = 3, (IA(L)z nA1I, IA(L)z nA2I, IA(L)z nA3I) has only 
the following possibilities. 

(0, 0, 3), (0, 1, 2), (1, 0, 2), (1, 1, 1), (1, 1, 2), (1, 0, 3), (0, 1, 3), (1, 1, 3). 

The cases (1, 0, 3), (0, 1, 3), (1, 1, 3) are excluded by the condition Z 1\ 

X=O. 
For the case (0, 0, 3), Z = H12 n H13 n H23 and ~-t(Z) = -1, This 

contributes -1 to a. 
In case (0, 1, 2), for 4 :::; k :::; n, we have 

zfkl = H12nH23nH2k, z~k) = H12nH13nH2k, z~k) = H13nH23nH2k· 

Since z~k) c H3k, z~k) should be excluded. It is obvious that 

A(L)z<kJ = {H12, H23, H2k}, A(L)z<kl = {H13, H23, H1k, H2k}. 
1 3 

So z~k) should belong to the case (1, 1, 2), which will be considered later. 

Since J-t(zfk)) = -1, this case contributes -(n- 3) to a. 
The case (1, 0, 2) is similar to the case (0, 1, 2). For 4 :::; k :::; n, we 

have 
-(k) -(k) -(k) 

Z1 = H12nH23nH1k, Z2 = H12nH13nH1k, Z3 = H13nH23nH1k· 

Since zfkl c H3k, zfkl should be excluded. It is obvious that z~k) = 

z~k). Since ~-t(Z~k)) = -1. This case contributes -(n- 3) to a. 
In case (1, 1, 1), there are 3(n ~ 3)2 possibilities all together. Since 

H13 n Hlk n H2k = H23 n Hlk n H2k = z~k) which should be in the case 
(1, 1, 2), this case contributes -(3(n- 3)2 - 2(n- 3)) to a. 

We consider the case (1, 1, 2). For 4 :::; j, k :::; n, we have 

( 'k) ('k) 
Zl = H12 n H13 n H1i n H2k, Zl = H12 n H23 n H1i n H2k, 

('k) Z61 = H13 n H23 n H1j n H2k· 

It is obvious that z!ik) c H3k, z~ik) c H3i, and for j =/= k, z~ik) c Hjk, 
which are excluded by the condition Z 1\ X = 6. For j = k, we have 
z~ik) = z~kk) = z~k), and ~-t(Z~k)) = -3. Hence, this case contributes 
-3(n- 3) to a. 

Hence 

(9) a= -(1 + 3(n- 2)(n- 3)). 

Combine formulae (2), (7), (8), and (9), we obtain the formula (1) in 
Theorem 1. 
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