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Characterization of the rational homogeneous space 
associated to a long simple root by its variety of 

minimal rational tangents 

Jaehyun Hong and Jun-Muk Hwang 

Abstract. 

Let S = G / G' be a rational homogeneous space defined by a com­
plex simple Lie group G and a maximal parabolic subgroup G'. For a 
base point s E S, let c. c IPT.(S) be the variety of minimal rational 
tangents at s. In the study of rigidity of rational homogeneous spaces, 
the following question naturally arises. Let X be a Fano manifold of 
Picard number 1 such that the variety of minimal rational tangents at 
a general point x EX, C, C IPT,(X), is isomorphic to c. C IP'T.(S). Is 
X biholomorphic to S? An affirmative answer has been given by Mok 
when S is a Hermitian symmetric space or a homogeneous contact 
manifold. Extending Mok's method further and combining it with the 
theory of differential systems on S, we will give an affirmative answer 
when G' is associated to a long simple root. 

§1. Introduction 

Let X be a Fano manifold of Picard number 1. An irreducible 
component K of the space of rational curves on X is called a minimal 
dominating rational component, if for a general point x E X, the sub­
variety Kx consisting of members passing through x is non-empty and 
projective. The tangent directions at x of members of Kx form a subva­
riety Cx of IIDTx(X), called the variety of minimal rational tangents at x, 
and the closure of the union of Cx as x varies over general points of X 
gives the subvariety C C JPlT(X), called the variety of minimal rational 
tangents (associated with K.). It is generally believed that the projective 
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geometry of Cx C IPTx(X) controls the geometry of the Fano manifold X. 
There. are many results manifesting this philosophy which were surveyed 
in [Hw01). In this paper, we will give another example of this philoso­
phy in the study of rational homogeneous spaces, namely, the projective 
varieties homogeneous under the action of a complex semi-simple Lie 
group. 

Recall that when S is a rational homogeneous space of Picard num­
ber 1, there is a unique choice of a minimal dominating rational com­
ponent and the varieties of minimal rational tangents at two different 
points are isomorphic. In the study of rigidity of rational homogeneous 
spaces, the following conjecture naturally arises. This is Conjecture 2.2 
in [Hw06). 

Conjecture Let S be a rational homogeneous space of Picard num­
ber 1 and Cs C IP'T8 (S) be the variety of minimal rational tangents at a 
base point s E S. Let X be a Fano manifold of Picard number 1 and 
Cx C IPTx(X) be the variety of minimal rational tangents at a general 
point x E X associated to a minimal dominating rational component JC. 
Suppose that Cs C IP'T8 (S) and Cx C IP'Tx(X) are isomorphic as projective 
subvarieties. Then X is biholomorphic to S. 

We can write S = GIG' for a complex simple Lie group G and a 
maximal parabolic subgroup G'. As explained in Section 2, the subgroup 
G' is determined by a choice of a simple root o: of G. The main goal of 
this paper is to prove Conjecture for S = GIG' when G' is associated 
to a long simple root. 

Main Theorem Let S = GIG' where G' is a maximal parabolic 
subgroup associated to a long root and let Cs C IP'T8 (S) be the vari­
ety of minimal rational tangents at a base point s E S. Let X be a 
Fano manifold of Picard number 1 and Cx C IPTx(X) be the variety 
of minimal rational tangents at a general point x E X associated to a 
minimal dominating rational component JC. Suppose that Cs C IPT8 (S) 
and Cx C IPTx(X) are isomorphic as projective subvarieties. Then X is 
biholomorphic to S. 

There are three classes of rational homogeneous spaces associated 
to long simple roots. When the isotropy representation of G' on T8 (S) 
is irreducible, S is a Hermitian symmetric space. When the isotropy 
representation on T8 (S) has an irreducible subspace of codimension 1, 
S is a homogeneous contact manifold. The third class consisting of the 
remaining homogeneous spaces is distinguished from the first two classes 
from the fact that the automorphism group of the homogeneous space in 
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this class is determined by the basic linear differential system on them 
( cf. Section 2). 

For Hermitian symmetric spaces and homogeneous contact mani­
folds, Main Theorem was proved by N. Mok in [Mo]. The essential part 
of Mok's argument is to show that if Cx C IP'Tx(X) is isomorphic to 
C8 C IP'T8 ( S) at a general point x E X, then it is true for every point 
x on a general member of K. This is equivalent to extending the corre­
sponding geometric structure up to codimension 1. After this is done, 
he used the result of [HM97] for Hermitian symmetric spaces and the 
result of [Ho] for homogeneous contact manifolds to conclude that the 
geometric structure defined by C is isomorphic to that of S. 

To prove Main Theorem for the third class of homogeneous spaces 
associated to long simple roots, we have to do two things. The first is 
to extend Mok's argument to the homogeneous spaces in question. The 
second is to establish an analog of [HM97] and [Ho] for the homogeneous 
spaces in the third class. In both parts, a crucial role is played by the 
theory of linear differential systems on homogeneous spaces. This theory 
plays a minor role in [Ho], [HM97] and [Mo], because for Hermitian 
symmetric spaces or homogeneous contact manifolds, the basic linear 
differential system is either trivial or very simple. But it is an essential 
component in the current paper, as was the case for other works on the 
third class of homogeneous spaces, as explained in the introduction of 
[HM02]. 

Main Theorem verifies Conjecture except for symplectic Grassman­
nians and two F4-homogeneous spaces. For these remaining cases, our 
method cannot be applied at all. These cases remain a challenge for 
future research. 

We will start with reviewing the basics of the theory of linear dif­
ferential systems in Section 2. It turns out that this theory plays such 
a decisive role in the problem that Main Theorem can be proved easily 
except for quadric Grassmannians of isotropic 3-spaces. We will col­
lect some basic properties of these homogeneous spaces in Section 4, 
after reviewing some known results about the variety of minimal ratio­
nal tangents in Section 3. The analog of Mok's argument, extending the 
geometric structure up to codimension 1, is proved in Section 5 and the 
analog of [HM97] and [Ho] is proved in Section 6. 

We would like to thank Keizo Yamaguchi for beneficial discussions. 

§2. Review of Tanaka's theory of linear differential systems 

We recall the theory of linear differential systems on rational homo­
geneous spaces, due to Tanaka [Ta]. 
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First, let us recall a few basic definitions. A linear differential system 
on a complex manifold is just a sub bundle of the tangent bundle. Given 
a subbundle D of the tangent bundle T(M) of a complex manifold M, 
the k-th weak derived system Vk of D is a subsheaf of T(M) defined 
inductively by v- 1 = V and Vk = Vk+1 + [V, Vk+1] fork< -1, where 
V is the sheaf of sections of D. We say that D is regular at a point 
x E M, or equivalently, x E M is a regular point of D, if the k-th 
derived system Vk of Dis a subbundle Dk of T(M) in a neighborhood 
of x for every k :::;: -1. The symbol algebra of D at a regular point x E M 
is defined as the graded nilpotent Lie algebra 

sym. (D) ·= D-:1 + D-2/D- 1 + · · · + D-~-'/D-~-'+1 X • X X X X X 

where 11 is the largest integer satisfying n-p. i= n-p.+l and the Lie 
bracket is induced by the bracket of local vector fields in a neighborhood 
of x. 

Now fix a complex simple Lie algebra g. Choose a Cartan subalgebra 
~ and the root system <P C ~ * of g with respect to ~. Fix a system of 
simple roots { a 1, ... , a1} and a distinguished choice of a simple root a, 
say, a = ai. Given an integer k, -J1, :::;: k :::;: J1, we define <Pk as the set 
of all roots E~=l m 3a3 with mi = k. Here J1 is the largest integer such 
that <Pp. i= 0. For f3 E <P, let g13 be the corresponding root space. Define 

go ~ EB EB g13 
/3Eil>o 

gk EB g13 , k o~= o. 
/3Eil>k 

The decomposition g = ffi~=-p. gk gives a graded Lie algebra structure 
on g. Define 

g' go EB g1 EB · • · EB g~-' 

m g-1 EB · · • EB g_w 

We say that g' is the maximal parabolic subalgebra associated to the 
simple root a and m is the nilpotent graded Lie algebra of type (g, a). 
Here we follow the convention of [Ya] for the sign of roots in the definition 
of the parabolic subalgebra. This is opposite to the choice in [HM02]. 

Now let G be a complex Lie group with Lie algebra g and G' be the 
complex Lie subgroup with Lie algebra g'. The quotient space GjG' is 
called the rational homogeneous space of type (g, a). The quotient map 
G--+ G/G' defines a G'-principal bundle on GjG'. The vector bundle 
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associated to this principal bundle by the natural G'-representation on 
m 

p: G' ----+ GL(m), p(a)v := Ad(a)v mod g' for v Em 

is the tangent bundle T(GIG'). Let E C T(GIG') be the subbundle 
corresponding to the G'-invariant subspace g_ 1 of m. This E will be 
called the standard differential system on GIG'. The symbol algebra 
sym8 (E) of E at each point s E GIG' is isomorphic to the nilpotent 
graded Lie algebra m. 

When 11 = 1, namely, E = T(GIG'), the homogeneous space GIG' 
is a Hermitian symmetric space. When 11 = 2 and dimg_ 2 = 1, namely, 
when E C T(GIG') is of corank 1, GIG' is a homogeneous contact 
manifold. We will exclude these two cases. We will say that (g, a) is 
neither of symmetric type nor of contact type. 

The fundamental question regarding the basic differential system 
E is the following equivalence problem. Let D be a linear differential 
system on a complex manifold M and x E M be a regular point of 
D. We say that D is a regular differential system of type m at x if 
symy(D) is isomorphic to m for each point y in a neighborhood of x. 
The equivalence problem asks for a regular differential system D of type 
mona manifold M, when we can find a biholomorphic map zp: U-+ U' 
between a neighborhood U of x EM and a neighborhood U' of zp(x) in 
GIG' such that its differential dzp: T(U)-+ T(U') sends D onto E. An 
answer to this question was given in [Ta]. We will review this result. 

Before going into details, let us remark that the assumption that 
(g, a) is neither of symmetric type nor of contact type guarantees that 
g is the prolongation of m by Theorem 5.2 of [Ya] and thus a G~- struc­
ture of type m that Tanaka considered in [Ta] is nothing but a regular 
differential system of type m. 

A Cartan connection of type GIG' on a manifold M of dimension 
=dim GIG' is a principal G'-bundle P on M with a g-valued 1-form w 
on P satisfying the following conditions: 

(1) For a tangent vector v of P, w(v) = 0 implies v = 0. 
(2) w(A *) = A for all A E g' where A* denotes the natural vector 

field on P induced by A via the G'-action on P. 
(3) R~w = Ad(a- 1)w for a E G' where Ra denotes the right G'­

action on P. 
For example, the principal G'-bundle given by the canonical projection 
G -+ GIG' with the Maurer-Cartan form wa of the Lie group G is a 
Cart an connection on the homogeneous space GIG'. 
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The g-valued 2-form 0 = dw + ~[w,w] is called the curvature form 
of ( P, w). If the curvature form 0 vanishes then ( P, w) is locally iso­
morphic to (G,wa)(Theorem 5.1 of [Sh]). The curvature form 0 can be 
considered as a function K on P, to be called the curvature function, in 
the following way. This proposition is just Lemma 2.2 and Lemma 2.3 
in [Ta]. 

Proposition 2.1. Let (P,w) be a Cartan connection of type GjG'. 
( 1) There is a unique function K : P --> g 181 1\ 2m* such that 

where w_ is the m-component of w with respect to the decomposition 
g = g' EB m. 

(2) For z E P, a E G' and v1,v2 Em, 

where p: G'--> GL(m) is the adjoint representation modulo g'. 

To get a more refined condition for the vanishing of K, we define the 
harmonic space H(m, g). The coboundary operator 8 of the complex 

is defined by 

+ 2: ( -l)i+jc([vi, VJ]I\ v11\ · · · 1\ Vi 1\ · · · 1\ Vj 1\ ···I\ Vq+l) 

l:S:i<j:'Oq+l 

for c E g 181 Nm* and vi E m. Let 8* be the adjoint operator with 
respect to the inner product induced by the Killing form. Then we have 
the orthogonal decomposition 

Ker( 88* + 8* 8) EB Im( 88* + 8* 8) 

(Kero n Ker8*) EB Imo EB Im8* 

so that the cohomology space Hq ( m, g) = Kero jlmo is isomorphic to 
the harmonic space Ker( 88* + o* 8) = Kero n Kero*. From now on 
we will identify them and consider the cohomology space Hq(m, g) as 
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a subspace of g ® 1\qm*. Under this identification, we will denote by 
H(K), the H 2 (m, g)-component of the curvature function K. 

Decompose the complex g ® m* ----> g ® /\2m* ----> g ® /\3m* as the 
direct sum of the subcomplexes 

cr+1,1 

i<O i,j<O 

- cr- 1•3 = EB gr+i+J+k+l ® (gi 1\ gj 1\ gk)*. 
i,j,k<O 

We denote by Hr• 2 (m, g) the cohomology of this subcomplex. Then 

r 

Let Kr be the cr·2-component of K. A normal Cartan connection 
of type GIG' is a Cartan connection ( P, w) of type GIG' on M such 
that the curvature function K satisfies 

(1) Kr = 0 for r < 0 (admissibility) 
(2) ()* Kr = 0 for r 2: 0 (normality). 

The existence of a normal Cartan connection which governs the 
geometric structure associated with a regular differential system of type 
m is guaranteed by the following, which is in Theorem 2. 7 of [Ta]. 

Proposition 2.2. Let (M, D) be a regular differential system of 
type m. Then there is a normal Cartan connection ( P, w) of type GIG' 
such that 

(1) D-k 1 D-(k- 1) is the vector bundle associated toP with the fiber 
g_k where the unipotent part of G' acts on g_k trivially and 

(2) if the curvature function K vanishes then (M, D) is locally iso­
morphic to the standard differential system (GIG', E). 

The existence of a normal Cart an connection simplifies the curvature 
computation greatly as follows, which is just Corollary of Theorem 2.9 
in [Ta] 

Proposition 2.3. For a normal Cartan connection (P, w), the cur­
vature function K vanishes if and only if its harmonic part H(K), which 
is a EBr;:::oHr•2 (m, g)-valued function on P, vanishes. 

Regarding the cohomology group Hr• 2 (m, g), we have the following 
result. 

Proposition 2.4. Let (g, o:) be a complex simple Lie algebra with a 
choice of a long simple root, which is neither of symmetric type nor of 
contact type. Then 
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(1) Hr•2(m, g) = 0 for all r ~ 0 except when (g, a) is either (Bt, a3) 
with£~ 4 or (De, a 3 ) with£~ 5 and 

(2) when (g, a) is either (Be, a3) with£ ~ 4 or (De, a3) with£ ~ 5, 
Hr•2(m, g) = 0 for all r > 0 and H 0•2(m, g) is contained in g-1 ®/\2g:_ 1 C 
co,2. 

Proof. (1) follows from the vanishing results in Proposition 5.5 of 
[Ya]. In fact, Yamaguchi listed all non-vanishing Hr•2 (m, g) with r ~ 0 
for any parabolic subalgebra of a simple Lie algebra. In his list, when g 
is an exceptional Lie algebra, the cases with a single root a are either 
of symmetric type or of contact type. When g is of type A or C, and a 
is a long root, (g, a) is of symmetric type. Thus we are left with g of B 
or D type only. From Yamaguchi's list, we can easily check that a must 
be a 3 to have non-zero Hr•2(m, g) for some r ~ 0. 

For (2), we need to recall some terms. Let () be the maximal root 
of g. Let Xf3 denote a root vector of a root (3. Given a collection 'It = 
{(31, ... , (3q} of positive roots, define 

Let aj be the element in the Weyl group associated to the simple root 
aj. By Kostant's Theorem on the Lie algebra cohomology ( Theorem 
5.14 of [Ko] or p. 471 of [Ya]), there is a collection, say E, of elements of 
the Weyl group and a collection <I> 17 of positive roots such that Hq ( m, g) 
is a direct sum of irreducible go-modules with the highest weight vector 
X_ 17 ( 9) ® X<I>u for a E E. Proposition 5.5 of [Ya] says that if 

X_ 17 (9) ® X<I>u E Hr•2(m, g) 

for some r ~ 0, then a = a 3a2 in the cases of (Be, a 3) with £ ~ 4 
and (De, a3) with £ ~ 5. In this case, <1>173172 = { a3, az + a3} from the 
description of <1> 17, 17; in p.475 of [Ya]. The generator x_ 173172 (9) ® (x03 1\ 

X 02 +o3 ) is contained in g_1 ® (/\2g:_d C C0•2 because the coefficient of 
a3a2(()) in a3 is 1. Therefore Hr·2(m, g) = 0 for all r > 0 and H 0·2(m, g) 
is contained in g_1 ® (A2g:_ 1). Q.E.D. 

Combining 2.3 and 2.4, we have the following. 

Proposition 2.5. Let (g, a) be a complex simple Lie algebra with 
a choice of a long simple root which is neither of symmetric type nor of 
contact type and m be the corresponding nilpotent graded algebra. Then a 
regular differential system of type m is locally isomorphic to the standard 
one on GjG', except when (g, a) is either (Be, a3) with£~ 4 or (De, a 3) 
with£~ 5. 
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§3. Review on the theory of the variety of minimal rational 
tangents 

Here we will collect some general facts about the variety of minimal 
rational tangents on Fano manifolds of Picard number 1. See [HwOl] 
and [Mo] for details. 

We will start with recalling some definitions in projective differential 
geometry. Let V be a complex vector space and lP'V be its projectiviza­
tion. Given a (not necessarily closed) complex submanifold Z C lP'V and 
a point z E Z, its affine tangent space Tz is the subspace of V whose 
projectivization is the projective tangent space of Z in lP'V at z. The 
tangent space of Z at z is naturally isomorphic to 

where 2 denotes the !-dimensional subspace of V corresponding to z. 
The second fundamental form liz is a homomorphism 

defined as the derivative of the Gauss map. The image of liz is called 
the first normal space of Z at z and is denoted by Nl(Z). The third 
fundamental form liiz is a homomorphism 

defined as the derivative of the second fundamental form. The fourth 
fundamental form is defined similarly. 

Now let V be a vector bundle on a complex manifold X and 1r : lP'V--+ 
X be its projectivization. For a complex analytic subvariety Z C lP'V 
and a smooth curve R C Z we say that Z is relatively immersed along R 
iffor each point x E 1r(R), Zx := Zn1r-1 (x) is immersed at Rn1r- 1 (x). 
In this case, the collection of the affine tangent space Tz as z varies on R 
give a vector bundle on R, called the bundle of the relative affine tangent 
spaces of Z along R. Similarly, the relative tangent bundle, the relative 
fundamental forms, the relative first normal spaces of Z along R can be 
defined. 

Let X be a Fano manifold of dimension n and Picard number 1. Fix 
a minimal dominating rational component K and its variety of minimal 
rational tangents C C JP>T(X). If a member C of K is immersed, its 
tangent directions form a smooth rational curve in IP'T(X), which we 
denote by cU and call the tangential lift of C. By definition, cU lies on 
the variety of minimal rational tangents C c lP'T(X). It is well-known 
that a general member C of K is standard (e.g. Theorem 1.2 in [HwOl]). 
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This means that Cis immersed and the pull-back of T(X) to C~ splits 
as 

0(2) EB 0(1)P EB on-1-p 

where p + 2 = C · K(/. When C is standard, C is relatively immersed 
along C~ in the sense of the previous paragraph (e.g. Proposition 1.4 in 
(Hw01]). Thus we can consider the relative tangent bundle, the bundle 
of the relative affine tangent spaces, the relative fundamental forms and 
the relative first normal spaces of C along C~. It is well-known that the 
bundle of the relative affine tangent spaces of C along C~, which is a vec­
tor bundle on C~, corresponds to the 0(2) EB 0(1)P-part of the splitting 
of T(X) pulled back to CU. The next result is essentially contained in 
the proof of Proposition 2.2 and Proposition 3.1 in (Mo]. Since it was 
stated there only for the special cases considered in (Mo], we will give a 
general proof here. 

Proposition 3.1. Let C be a standard rational curve belonging to 
K and cU be its tangential lift. Then the relative tangent spaces of C 
along cu is a vector bundle T'Tr on cU of the splitting type 0( -1 )P and 
the relative first normal spaces of C along cU is a vector bundle N'Tr on 
CU of splitting type 0( -2)m for some integer m > 0. In particular, 
the relative second fundamental forms of C along C~, forms a constant 
section of Hom(S2T1r,N1r). 

Proof The relative affine tangent bundle of C along cu has split­
ting type 0(2) EB 0(1)P. In this splitting, the 0(2) part is the relative 
tautological bundle of JIDT(X) along C~. Thus the relative tangent bun­
dle of C along cu has the splitting type Hom(0(2), 0(1)P) = 0( -1)P. 
The relative second fundamental forms define a homomorphism 

II: 8 2 (0( -1)P)-+ Hom(0(2), on-1-P) = 0( -2)n- 1-P. 

Thus the image must be of the form 0( -2)m and II must be a constant 
section. Q.E.D. 

Now let us assume that Cx is irreducible for a general x E X. Let 
Dx C Tx(X) be the linear span of Cx, namely, IP'Dx is the smallest linear 
subspace of JIDTx(X) containing Cx. The collection of Dx as x varies 
over general points of X defines a subsheaf of T(X). By taking double 
dual of D, we can assume that there exists a subvariety Exc(D) c X of 
codimension;:::: 2 such that Dlx\Exc(D) is a subbundle ofT(X)IX\Exc(D)· 
We will call D the linear differential system spanned by C. If the rank of 
D is smaller than n = dim X, it is well-known that D is not integrable, 
namely, the Frobenius bracket at a general point x E X, 

(,]: A.2Dx-+ Tx(X)/Dx 
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is not zero. In fact, if it is integrable, the leaves define a holomorphic 
fibration outside a set of codimension 2: 2, which is a contradiction to 
the assumption that X has Picard number 1 (cf. Proposition 2.2 in 
[Hw01]). Given any subvariety of codimension 2: 2, we can choose a 
member of K disjoint from it (e.g. Lemma 2.1 in [Hw01]). Thus we can 
assume that a general member of K is disjoint from Exc(D). 

Proposition 3.2. Let D be the linear differential system spanned 
by C. Assume that the rank of D is smaller than n. Then for a general 
member CCX\ Exc(D) of K, the pull-back of D to cu is of the form 

r 

0(2) EB 0(1)P EB Oq EB E9 O(ai) 
i=1 

where q 2: m, m being the rank of the relative first normal spaces of C 
along cU, r > 0 and ai < 0. 

Proof. Since the pull-back of D to cU is a vector subbundle of 
0(2) EB 0(1 )P EB on- 1-P and Cx C lP' Dx for each x E C, it must be of the 
form 

d-1-p 

0(2) EB 0(1 )P EB E9 O(bj) 
j=1 

where d = rank(D) and bj :::; 0. Moreover, from 3.1, at least m of bj's 
must be 0. Thus it suffices to exclude the possibility that bj = 0 for all 
j. Suppose this is the case. Then the pull-back of T(X)j D to cU must 
have degree 0. Since it is the quotient of 0(2) EB 0(1)P EB on- 1-P, we see 
that T(X)/ D has splitting type on-d where dis the rank of D. Then 
the Frobenius bracket [,] : /\2 Dx --+ Tx(X)j Dx must satisfy [a, Dx] = 0 
for a corresponding to the tangent direction 0(2) of C at x. Since this 
is true for general [a] E Cx while Cx spans Dx, we conclude that D is 
integrable, a contradiction. Q.E.D. 

§4. Variety of minimal rational tangents on the rational ho­
mogeneous space associated to a long simple root 

Let S = G j G' be a rational homogeneous space of type (g, a) as 
explained in Section 2. There is a unique minimal dominating rational 
component. For a base point s E S, let C8 C lP'T8 (S) be the variety of 
minimal rational tangents. When a is a long simple root, or equivalently, 
when Cs is homogeneous, the following fact was proved in Proposition 1 
and Proposition 7 of [HM02]. 
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Proposition 4.1. Let S be a rational homogeneous space of type 
(9, a) with a a long root. Let m be the associated graded nilpotent Lie 
algebra. Let Cs C Es be the homogeneous cone of the variety of minimal 
rational tangents C8 at a base point s E S. Define a graded Lie algebra 
n = n_I +n-2+· · · as the quotient of the graded free Lie algebra generated 
by n_I = E 8 modulo the relations given by [vi, v2] = 0 for vi, Vz E n_I 
if VI E Cs and < VI, vz > is tangent to C8 • Then n is isomorphic tom 
as graded nilpotent Lie algebras. 

This has several consequences. 

Proposition 4.2. In the setting of 4.1, suppose (9, a) is neither of 
symmetric type nor of contact type. Then the group of the graded Lie 
algebra automorphisms of n acts irreducibly on n_I = Es and Cs is the 
highest weight orbit of this action. 

In Proposition 1 of [HM02], it was proved that the variety of minimal 
rational tangents Cs is the highest weight orbit of the isotropy represen­
tation of G' on E 8 • This does not imply 4.2 immediately. It is a result 
about the differential system E, while 4.2 is a result about the symbol 
algebra of E. 

Proof. The Lie algebra aut(m) of the automorphism group of m 
is the 0-th prolongation of m in the sense of p.430 of [Ya], which is 
exactly 9o by Theorem 5.2 of [Ya]. By 4.1, the Lie subalgebra aut(Cs) C 
gl(Ts(S)) of infinitesimal linear automorphisms of the cone is contained 
in aut(m). From the list of Cs in p. 176 of [HM02], aut(Cs) is isomorphic 
to 9o and Cs is the highest weight orbit of the irreducible representation 
of 9o on 9-I· It follows that 

aut(m) = aut(Cs) = 9o 

and Cs is the highest weight orbit of the aut(m)-representation on T 8 (S). 
Q.E.D. 

Proposition 4.3. Let S be a rational homogeneous space of type 
(9, a), with a a long root, neither of symmetric type nor of contact type. 
Let X be a Fano manifold of Picard number 1 with a choice of a minimal 
dominating rational component K such that the variety of minimal ra­
tional tangents at a general point x E X is isomorphic to that of S. Let 
D be the differential system spanned by the variety of minimal rational 
tangents. Then at a general point x of X, 

(1) the symbol algebra symx(D) is isomorphic to m, the symbol 
algebra of the standard differential system on S, and 
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{2) the variety of minimal rational tangents Cx is the highest weight 
orbit of the representation of the automorphisms of the symbol algebra 
symx(D) on JP>Dx· 

Proof. (1) is just Proposition 5 of [HM02]. (2) follows from 4.2. 
Q.E.D. 

Proposition 4.4. In the setting of 4.3, suppose the linear differen­
tial system D is equivalent to the standard system E on S in an analytic 
neighborhood of x. Then X is biholomorphic to S. 

Proof. By 4.3 (2), there exists a neighborhood U of x and a biholo­
morphic map 'P : U----) U' into an open subset U' of S such that ~.p(Ciu) 
agrees with the variety of minimal rational tangents of S restricted to 
U'. By the main theorem in p. 564 of [HMOl], this implies that X is 
biholomorphic to S. Q.E.D. 

Corollary 4.5. Unless S is of type (Bt, o:3 ) with £ 2: 4 or (Dt, 0:3) 

with£ 2: 5, Main Theorem follows from 2.5. 

Thus from now on till the end of the paper, we will assume that S 
is of type (Bt, 0:3) with£ 2: 4 or (Dt, 0:3) with £ 2: 5. 

The homogeneous spaceS is the quadric Grassmannian of 3-dimen­
sional isotropic subspaces in an orthogonal vector space. Let p + 2 > 0 
be the degree of minimal rational curves of S with respect to K8 1• 

Proposition 4.6. Let S and p be as defined above. Let C be a 
minimal rational curve on S. Then 

{1) dimS= 3p + 3 and rank(E) = 3p, 
{2) Elc = 0(2) EB 0(1)P EB 0 2P- 3 EB 0( -1) 2 , 

{3) (T(S)/E)Ic = 0(1) 2 EB 0 and 
{4) dim[ga31 91] = 2. 

Proof. Let o:1, ... , O:£ be a set of simple roots of Lie algebras of 
type Bt or Dt. For Bt, we define 

R. j-1 

/3i := L O:k for 1 ~ i ~ £ and /ij := L O:k for 1 ~ i < j ~ £. 
k=i k=i 

For Dt, we define 

R.-2 l-2 
/3i := Lo:k + 0:£-1, /3~ := Lo:k + O:£ for 1 ~ i ~ £-2 

k=i k=i 

j-1 

and /ij := L O:k for 1 ~ i < j ~ £- 1. 
k=i 
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Now from p.30 and p.35 of [Ti], we can explicitly write down the subsets 
of roots of 9 defined in Section 2 as follows. For (Bt, a3), 

For (Dt, a3), 

q>2 = {lh + {3~, {31 + {3~, f32 + f3a. 

By the argument in the proof of Proposition 1 of [HM02], the splitting 
type of Eon Cis ffii3E<P 1 0({3(HaJ) where Ha3 denotes the coroot of a3. 
This can be computed easily from the above list for q> 1 to prove (2). In 
the same way, the splitting type of T(S)/E on Cis ffii3E<P 2 0({3(Ha3 )) 

and (3) can be checked from the above list for q>2. (1) is immediate 
from (2) and (3). (4) can be checked directly from the above list of 
roots. Q.E.D. 

Proposition 4.7. The variety of minimal rational tangents at a 
base point s E S satisfies the following. 

{1} Cs C 1Jl>E8 is isomorphic to the Segre embedding of JP>2 x Qp-2 
where Qp-2 denotes the hyperquadric of dimension p- 2 in JP>p_ 1. 

{2} The first normal space at each point of Cs has rank 2p- 3 and 
the fourth fundamental form of Cs is zero. 

{3} Regard a tangential line to C8 as a one-dimensional subspace 
of I\2E 8 • Then the kernel of the bracket I\2E 8 ~ T8 (S)/E8 , which is 
isomorphic to the Lie bracket /\29-1 ~ 9-2 , is spanned by tangential 
lines to C8 • 

Proof (1) follows from the description of the highest weight orbit 
of Go on JP> E 8 , as given by p.176 of [HM02]. From (1), there is no 
hyperplane section of Cs with multiplicity ~ 4 and hyperplane sections 
with multiplicity 3 forms a pencil. It follows that the fourth fundamental 
form is 0 and the sum of the tangent space and the first normal space 
has codimension 2 in JP>E8 • This implies (2). Noting that J1. = 2 in this 
case, (3) is a direct consequence of 4.1. Q.E.D. 

Proposition 4.8. Let s E S be a base point and C8 C JP> Es be the 
variety of minimal rational tangent. There exists a vector space W of 
dimension 3 with I\2W ~ T8 (S)/ Es and a vector space F of dimension 
p equipped with a non-degenerate quadratic from w : 8 2 F ~ C such that 
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E 8 ~ W 0 F. Furthermore, under the decomposition 8 2 F = C E9 wj_, 
the Lie bracket I\2 E 8 ----> T8 (8)/E is just the projection to I\ 2W in 

(A2W 0 8 2 F) E9 (82W 0 /\2 F) 

I\ 2W E9 (A2 W 0 wj_) E9 (82W 0/\2 F). 

Proof This is the consequence of the following which can be checked 
easily. The semi-simple part of 9' under the Levi-decomposition is iso­
morphic to sh E9 soP. Its representation on 9- 1 is just the tensor product 
of the fundamental representations of sh and sop. Its representation on 
9-2 is just the tensor product of the dual of the fundamental represen­
tation of sh and the trivial representation of sop. Q.E.D. 

§5. Extension of the structure to a neighborhood of a standard 
rational curve 

From now on we assume that X is a Fano manifold of Picard number 
1 with a minimal dominating rational component K such that, for a gen­
eral point x E X, the projective subvariety Cx C IP'Tx(X) is isomorphic 
to C8 C 1P'T8 (8). 

Let D C T(X) be the linear differential system on X spanned by 
C at a general point. As in Section 3, D is a subbundle of T(X) on 
X\ Exc(D) and a general member of K is disjoint from Exc(D). By 4.3, 
the symbol algebra symx(D) of Data general point xis isomorphic to 
the nilpotent algebra m = 9-1 + 9-2· 

Proposition 5.1. In the above setting, let C be a general member 
of K disjoint from Exc(D) and let C~ c C be the tangential lift of C. 
Then the pull-back of D to C~ splits as 

0(2) E9 0(1)P E9 0 2P-3 E9 0( -1)2 

and the pull-back ofT(X)jD to C~ splits as 0(1) 2 E90. Moreover, the 
relative second fundamental forms and the relative third fundamental 
forms of C along C~ are all isomorphic to those of Cs c IP' Es. 

Proof From 3.2 and 4.7 (2), the splitting type of Don C~ is of the 
form 

0(2) E9 0(1)P E9 0 2P-3 E9 O(bi) E9 O(b2) 

for some 0 ~ b1 ~ b2,b2 < 0. 
The relative third fundamental forms of C along C~ defines a homo­

morphism 

III : 8 3 (0( -1)P) ----> H om(0(2), O(bi) E9 O(b2)) = O(b1- 2) E9 O(b2- 2). 



232 J. Hong and J.-M. Hwang 

By 4.7 (2), III must be surjective over a general point x E C. Thus 
b2 = -1. 

Suppose that b1 = 0. Then by Chern number consideration, the 
splitting type of T(X) j D on C# must be 0(1) E8 0 2 • Then the Frobenius 
bracket [,] : /\2 D-+ T(X)j D must satisfy 

[0(2), D] = [0(2), 0(2) E8 0(1)P E8 0 2P-2 E8 0( -1)] C 0(1). 

Thus dim[a, Dx] = 1. But by 4.3, we know that symx(D) is isomorphic 
tom. This is a contradiction to 4.6 (4). 

We conclude that b1 = b2 = -1 and III must be constant along c#. 
Moreover, dim[a, Dx] = 2. This implies that T(X)j D has the splitting 
type of 0(1)2 E8 0. Q.E.D. 

Proposition 5.2. Let V be a vector bundle on the unit disc~ := 
{ t E C, It! < 1} and 1r : IP'V -+ ~ be its projectivization. Let Z be a 
subvariety ofiP'V flat over~ such that for each t -I- 0, Zt := 1r-1 (t) n Z 
is isomorphic to the Segre embedding of IP' m x Qk for some positive in­
tegers m and k. Assume that there exists a section R C Z of 1r such 
that the relative second fundamental forms and the relative third funda­
mental forms of Z along R are constant. Then Z0 := ?r- 1 (0) n Z is also 
isomorphic to the Segre embedding of IP' m x Qk. 

Proof This is proved in the proof of Proposition 3.2 Case (E) in 
[Mo] when m = 1. The proof there works verbatim for arbitrary m. 

Q.E.D. 

Proposition 5.3. Let C be a general standard rational curve through 
x. Then for each y E C, Cy C IP'Ty(X) is isomorphic to C8 C IP'T8 (S) 
and the symbol algebra symy(D) is isomorphic tom. 

Proof The first statement is an immediate consequence of 5.1 
and 5.2. From the first statement, as in 4.8, there exist a line bun­
dle L, a vector bundle W' of rank 3 and a vector bundle F' of rank 
p equipped with a non-degenerate quadratic form w' : S2 F' -+ L in a 
neighborhood of C such that D ~ W' ® F' and, at the point x, the 
Frobenius bracket annihilates (/\2W~ ® (w'):t) E8 (S2W~ 0 /\2 F~)-part of 
the decomposition 

From 5.1, we may assume that the splitting type of W' along c# is 
0(1)EB02, the splitting type ofF' along C# is 0(1)EBOP-2EBO( -1) and L 
is the trivial line bundle along c#. It follows that A2W' ®Land T(X)/ D 
have the same splitting type along c#. Since the homomorphism 1\2 W' ® 
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L ____, T(X)/ D induced by the bracket of Din a neighborhood of Cis an 
isomorphism at a general point of C by 4.3, it must be an isomorphism 
at every point of C from the splitting type. This implies that symy(D) 
is isomorphic to m at every y E C. 0 

§6. Vanishing of the curvature 

We keep the notation from the previous section. To prove Main 
Theorem for X, it suffices to show, by 2.5 and 4.4, the vanishing of 
the curvature function of the associated normal Cartan connection at a 
general point of X. For this, we need to interpret the curvature function 
as a holomorphic section of a vector bundle as follows. This is an analog 
of Proposition 2.5 in [Ho]. 

Proposition 6.1. Let ( M, D) be a regular differential system of type 
m. If there is no nonzero holomorphic section of the bundle D Q9 /\2 D*, 
then (M, D) is locally isomorphic to the standard differential system E 
on S. 

Proof. Let ( P, w) be a normal Cart an connection given by Propo­
sition 2.2. Then the vector bundle D Q9 /\2 D* is the associated vector 
bundle of the principal G'-bundle P with fiber 9-1 @/\ 2 9:_ 1 on which G' 
acts as follows: forcE 9-1 @/\29:_ 1, a E G' and v1,v2 E 9-1, 

a· c(X, Y) = Ad(b- 1)c(p(b)v1, p(b)v2) 

where a = b exp(Al) exp(A2), bE Go, Ai E 9i in the decomposition G = 
Go· exp(91)exp(92) given in Lemma 1.7 of [Ta] and p: G'------+ GL(m) 
is the isotropy representation. 

Let K' be the 9-1 ® /\29:_ 1-component of K. The behavior of K 
under the G'-action is described in 2.1 (2). Here, we need to study the 
behavior of K'. We will use the following equivariance property of K 
from Lemma 2.4 of [Ta]. 

Lemma Let m be any integer. If KP = 0 for all p < m, then for 
any z E P, a E G' and v1,v2 E 9-1, 

where b is the G 0 -component of a in the decomposition 

G =Go· exp(91) exp(92) 

given in Lemma 1. 7 of [Ta]. 
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Noting that C0•2 = Q-1 ® /\2g~ 1 + Q-2 ® (g-1 1\ Q-2)* and applying 
Lemma to K 0 , we have 

for z E P, a E G' and VI, v2 E Q-1· Since exp(g1 + g2) acts trivially on 
Q-b K' is an equivariant function on P under the action of G'. So K' 
can be thought of as a section of D ® /\2 D* on M. 

If there is no nonzero section of D ® /\2 D*, then K' vanishes and 
thus the harmonic part H(K) of the curvature function K of the Cartan 
connection (P, w) is zero by 2.4. By Proposition 2.3 the whole curvature 
K vanishes and thus the differential system (M, D) is locally isomorphic 
to (S, E). Q.E.D. 

In the setting of Main Theorem with S of type ( B £, { a3}) ( £ 2:: 4), 
or (D£, { a 3 }) (£ 2:: 5), 5.3 implies that in a neighborhood M of a general 
member C of K, we are given a regular differential system of type m. 
By 4.4 and 6.1, to finish the proof of Main Theorem, it suffices to prove 
the following. 

Proposition 6.2. LetS, X and K be as before. Let D be the linear 
differential system of type m in a neighborhood M of a general member 
of K given by 5.3. Then there is no nonzero holomorphic section of the 
vector bundle D ® 1\2 D* in that neighborhood. 

Proof A holomorphic section of D ® 1\2 D* gives a homomorphism 
cp: /\2 D -t D. We claim that cp factors through the Lie bracket /\2 D -t 

T(M)/D to a homomorphism cp': T(M)/D -t D. By 4.7 (3), it suffices 
to show that for a general point x E M, a general vector v E Dx with 
[v] E Cx and a vector w E Dx such that < v, w > is tangent to Cx at 
[v], cp(v 1\ w) = 0. Let C be a member of K passing through x with 
[v] = [Tx(C)]. Since the bundle of the relative affine tangent spaces of 
C along C# corresponds to the (0(2) EB 0(1)P)-part of the splitting of 
the pull-back of D to C# given in 5.1, we have a holomorphic section v 
(resp. w) of D pulled back to C# such that v(x) = v (resp. w(x) = w) 
and v (resp. w) has two (resp. one) zeros. Then cp(v 1\ w) is a section 
of the pull-back of D to c# with three zeroes. From the splitting type 
of D, we conclude that cp(v 1\ w) = 0, which implies that cp(v 1\ w) = 0. 
This proves the claim. 

Now it remains to show that the induced homomorphism cp' from 
T(M)j D to D is zero. Let us choose C through x with the tangent 
direction [v] E Cx as above. Since the pull-back of T(M)j D to C# splits 
as 0(1)2 EB 0, the image Im(cp') is contained in the (0(2) EB 0(1)P EB 
0 2P-3 )-part of the splitting of the pull-back of D to c#. From 4.7 (2), 
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at the point x, (0(2) EB O(l)P EB 0 2P-3 )x is precisely the span of the 
tangent space and the first normal space of Cx at [v]. It follows that 
[Im(cp')x] C lP'Dx is contained in the span of the tangent space and the 
first normal space of Cx at [v] for each general choice of [v] E Cx. Thus if 
[Im(cp')x] is non-empty, it is contained in the common intersection, say, 
Z C lP' D x, of the spans of the tangent space and the first normal space 
of Cx at [v] as [v] varies over Cx. But such Z must be a G0-invariant 
subvariety oflP'Dx under the natural representation of G0 on Dx. This is 
a contradiction because Z is linearly degenerate by its definition, while 
the representation of G0 on Dx is irreducible. It follows that cp' = 0 at 
a general point x, and consequently cp1 = 0. Q.E.D. 
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