Maximal divisorial sets in arc spaces

Shihoko Ishii

Abstract

. In this paper we introduce a maximal divisorial set in the arc space of a variety. The generalized Nash problem is reduced to a translation problem of the inclusion of two maximal divisorial sets. We study this problem and show a counter example to the most natural expectation even for a non-singular variety.

§1. Introduction

In [8], Nash posed a problem: if the set of the families of arcs through the singularities on a variety (these families are called the Nash components) corresponds bijectively to the set of essential divisors of resolutions of the singularities. This problem is affirmatively answered for some 2dimensional singularities by A. Reguera, M. Lejeune-Jalabert, C. Plénat and P. Popescu-Pampu [7], [9], [10], [11], [12] and toric singularities of arbitrary dimension by S. Ishii and J. Kollár [6]. For non-normal toric variety of arbitrary dimension the answer is also affirmative ([5]). On the other hand this problem is negatively answered in general. The paper [6] gives a counter example of dimension greater than or equal to 4. Therefore the Nash problem should be changed to the problem to determine the divisors corresponding to the Nash components.

We can generalize this problem into the characterization problem for valuations corresponding to the irreducible components of contact loci Cont ${ }^{\geq m}(\mathfrak{a})$ which are introduced by L. Ein, R. Lazarsfeld and M. Mustaţă ([2]). In this paper we introduce the maximal divisorial set

[^0]$C_{X}(v)$ in the arc space of a variety X corresponding to a divisorial valuation v. A fat irreducible component of a contact locus is a maximal divisorial set. In order to characterize the valuations corresponding to the irreducible components of a contact locus, it is essential to translate the inclusion relation between two maximal divisorial sets to a relation between the corresponding divisorial valuations. The most natural candidate as this relation is the value-inequality relation, i.e., $v(f) \leq v^{\prime}(f)$ for every regular function f on the affine variety X. Actually, if the variety X and the valuations v, v^{\prime} are toric, we have the equivalence: $v(f) \leq v^{\prime}(f)$ for every regular function f on $X \Leftrightarrow C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$. For non-toric valuations, we show that this equivalence does not hold even on \mathbb{C}^{2}.

This paper is organized as follows: In the second section we introduce the maximal divisorial set corresponding to a divisorial valuation and show the basic properties. In the third section we show some basic properties of a contact locus and formulate a generalized Nash problem. In the forth section we show an example of divisorial valuations v, v^{\prime} over \mathbb{C}^{2} such that the value-inequality relation does not imply the inclusion of the maximal divisorial sets corresponding to v and v^{\prime}.

The author is grateful to the members of Singularity Seminar at Nihon University for useful suggestions and encouragement.

In this paper, a variety is always an irreducible reduced separated scheme of finite type over \mathbb{C}.

§2. Maximal divisorial sets in the arc space

Definition 2.1. Let X be a scheme of finite type over \mathbb{C} and $K \supset \mathbb{C}$ a field extension. A morphism $\alpha: \operatorname{Spec} K[[t]] \longrightarrow X$ is called an arc of X. We denote the closed point of Spec $K[[t]]$ by 0 and the generic point by η.

For $m \in \mathbb{N}$, a morphism $\beta: \operatorname{Spec} K[t] /\left(t^{m+1}\right) \longrightarrow X$ is called an m-jet of X. Denote the space of arcs of X by X_{∞} and the space of m-jets of X by X_{m}.

The arc space X_{∞} and m-jet space X_{m} are characterized by the following property:

Proposition 2.2. Let X be a scheme of finite type over \mathbb{C}. Then, for an arbitrary \mathbb{C}-scheme Y,

$$
\operatorname{Hom}_{\mathbb{C}}\left(Y, X_{\infty}\right) \simeq \operatorname{Hom}_{\mathbb{C}}\left(Y \widehat{x}_{\text {Spec } \mathbb{C}} \operatorname{Spec} \mathbb{C}[[t]], X\right)
$$

where $Y \widehat{\times}_{\text {Spec } \mathbb{C}} \operatorname{Spec} \mathbb{C}[[t]]$ means the formal completion of $Y \times_{\text {Spec } \mathbb{C}}$ Spec $\mathbb{C}[[t]]$ along the subscheme $Y \times_{\text {Spec }} \mathbb{C}\{0\}$, and for $m \in \mathbb{N}$

$$
\operatorname{Hom}_{\mathbb{C}}\left(Y, X_{m}\right) \simeq \operatorname{Hom}_{\mathbb{C}}\left(Y \times_{\text {Spec } \mathbb{C}} \operatorname{Spec} K[t] /\left(t^{m+1}\right), X\right)
$$

2.3. By thinking of the case $Y=\operatorname{Spec} K$ for an extension field K of \mathbb{C}, we see that K-valued points of X_{∞} correspond to $\operatorname{arcs} \alpha$: Spec $K[[t]] \longrightarrow X$ bijectively. Based on this, we denote the K-valued point corresponding to an arc $\alpha: \operatorname{Spec} K[[t]] \longrightarrow X$ by the same symbol α. The canonical projection $X_{\infty} \longrightarrow X, \alpha \mapsto \alpha(0)$ is denoted by π_{X}. If there is no risk of confusion, we write just π.

A morphism $\varphi: Y \longrightarrow X$ of varieties induces a canonical morphism $\varphi_{\infty}: Y_{\infty} \longrightarrow X_{\infty}, \alpha \mapsto \varphi \circ \alpha$.

The concept "thin" in the following is first introduced in [2] and a "fat arc" is introduced and studied in [5].

Definition 2.4. Let X be a variety over \mathbb{C}. We say an arc α : Spec $K[[t]] \longrightarrow X$ is thin if α factors through a proper closed subset of X. An arc which is not thin is called a fat arc.

An irreducible closed subset C in X_{∞} is called a thin set if the generic point of C is thin. An irreducible closed subset in X_{∞} which is not thin is called a fat set.

Definition 2.5. Let $\alpha: \operatorname{Spec} K[[t]] \longrightarrow X$ be a fat arc of a variety X and $\alpha^{*}: \mathcal{O}_{X, \alpha(0)} \longrightarrow K[[t]]$ the local homomorphism induced from α. By Proposition 2.5, (i) in [5], α^{*} is extended to the injective homomorphism of fields $\alpha^{*}: K(X) \longrightarrow K((t))$, where $K(X)$ is the rational function field of X. Define a function $v_{\alpha}: K(X) \backslash\{0\} \longrightarrow \mathbb{Z}$ by

$$
v_{\alpha}(f)=\operatorname{ord}_{t} \alpha^{*}(f)
$$

Then, v_{α} is a valuation of $K(X)$. We call it the valuation corresponding to α.

Definition 2.6. Let X be a variety, $g: X_{1} \longrightarrow X$ a proper birational morphism from a normal variety X_{1} and $E \subset X_{1}$ an irreducible divisor. Let $f: X_{2} \longrightarrow X$ be another proper birational morphism from a normal variety X_{2}. The birational map $f^{-1} \circ g: X_{1} \rightarrow X_{2}$ is defined on a (nonempty) open subset E^{0} of E. The closure of $\left(f^{-1} \circ g\right)\left(E^{0}\right)$ is well defined. It is called the center of E on X_{2}.

We say that E appears in f (or in X_{2}), if the center of E on X_{2} is also a divisor. In this case the birational map $f^{-1} \circ g: X_{1} \rightarrow X_{2}$ is a local isomorphism at the generic point of E and we denote the birational transform of E on X_{2} again by E. For our purposes $E \subset X_{1}$ is identified with $E \subset X_{2}$. (Strictly speaking, we should be talking about the corresponding divisorial valuation instead.) Such an equivalence class is called a divisor over X.

Definition 2.7. A valuation v on the rational function field $K(X)$ of a variety X is called a divisorial valuation over X if $v=q \operatorname{val}_{E}$ for some $q \in \mathbb{N}$ and a divisor E over X. The divisor E is called the center of the valuation $v=q \operatorname{val}_{E}$. A fat $\operatorname{arc} \alpha$ of X is called a divisorial arc if v_{α} is a divisorial valuation over X. A fat set is called a divisorial set if the generic point is a divisorial arc.

Definition 2.8. For a divisorial valuation v over a variety X, define the maximal divisorial set corresponding to v as follows:

$$
C_{X}(v):=\overline{\left\{\alpha \in X_{\infty} \mid v_{\alpha}=v\right\}}
$$

where $\overline{\}}$ is the Zariski closure in X_{∞}.
Proposition 2.9. Let $\varphi: Y \longrightarrow X$ be a proper birational morphism of varieties and v a divisorial valuation over X. Then,
(i) v is also a divisorial valuation over Y and $C_{X}(v)=\overline{\varphi_{\infty}\left(C_{Y}(v)\right)}$.
(ii) If an open subset $U \subset Y$ intersects the center of the valuation v on Y, Then $C_{X}(v)=\overline{\varphi_{\infty}\left(C_{U}(v)\right)}$.
Proof. The first assertion of (i) follows from constructing a suitable proper birational morphism dominating Y on which the corresponding divisor appears. The inclusion \supset is obvious. For the opposite inclusion, take a fat arc $\alpha \in X_{\infty}$ such that $v_{\alpha}=v$. As the image $\alpha(\eta)$ is the generic point of X, it is in the open subset on which φ is isomorphic. Hence, $\alpha(\eta)$ is lifted on Y. Then, by the valuative criterion of properness, α is uniquely lifted to $\tilde{\alpha} \in Y_{\infty}$. We obtain that $\alpha=\varphi_{\infty}(\tilde{\alpha})$ and $v_{\tilde{\alpha}}=v$, which imply $\alpha \in \varphi_{\infty}\left(C_{Y}(v)\right)$. For the statement (ii), let $\alpha: \operatorname{Spec} K[[t]] \longrightarrow Y$ be a fat arc of Y such that $v_{\alpha}=v$. Then, $\alpha(\eta)$ is the generic point of Y and $\alpha(0)$ is the generic point of the center of v on Y. One can see that both are on U, therefore $\alpha \in U_{\infty}$.
Q.E.D.

In the following section, we will see that a maximal divisorial set is irreducible.

Example 2.10. For toric varieties, we use the terminologies in [3]. Let X be an affine toric variety defined by a cone σ in $N \simeq \mathbb{Z}^{n}$. Let M be the dual of N and $\langle\rangle:, N \times M \longrightarrow \mathbb{Z}$ the canonical pairing. A \mathbb{C}-algebra $\mathbb{C}[M]$ consists of linear combinations over \mathbb{C} of monomials x^{u} for $u \in M$. A point $v \in \sigma \cap N$ gives a toric valuation v by $v\left(x^{u}\right)=\langle v, u\rangle$. An irreducible locally closed subset $T_{\infty}(v)$ is defined in [4] as follows:

$$
T_{\infty}(v)=\left\{\alpha \in X_{\infty} \mid \alpha(\eta) \in T, \operatorname{ord}_{t} \alpha^{*}\left(x^{u}\right)=\langle v, u\rangle \text { for } u \in M\right\}
$$

where T denotes the open orbit and also the torus acting on X and $\alpha^{*}: \mathbb{C}\left[\sigma^{\vee} \cap M\right] \longrightarrow K[[t]]$ is the ring homomorphism corresponding to
α. Then, $C_{X}(v)=\overline{T_{\infty}(v)}$. This is proved as follows: First, take any point $\alpha \in C_{X}(v)$ such that $v_{\alpha}=v$. Then, $\operatorname{ord}_{t} \alpha^{*}\left(x^{u}\right)=v\left(x^{u}\right)=\langle v, u\rangle$. Therefore, $\alpha \in T_{\infty}(v)$, which yields $C_{X}(v) \subset \overline{T_{\infty}(v)}$. Conversely, let $\beta \in \overline{T_{\infty}(v)}$ be the generic point. Then, by the upper semi-continuity (see for example [5, Proposition 2.7]) $v_{\beta}(f) \leq v_{\alpha}(f)=v(f)$ for every $f \in \mathbb{C}\left[\sigma^{\vee} \cap M\right]$. But, since v is toric, it is the minimal valuation satisfying $v_{\beta}\left(x^{u}\right)=v\left(x^{u}\right)$ for every $u \in \sigma^{\vee} \cap M$. Therefore, $v_{\beta}=v$, which implies $\beta \in C_{X}(v)$.

§3. Contact loci

Definition 3.1. Let $\psi_{m}: X_{\infty} \longrightarrow X_{m}$ be the canonical projection to the space of m-jets X_{m}. A subset $C \subset X_{\infty}$ is called a cylinder if there is a constructible set $S \subset X_{m}$ for some $m \in \mathbb{N}$ such that

$$
C=\psi_{m}^{-1}(S)
$$

For an $\operatorname{arc} \alpha: \operatorname{Spec} K[[t]] \longrightarrow X$ of an affine variety $X=\operatorname{Spec} A$, we always denote by α^{*} the ring homomorphism $A \longrightarrow K[[t]]$ corresponding to α.

Let X be a variety and \mathfrak{a} an ideal sheaf on X. For an $\operatorname{arc} \alpha$: Spec $K[[t]] \longrightarrow X$, there is an open affine subset $U \subset X$ such that α factors through U. We define $\operatorname{ord}_{t} \alpha^{*}(\mathfrak{a})$ as follows:

$$
\operatorname{ord}_{t} \alpha^{*}(\mathfrak{a})=\operatorname{ord}_{t} \alpha^{*}(\Gamma(U, \mathfrak{a}))
$$

Definition 3.2 ([2]). For an ideal sheaf \mathfrak{a} on a variety X, we define

$$
\operatorname{Cont}^{m}(\mathfrak{a})=\left\{\alpha \in X_{\infty} \mid \operatorname{ord}_{t} \alpha^{*}(\mathfrak{a})=m\right\}
$$

and

$$
\operatorname{Cont}^{\geq m}(\mathfrak{a})=\left\{\alpha \in X_{\infty} \mid \operatorname{ord}_{t} \alpha^{*}(\mathfrak{a}) \geq m\right\}
$$

These subsets are called contact loci of an ideal \mathfrak{a}. The subset Cont ${ }^{\geq m}(\mathfrak{a})$ is closed and Cont ${ }^{m}(\mathfrak{a})$ is locally closed. Both are cylinders.

Definition 3.3 ([2]). For a simple normal crossing divisor $E=$ $\bigcup_{i=1}^{s} E_{i}$ on a non-singular variety X, we introduce the multi-contact loci for a multi-index $\nu \in \mathbb{Z}_{\geq 0}^{s}$:

$$
\operatorname{Cont}^{\nu}(E)=\left\{\alpha \in X_{\infty} \mid \operatorname{ord}_{t} \alpha^{*}\left(I_{E_{i}}\right)=\nu_{i}\right\}
$$

where $I_{E_{i}}$ is the defining ideal of E_{i}. The multi-contact locus Cont ${ }^{\nu}(E)$ is irreducible if it is not empty.

Proposition 3.4. Let $v=q \operatorname{val}_{E_{0}}$ be a divisorial valuation over a variety X. Let $\varphi: Y \longrightarrow X$ be a resolution of the singularities of X such that the irreducible divisor E_{0} appears on Y. Then,

$$
C_{X}(v)=\overline{\varphi_{\infty}\left(\operatorname{Cont}^{q}\left(E_{0}\right)\right)}
$$

In particular, $C_{X}(v)$ is irreducible.
Proof. By Proposition 2.9, it is sufficient to prove that

$$
C_{Y}(v)=\overline{\text { Cont }^{q}\left(E_{0}\right)}
$$

Let $\alpha \in \operatorname{Cont}^{q}\left(E_{0}\right)$ be the generic point, then $\alpha(0)=e$ is the generic point of E_{0}. Therefore, we obtain a local homomorphism

$$
\alpha^{*}: \mathcal{O}_{Y, e} \longrightarrow K[[t]]
$$

such that $\operatorname{ord}_{t} \alpha^{*}(\tau)=q$, where τ is a generator of the maximal ideal of $\mathcal{O}_{Y, e}$. Then, for every $f \in \mathcal{O}_{Y, e}$ written as $f=u \tau^{n}$, where u is a unit in $\mathcal{O}_{Y, e}$, it follows that $\operatorname{ord}_{t} \alpha^{*}(f)=q n=q \operatorname{val}_{E_{0}}(f)=v(f)$. This implies $\alpha \in C_{Y}(v)$.

Conversely, if $\beta \in C_{Y}(v)$ is an arc such that $v_{\beta}=v$, then $\operatorname{ord}_{t} \beta^{*}(\tau)=$ q, which yields $\beta \in \operatorname{Cont}^{q}\left(E_{0}\right)$.
Q.E.D.

The following is the characterization of ideals which have the same contact loci.

Proposition 3.5. Let $\mathfrak{a}, \mathfrak{b} \subset A$ be ideals on an affine variety $X=$ $\operatorname{Spec} A$. Then, the following are equivalent:
(i) $\overline{\mathfrak{a}}=\overline{\mathfrak{b}}$, where $\overline{\mathfrak{a}}, \overline{\mathfrak{b}}$ are the integral closures of \mathfrak{a} and \mathfrak{b}, respectively;
(ii) $\operatorname{Cont}^{m}(\mathfrak{a})=\operatorname{Cont}^{m}(\mathfrak{b})$ for every $m \in \mathbb{N}$;
(iii) Cont ${ }^{\geq m}(\mathfrak{a})=$ Cont $^{\geq m}(\mathfrak{b})$ for every $m \in \mathbb{N}$.

Proof. By Cont ${ }^{m}(\mathfrak{a})=$ Cont $^{\geq m}(\mathfrak{a}) \backslash$ Cont $^{\geq m+1}(\mathfrak{a})$, the equivalence: $(i i) \Leftrightarrow(i i i)$ is clear.

For $(i) \Rightarrow(i i i)$, it is sufficient to prove that Cont ${ }^{\geq m}(\mathfrak{a})=$ Cont ${ }^{\geq m}\left(\mathfrak{a}^{\prime}\right)$ $(m \in \mathbb{N})$ for an ideal \mathfrak{a}^{\prime} integral over \mathfrak{a}. As $\mathfrak{a}^{\prime} \supset \mathfrak{a}$, it follows Cont ${ }^{\geq m}\left(\mathfrak{a}^{\prime}\right) \subset$ Cont ${ }^{\geq m}(\mathfrak{a})$. To prove the opposite inclusion, take an $\operatorname{arc} \alpha \in \operatorname{Cont}^{\geq m}(\mathfrak{a})$. It is sufficient to prove that $\operatorname{ord}_{t} \alpha^{*}(x) \geq m$ for every $x \in \mathfrak{a}^{\prime}$. Assume $\operatorname{ord}_{t} \alpha^{*}(x)=d<m$. Since x is integral over \mathfrak{a}, there is a relation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}=0 \tag{3.5.1}
\end{equation*}
$$

with $a_{i} \in \mathfrak{a}^{i}$. Here, noting that $\operatorname{ord}_{t} \alpha^{*}\left(a_{i}\right) \geq m i$, we obtain $\operatorname{ord}_{t} \alpha^{*}\left(a_{i} x^{n-i}\right)$ $>n d$ for $i \geq 1$ and $\operatorname{ord}_{t} \alpha^{*}\left(x^{n}\right)=n d$. Therefore the order of the left hand side of (3.5.1) is $n d$, which is a contradiction to the equality.

For $(i i) \Rightarrow(i)$, take an element $x \in \mathfrak{b}$. Given a discrete valuation ring $R_{v} \supset A$, we obtain a ring homomorphism

$$
A \subset R_{v} \longrightarrow \widehat{R_{v}}=K[[t]]
$$

where K is the residue field of R_{v} and t is a generator of the maximal ideal of R_{v}. Let α be the arc corresponding to this ring homomorphism $A \longrightarrow K[[t]]$. Let $m=\operatorname{ord}_{t} \alpha^{*}(\mathfrak{a})$. Then $\alpha \in \operatorname{Cont}^{m}(\mathfrak{a})=\operatorname{Cont}^{m}(\mathfrak{b})$, and therefore $\operatorname{ord}_{t} \alpha^{*}(\mathfrak{b})=m$. Hence, $v(x)=\operatorname{ord}_{t} \alpha^{*}(x) \geq m=v\left(\mathfrak{a} R_{v}\right)$. This shows that x is integral over \mathfrak{a}, i.e., $\mathfrak{b} \subset \overline{\mathfrak{a}}$ by the valuative characterization of integrity. Similarly, we obtain $\mathfrak{a} \subset \overline{\mathfrak{b}}$. Now we have $\overline{\mathfrak{a}}=\overline{\mathfrak{b}}$ as required.
Q.E.D.

It is proved in [2, Corollary 2.6] that a fat component of a contact locus is a divisorial set in case X is non-singular. The following gives more precise information also for singular X.

Proposition 3.6 ([1]). Let X be an affine variety $\operatorname{Spec} A$ and $\mathfrak{a} \subset A$ a non-zero ideal. For $m \in \mathbb{N}$, a fat irreducible component of $\operatorname{Cont}^{\geq m}(\mathfrak{a})$ is a maximal divisorial set and the number of such components is finite.

Here, we note that, for a divisorial valuation v over an affine variety $X=\operatorname{Spec} A$ and an ideal $\mathfrak{a} \subset A, C_{X}(v) \subset \operatorname{Cont}^{\geq m}(\mathfrak{a})$ if and only if $v(\mathfrak{a}) \geq m$.

Problem 3.7. A generalized Nash problem. (Embedded version of Nash's problem in [2]) Let X be an affine variety $\operatorname{Spec} A$ and $\mathfrak{a} \subset A$ an ideal. Determine the set
$\mathcal{V}^{m}(\mathfrak{a}):=\left\{v \mid C_{X}(v)\right.$ is an irreducible component of Cont $\left.{ }^{\geq m}(\mathfrak{a})\right\}$.
Problem 3.8. The Nash problem. Let $I_{\operatorname{Sing} X} \subset A$ be the defining ideal of the singular locus $\operatorname{Sing} X$ of X. Determine the set $\mathcal{V}^{1}\left(I_{\text {Sing } X}\right)$.
3.9. Nash posed his problem in a different way ([8], see also [6]), but his problem is translated into the above problem. As one sees, the Nash problem is a special case of the generalized Nash problem. Nash predicted that the set $\mathcal{V}^{1}\left(I_{\text {Sing } X}\right)$ coincides with the set of the valuations of essential divisors ([8]). But, it is not true for four or higher dimensional case ([6]). So, Nash's prediction is still open for 2 and 3 dimensional cases.
3.10. The generalized Nash problem is to determine maximal $C_{X}(v)$'s contained in Cont ${ }^{\geq m}(\mathfrak{a})$. Therefore it is essential to determine the relation of valuations v, v^{\prime} when $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$. The most natural candidate for the relation of v and v^{\prime} is that $v(f) \leq v^{\prime}(f)$ for every $f \in A$,
which is denoted by:

$$
\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}
$$

If X is a toric variety and v, v^{\prime} are toric divisorial valuation, then we obtain in [4]:

$$
\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A} \quad \Leftrightarrow \quad C_{X}(v) \supset C_{X}\left(v^{\prime}\right)
$$

Lemma 3.11. Let v, v^{\prime} be divisorial valuations over X.
(i) If $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$, then $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$.
(ii) Assume that v is a toric valuation, then the converse also holds.

Proof. Let α and α^{\prime} be the generic points of $C_{X}(v)$ and $C_{X}\left(v^{\prime}\right)$, respectively. Then, $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$ yields $\operatorname{ord}_{t} \alpha^{*}(f) \leq \operatorname{ord}_{t} \alpha^{\prime *}(f)$ for every $f \in A$ by the upper semi-continuity. This yields $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$.

Assume that v is toric. Let v_{0}^{\prime} be the toric valuation determined by $v_{0}^{\prime}(x)=v^{\prime}(x)$ for every monomial x. Then, by the definition of $T_{\infty}\left(v_{0}^{\prime}\right)$, it follows $\alpha^{\prime} \in T_{\infty}\left(v_{0}^{\prime}\right)$. Hence, $C_{X}\left(v_{0}^{\prime}\right) \supset C_{X}\left(v^{\prime}\right)$. On the other hand, v and v_{0}^{\prime} are both toric, it follows that $\left.v\right|_{A} \leq\left. v_{0}^{\prime}\right|_{A}$ and therefore $C_{X}(v) \supset C_{X}\left(v_{0}^{\prime}\right)$ by [4, Proposition 4.8]. Q.E.D.

So we expect that, at least for a simple variety like \mathbb{C}^{n}, the above equivalence holds for arbitrary divisorial valuations v, v^{\prime}. In the next section we consider this problem and will give a negative answer.

§4. An example over \mathbb{C}^{2}

Proposition 4.1. For a divisorial valuations v, v^{\prime} over $X=\operatorname{Spec} A$, the following hold:
(i) $\quad C_{X}(v)=\overline{\bigcap_{f \in A \backslash\{0\}} \text { Cont }^{v(f)}(f)}$;
(ii) $C_{X}(v)$ is an irreducible component of $\bigcap_{f \in A \backslash\{0\}} \operatorname{Cont}^{\geq v(f)}(f)$;
(iii) the relation $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$ holds if and only if the inclusion $C_{X}\left(v^{\prime}\right)$. $\subset \bigcap_{f \in A \backslash\{0\}}$ Cont $^{\geq v(f)}(f)$ holds.

Proof. For the proof of (i), take the generic point α of $C_{X}(v)$, then for every $f \in A \backslash\{0\}$ it follows that $\operatorname{ord}_{t} \alpha^{*}(f)=v(f)$ which means $\alpha \in \operatorname{Cont}^{v(f)}(f)$. On the other hand, let $\beta \in \bigcap_{f \in A \backslash\{0\}} \operatorname{Cont}^{v(f)}(f)$, then it follows $v_{\beta}=v$, which yields $\beta \in C_{X}(v)$. For the proof of (ii) note first that $C_{X}(v) \subset \bigcap_{f \in A \backslash\{0\}} \operatorname{Cont}^{\geq v(f)}(f)$. Let C^{\prime} be an irreducible component of $\bigcap_{f \in A \backslash\{0\}}$ Cont ${ }^{\geq v(f)}(f)$ containing $C_{X}(v)$. Let α and α^{\prime} be the generic points of $C_{X}(v)$ and C^{\prime}, respectively. As $\alpha^{\prime} \in$ $\bigcap_{f \in A \backslash\{0\}}$ Cont $^{\geq v(f)}(f)$, we have $\operatorname{ord}_{t} \alpha^{\prime *}(f) \geq v(f)$ for every $f \in A \backslash\{0\}$. On the other hand, the inclusion $\alpha \in C^{\prime}$ and the upper-semicontinuity
yield $\operatorname{ord}_{t} \alpha^{\prime *}(f) \leq \operatorname{ord}_{t} \alpha^{*}(f)=v(f)$ for every $f \in A \backslash\{0\}$. Therefore we obtain that $v_{\alpha^{\prime}}=v$ which implies $\alpha^{\prime} \in C_{X}(v)$. For the proof of (iii), let β be the generic point of $C_{X}\left(v^{\prime}\right)$. Then, $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$ if and only if $\operatorname{ord}_{t} \beta^{*}(f)=v^{\prime}(f) \geq v(f)$ for every $f \in A \backslash\{0\}$ and this is equivalent to the inclusion $\beta \in \bigcap_{f \in A \backslash\{0\}} \operatorname{Cont}^{\geq v(f)}(f)$.
Q.E.D.

The proposition suggests that $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$ does not imply $C_{X}(v) \supset$ $C_{X}\left(v^{\prime}\right)$, since there is no guarantee of the equality $\overline{\bigcap_{f \in A \backslash\{0\}} \operatorname{Cont}^{v(f)}(f)}$ $=\bigcap_{f \in A \backslash\{0\}}$ Cont $^{\geq v(f)}(f)$. In the following we show an example for which the equality actually does not hold.

In the rest of this section, $X=\mathbb{C}^{2}=\operatorname{Spec} A$ and $A=\mathbb{C}[x, y]$. We construct an example of v, v^{\prime} such that $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$ but $C_{X}(v) \not \supset C_{X}\left(v^{\prime}\right)$.
4.2 (Construction). Let $X_{\infty}=\operatorname{Spec} \mathbb{C}\left[a_{i}, b_{i} \mid i \geq 0\right]$. Then

$$
\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)=\operatorname{Spec} \mathbb{C}\left[a_{2}^{ \pm 1}, a_{3}, . ., b_{3}^{ \pm 1}, b_{4}, . .\right]
$$

Let $D \subset \operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)$ be the closed subset defined by the ideal $\left(a_{2}^{3}-b_{3}^{2}, 3 a_{2}^{2} a_{3}-2 b_{3} b_{4}\right)$ in $\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)$. Then, it is easy to check that D is irreducible. Let $\alpha \in D$ be the generic point and v be the divisorial valuation v_{α} corresponding to α. Let v^{\prime} be the toric valuation with $v^{\prime}(x)=3, v^{\prime}(y)=4$

Theorem 4.3. Let v, v^{\prime} be as above. Then, the following hold:
(i) $\quad \alpha^{*}\left(x^{3}-y^{2}\right)=c_{8} t^{8}+c_{9} t^{9}+\ldots$, where c_{8} is transcendental over $\mathbb{C}\left(a_{2}, a_{3}, b_{3}, b_{4}\right)$ which is a subfield of K, where $\alpha^{*}: A \longrightarrow$ $K[[t]]$ is a ring homomorphism corresponding to α;
(ii) Let $Z \subset X$ be the closed subset defined by $x^{3}-y^{2}=0$ and $\psi_{m}: X_{\infty} \longrightarrow X_{m}$ the canonical projection for $m \in \mathbb{N}$. Then,

$$
\begin{aligned}
D & =\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y) \cap \psi_{7}^{-1}\left(Z_{7}\right) \\
& =\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y) \cap \operatorname{Cont}^{\geq 8}\left(x^{3}-y^{2}\right)
\end{aligned}
$$

(iii) $C_{X}(v)=\bar{D}$;
(iv) $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$;
(v) $C_{X}(v) \not \supset C_{X}\left(v^{\prime}\right)$.

Proof. (i) Note that K is the quotient field of the ring $\mathbb{C}\left[a_{2}^{ \pm 1}, a_{3}, \ldots, b_{3}^{ \pm 1}, b_{4}, ..\right] /\left(a_{2}^{3}-b_{3}^{2}, 3 a_{2}^{2} a_{3}-2 b_{3} b_{4}\right)$. The image $\alpha^{*}\left(x^{3}-y^{2}\right)$ is

$$
\left(a_{2}^{3}-b_{3}^{2}\right) t^{6}+\left(3 a_{2}^{2} a_{3}-2 b_{3} b_{4}\right) t^{7}+\left(3 a_{2} a_{3}^{2}+3 a_{2}^{2} a_{4}-b_{4}^{2}-2 b_{3} b_{5}\right) t^{8}+\ldots
$$

where the coefficients of t^{6} and t^{7} are zero in K and the coefficient of t^{8} contains a_{4} and b_{5} which are algebraically independent over the subfield $\mathbb{C}\left(a_{2}, a_{3}, b_{3}, b_{4}\right)$ in K. Therefore c_{8} is transcendental over $\mathbb{C}\left(a_{2}, a_{3}, b_{3}, b_{4}\right)$.
(ii) Let f_{j} be the coefficient of t^{j} in

$$
\left(a_{0}+a_{1} t+. .\right)^{3}-\left(b_{0}+b_{1} t+\ldots\right)^{2} .
$$

Then, the closed subset $\psi_{7}^{-1}\left(Z_{7}\right)$ is defined by the equations $f_{0}\left(a_{i}, b_{i}\right)=$ $\ldots=f_{7}\left(a_{i}, b_{i}\right)=0$ in X_{∞}. Noting that $a_{0}=a_{1}=b_{0}=b_{1}=b_{2}=0$ in $\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)$, we obtain that $f_{j}=0$ automatically holds for $j=0, . ., 5$ in $\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)$. On the other hand f_{6} and f_{7} coincide with $a_{2}^{3}-b_{3}^{2}$ and $3 a_{2}^{2} a_{3}-2 b_{3} b_{4}$, respectively in $\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y)$. Therefore, $D=\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y) \cap \psi_{7}^{-1}\left(Z_{7}\right)$.
(iii) As $v_{\alpha}=v$, it is clear that $\bar{D} \subset C_{X}(v)$. On the other hand, by Proposition 4.1,

$$
C_{X}(v)=\overline{\bigcap_{f \in A} \operatorname{Cont}^{v(f)}(f)}
$$

and the right hand side is contained in $\operatorname{Cont}^{2}(x) \cap \operatorname{Cont}^{3}(y) \cap \operatorname{Cont}^{\geq 8}\left(x^{3}-\right.$ y^{2}).

For (iv) and (v) we need the following lemmas.
Lemma 4.4. Let v_{0} be the toric valuation with $v_{0}(x)=2$ and $v_{0}(y)=3$. Let $g \in A$ be a homogeneous element with respect to v_{0}, i.e., every monomial in g has the same value of v_{0}. Then, $g=\left(x^{3}-y^{2}\right)^{m} g^{\prime}$, where $m \geq 0$ and $v\left(g^{\prime}\right)=v_{0}\left(g^{\prime}\right)$. Here, g satisfies $v(g)>v_{0}(g)$ if and only if $m>0$.

Proof. First, if $v(g)=v_{0}(g)$, then g is written as in the lemma with $m=0$. Now assume that $v(g)>v_{0}(g)$. Note that $\alpha^{*}(x)=a_{2} t^{2}+$ $a_{3} t^{3}+\ldots$, and $\alpha^{*}(y)=b_{3} t^{3}+b_{4} t^{4}+\ldots$, where $\alpha^{*}: A \longrightarrow K[[t]]$ is the ring homomorphism corresponding to α. Here, K is the quotient field of $\mathbb{C}\left[a_{2}^{ \pm 1}, a_{3}, . ., b_{3}^{ \pm 1}, b_{4}, ..\right] /\left(a_{2}^{3}-b_{3}^{2}, 3 a_{2}^{2} a_{3}-2 b_{3} b_{4}\right)$. As g is homogeneous with respect to v_{0}, we obtain that

$$
\alpha^{*}(g)=g\left(a_{2}, b_{3}\right) t^{v_{0}(g)}+(\text { higher order terms })
$$

Since $\operatorname{ord}_{t} \alpha^{*}(g)=v(g)>v_{0}(g)$, the leading coefficient $g\left(a_{2}, b_{3}\right)=0$ in K. Therefore, $g\left(a_{2}, b_{3}\right)=0$ in $\mathbb{C}\left[a_{2}, b_{3}\right] /\left(a_{2}^{3}-b_{3}^{2}\right) \subset K$, which yields that $\left(x^{3}-y^{2}\right) \mid g$. Now write $g=\left(x^{3}-y^{2}\right) g^{\prime}$. If g^{\prime} satisfies still $v\left(g^{\prime}\right)>v_{0}\left(g^{\prime}\right)$, then, by the above discussion, it follows that $\left(x^{3}-y^{2}\right) \mid g^{\prime}$. We have $g=\left(x^{3}-y^{2}\right)^{2} g^{\prime \prime}$ and $v_{0}\left(g^{\prime \prime}\right)<v_{0}\left(g^{\prime}\right)<v_{0}(g)$. By this procedure, we obtain finally the statement of the lemma.
Q.E.D.

Lemma 4.5. Assume $v(g)>v_{0}(g)$ for a polynomial $g \in A$. Let $g=g_{1}+g_{2}+\ldots+g_{r}$ be the decomposition into homogeneous parts with $v_{0}\left(g_{i}\right)<v_{0}\left(g_{i+1}\right)$. Then,

$$
v(g)=\min \left\{v\left(g_{i}\right) \mid i=1, \ldots, r\right\} .
$$

Proof. By Lemma 4.4 we obtain for each $i=1, . ., r$

$$
g_{i}=\left(x^{3}-y^{2}\right)^{n_{i}} g_{i}^{\prime}
$$

where $n_{i} \geq 0$ and g_{i}^{\prime} satisfies $v\left(g_{i}^{\prime}\right)=v_{0}\left(g_{i}^{\prime}\right)$. As $v\left(x^{3}-y^{2}\right)=8$, it follows that $v\left(g_{i}\right)=8 n_{i}+v_{0}\left(g_{i}^{\prime}\right)$. Let $d=\min \left\{v\left(g_{i}\right) \mid i=1, . ., r\right\}$ and $I=\left\{i \mid v\left(g_{i}\right)=d\right\}$. Then, for two distinct element $i, j \in I$, it follows that $n_{i} \neq n_{j}$. Indeed, if $n_{i}=n_{j}$, then, $8 n_{i}+v_{0}\left(g_{i}^{\prime}\right)=d=8 n_{j}+v_{0}\left(g_{j}^{\prime}\right)$, and therefore $v_{0}\left(g_{i}^{\prime}\right)=v_{0}\left(g_{j}^{\prime}\right)$. Hence, $v_{0}\left(g_{i}\right)=6 n_{i}+v_{0}\left(g_{i}^{\prime}\right)=6 n_{j}+v_{0}\left(g_{j}^{\prime}\right)=$ $v_{0}\left(g_{j}\right)$, which is a contradiction to the assumption. Now, we have

$$
\alpha^{*}(g)=\sum_{i \in I} \alpha^{*}\left(\left(x^{3}-y^{2}\right)^{n_{i}} g_{i}^{\prime}\right)+\sum_{i \notin I} \alpha^{*}\left(\left(x^{3}-y^{2}\right)^{n_{i}} g_{i}^{\prime}\right) .
$$

The right hand side is

$$
\left(\sum_{i \in I} c_{8}^{n_{i}} g_{i}^{\prime}\left(a_{2}, b_{3}\right)\right) t^{d}+(\text { higher order term })
$$

If $v(g)=\operatorname{ord}_{t} \alpha^{*}(g)>d$, then $\# I \geq 2$ and we have a non-trivial algebraic relation

$$
\sum_{i \in I} c_{8}^{n_{i}} g_{i}^{\prime}\left(a_{2}, b_{3}\right)=0
$$

of c_{8} over $\mathbb{C}\left(a_{2}, b_{3}\right)$. But this is a contradiction to (i). Therefore, $v(g)=$ d.
Q.E.D.

Proof of (iv) and (v) of Theorem 4.3. Take an arbitrary element $g \in A$. Let $g=g_{1}+. .+g_{r}$ be the homogeneous decomposition as in Lemma 4.5. Let $g_{i}=\left(x^{3}-y^{2}\right)^{n_{i}} g_{i}^{\prime}$, where $v\left(g_{i}^{\prime}\right)=v_{0}\left(g_{i}^{\prime}\right)$ as in Lemma 4.4. Then $v^{\prime}\left(g_{i}\right) \geq 8 n_{i}+v_{0}\left(g_{i}^{\prime}\right)=v\left(g_{i}\right)$. By Lemma 4.5, $v(g)=\min \left\{v\left(g_{i}\right) \mid i=\right.$ $1, . ., r\} \leq \min \left\{v^{\prime}\left(g_{i}\right) \mid i=1, . ., r\right\} \leq v^{\prime}(g)$. This proves (iv).

Let $\beta \in \operatorname{Cont}^{3}(x) \cap \operatorname{Cont}^{4}(y)$ be the generic point. Then $\beta^{*}(x)=$ $a_{3} t^{3}+a_{4} t^{4}+\ldots$ and $\beta^{*}(y)=b_{4} t^{4}+b_{5} t^{5}+\ldots$ Then

$$
\beta \in D^{\prime}=\operatorname{Spec} \mathbb{C}\left[a_{2}, a_{3}, . ., b_{3}, b_{4} \ldots\right] /\left(a_{2}^{3}-b_{3}^{2}, 3 a_{2}^{2} a_{3}-2 b_{3} b_{4}\right) \subset X_{\infty}
$$

Here, D^{\prime} has two component. One is \bar{D} and we denote the other by $D^{\prime \prime}$. The component $D^{\prime \prime}$ is defined by $a_{2}=b_{3}=0$ in D^{\prime}. It is easy to see that β is the generic point of $D^{\prime \prime}$. Therefore, $C_{X}(v)=\bar{D}$ and $C_{X}\left(v^{\prime}\right)=D^{\prime \prime}$ have no inclusion relation.
Q.E.D.
4.6. This theorem and 3.11 , (i) shows that the relation $C_{X}(v) \supset$ $C_{X}\left(v^{\prime}\right)$ is strictly stronger than the relation $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$. Now we consider another relation of divisorial valuation. For $X=\mathbb{C}^{2}$ we have an order \prec of divisors E and E^{\prime} over $X: E \prec E^{\prime}$ if there is a successive blowing-ups $\longrightarrow X_{j} \longrightarrow \cdots \longrightarrow X_{i} \longrightarrow X_{i-1} \longrightarrow \cdots X_{1} \longrightarrow X$ such that E appears on X_{i} and E^{\prime} appears on X_{j} with $i<j$, and the center of E^{\prime} on X_{i} is contained in E.

Proposition 4.7. Let $v=\operatorname{val}_{E}$ and $v^{\prime}=\operatorname{val}_{E^{\prime}}$. If $E \prec E^{\prime}$, then $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$. But $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$ does not imply $E \prec E^{\prime}$.

Proof. Let $p \in E \subset X_{i}$ be the center of E^{\prime} on X_{i}. Take a suitable affine neighborhood U of p, then $U=\operatorname{Spec} B \simeq \mathbb{C}^{2}, p$ is the origin and E is an invariant divisor, where we put a suitable toric structure on U. Then we have $\left.v\right|_{B} \leq\left. v^{\prime}\right|_{B}$. As v is toric on U, this inequality implies $C_{U}(v) \supset C_{U}\left(v^{\prime}\right)$ by Lemma 3.11 and therefore $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$ by Proposition 2.9.

For the second assertion, let $v=(2,1)$ and $v^{\prime}=(2,3)$ in $\sigma \cap N$. We also denote the toric valuations corresponding to v and v^{\prime} by the same symbol v and v^{\prime}, respectively. Then $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$, where $A=\mathbb{C}\left[\sigma^{\vee} \cap M\right]$. Since v and v^{\prime} are toric, it follows that $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$. But the divisors E and E^{\prime} corresponding to v and v^{\prime}, respectively, does not satisfy $E \prec E^{\prime}$. Indeed, let $\varphi_{1}: X_{1} \longrightarrow X$ be the blow-up at 0 and E_{1} the exceptional divisor. There are two closed orbits p_{1} and p_{2} on E_{1}. The divisor E is the exceptional divisor of the blow-up $\varphi: X_{2} \longrightarrow X_{1}$ at one of the closed orbits on E_{1}, let it be p_{1}. Then, the center of E^{\prime} on X_{2} is p_{2}. Therefore $E \nprec E^{\prime}$.
Q.E.D.

By this, the relation of v and v^{\prime} for $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$ is something between " $v \prec v$ " and " $\left.v\right|_{A} \leq\left. v^{\prime}\right|_{A}$ ".

References

[1] T. De Fernex, L. Ein and S. Ishii, Divisorial valuations via arcs, preprint, arXive:math.AG/0701867, to appear in Publication RIMS, 44 (2) (2008).
[2] L. Ein, R. Lazarsfeld and M. Mustaţă, Contact loci in arc spaces, Comp. Math., 140 (2004), 1229-1244.
[3] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud., 131 (1993), Princeton Univ. Press.
[4] S. Ishii, The arc space of a toric variety, J. Algebra, 278 (2004), 666-683.
[5] S. Ishii, Arcs, valuations and the Nash map, J. Reine Angew. Math., 588 (2005), 71-92.
[6] S. Ishii and J. Kollár, The Nash problem on arc families of singularities, Duke Math. J., 120 (2003), 601-620.
[7] M. Lejeune-Jalabert and A. J. Reguera-Lopez, Arcs and wedges on sandwiched surface singularities, Amer. J. Math., 121 (1999), 1191-1213.
[8] J. F. Nash, Arc structure of singularities, Duke Math. J., 81 (1995), 31-38.
[9] C. Plénat, Résolution du problème des arcs de Nash pour les points doubles rationnels $D_{n}(n \geq 4)$, Thèse, Univ. Paul Sabatier, Toulouse, September 2004.
[10] C. Plénat and P. Popescu-Pampu, A class of non-rational surface singularities for which the Nash map is bijective, preprint, arXive:math.AG/0410145.
[11] A. J. Reguera-Lopez, Families of arcs on rational surface singularities, Manuscripta Math., 88 (1995), 321-333.
[12] A. J. Reguera, Image of Nash map in terms of wedges, C. R. Acad. Sci. Ser. I, 338 (2004), 385-390.

Department of Mathematics
Tokyo Institute of Technology
Oh-Okayama, Meguro
Tokyo JAPAN
E-mail address: shihoko@math.titech.ac.jp

[^0]: Received April 3, 2006.
 Revised June 14, 2006.
 2000 Mathematics Subject Classification. Primary 14J17; Secondary 14M99.

 Key words and phrases. arc space, valuation, Nash problem.
 Partially supported by Grant-In-Aid of Ministry of Science and Education in Japan.

