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Elliptic parameters and defining equations 
for elliptic fi.brations on a Kummer surface 

Masato Kuwata and Tetsuji Shioda 

Abstract. 

We pose the problem to determine explicit defining equations of 
various elliptic fibrations on a given K3 surface, and study the case of 
the Kummer surfaces of the product of two elliptic curves. 

§1. Introduction 

1.1. Problem setting 

Let X be a K3 surface defined over a base field k, and let k(X) 
denote its function field. Suppose f : X --+ P 1 is an elliptic fibration 
on X with a section 0. Then it defines a non-constant function u = 
f(x) (x E X), and hence an element u E k(X). We call u the elliptic 
pammeter for the elliptic fibration f. (Actually u is unique only up 
to the linear fractional transformations, but to fix the idea, we always 
choose one u. Note that the subfield k(u) of k(X) is uniquely defined 
by f). 

Now let E denote the generic fiber of f. Then E is an elliptic curve 
defined over k(u) such that the function field k(u)(E) is isomorphic to 
k(X) as the extensions of k. 

Problem 1. Given a K3 surface X/ k and an elliptic fibmtion f, 
determine (i) the elliptic parameter u for f, (ii} the defining equation 
of the elliptic curve Ejk(u), and (iii} the Mordell- Weillattice (MWL) 
E(k(u)). 

Problem 2. Given a K3 surface Xjk, determine all the (essentially 
distinct) elliptic parameters. 
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Problem 2 is a combination of Problem 1 and the following standard 
problem: 

Problem 3. Given a K3 surface Xjk, classify the elliptic fibrations 
f : X --+ P 1 up to isomorphisms. 

1.2. Main results 

In this paper, we focus on the case of Kummer surfaces X= Km(A), 
where A = cl X c2 is a product of two elliptic curves, and assume k is 
an algebraically closed field of characteristic different from 2. 

In this case, Problem 3 has been solved by Oguiso [8] under the 
assumption 

( #) c~, C2 are not isogenous to each other and k = C (the field of 
complex numbers). 

Namely he classifies the configuration of singular fibers on such a Kum­
mer surface X into eleven types /1, ... , /n, and determines the num­
ber of the isomorphism classes for each type. 

Our main results can be stated as follows: we solve Problem 1 for 
each type ofOguiso's list (without assuming(#)), and thus solve Prob­
lem 2 under the assumption ( #). More details will be given in § 1. 5 
and 1. 7 after we fix the notation and review some known cases. 

1.3. Notation 

By a ( -2)-curve we mean a smooth rational curve on X whose self­
intersection number is -2. (It is called a "nodal curve" in Oguiso [8].) 
It is known ( cf. [4]) that all irreducible components of a reducible fiber 
in an elliptic fibration are ( -2)-curves. 

We have a configuration of twenty-four ( -2)-curves on X, called 
the double Kummer pencil (see Fig. 1, cf. [10]). It consists of the 16 
exceptional curves Aij arising from the minimal resolution X--+ A/~A, 
plus the 8 curves Fi, Gj obtained as the image of Vi X c2 or cl X vj 
under the rational map A--+ s. Here {Vi} (or { va) denote the 2-torsion 
points of C1 (resp. C2) ( i, j E I = {0, 1, 2, 3} ), and ~A denotes the 
inversion automorphism of A. These curves will be referred to as the 
basic curves below. 

Suppose that the elliptic curve Ci is defined by the Legendre form 

We order the 2-torsion points by v1 = (0, 0), v2 = (1, 0), v3 = (>.~, 0), 
with vo denoting the origin of C1; similarly for vj and C2. 
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Fig. 1. double Kummer pencil 

The function field k(X) is equal to the subfield of the function field 
k(A) = k(x1,YbX2,Y2) consisting of the elements invariant under the 
inversion (x~, y~, x2, Y2) f-+ (x1, -y1, x2, -y2), namely we have 

t _ Y2 
- , 

Y1 

where x1, x2 and t are naturally regarded as functions on X, satisfying 
the relation 

1.4. Examples 

We start from the most classical and elementary example: 

Example 1.1 (Kummer pencils). The projection of A to the first 
factor induces an elliptic fibration 11'1 : X --+ P 1 with four singular fibers 
of type I0: 

q>i = 2Fi + LAij 
j 

(see Fig. 2). This .11'1 and the similar 11'2 (obtained from the second 
projection) are respectively called the first or second Kummer pencil 
on X. The elliptic parameter for 11'1 (or 11'2 ) is obviously given by the 
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2 2 

type 10 at u = oo, 0, 1, 1..1 

Fig. 2. Kummer pencil (type /4) 

function x 1 (resp. x 2 ) in k(X). (This belongs to type /4 in [8], and 1r1 

and 1r2 are the two representatives of isomorphism classes, if C1, Cz are 
not isogenous.) 

The defining equation of the generic fiber over k(xi) is easily ob­
tained (see §2.3), which is isomorphic to the constant curve C2 over the 
quadratic extension k(x1 , yi) = k(C1) of k(xi). The Mordell-Weillat­
tice is isomorphic to the lattice Hom( C1 , C2 ) with norm cp fo--r deg( cp) up 
to torsion (see [14, Prop.3.1]). 

The next is the motivating example for studying the elliptic param­
eters and the problems posed in §1.1 in general. 

Example 1.2 (!nose's pencils). Using the twenty-four basic curves, 
we can find two disjoint divisors of Kodaira type IV*. Namely, take the 
following divisors shown in Fig. 3: 

{ 1l11 = G1 + Gz + G3 + 2(Aol + Aoz + Ao3) + 3Fo, 
llFz = F1 + Fz + F3 + 2(Aw + Azo + A3o) + 3Go, 

There is an elliptic fibration, called !nose's pencil, having these divisors 
as the singular fibers over u = 0 and u = oo, as first shown by Inose [3]. 
The elliptic parameter for this is given by the function u = t(= y2 jy1 ) E 

k(X), and the generic fiber E/k(t) is isomorphic to the cubic curve 
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2 

1 ...... "---11.-T-- -T- .T-
P,( P{ 

2 

type IV" at u = oo 

Fig. 3. !nose's pencil (type /3) 

defined by the equation (1.1) in the projective plane with inhomogeneous 
coordinates x1, x2. (This belongs to type /a in [8].) 

It should be remarked that Kuwata [6] has succeeded in construct­
ing, by the use of !nose's pencil, some elliptic K3 surfaces with high 
Mordell-Weil rank which have an explicit defining equation. For exam­
ple, the base change t = s3 gives rise to the elliptic curve E/k(s) which 
has the highest possible rank r = 18 (fork= C) provided that C1 and 
C2 are mutually isogenous but non-isomorphic elliptic curves with com­
plex multiplications. We refer to Kuwata [6] and Shioda [12], [14] for 
more details including the defining equation of E in the Weiertrass form 
as well as the structure of MWL; see also §2.2. 

Example 1.3. Besides the Kummer pencils (Example 1.1), the el­
liptic pencil on the Kummer surface X= Km(C1 x C2) which has been 
studied first is perhaps the one introduced in Shioda-Inose [10]. It has 
II*, 10, 10 as reducible singular fibers (for general values of ..\1 and ..\2). 
This has type fg in [8] (see Fig. 16). Via the base change of degree 2, 
it gives rise to an elliptic K3 surface with two II* fibers, which plays an 
important role in the theory of singular K3 surfaces [10] and which has 
been reconsidered by Morrison [7] in a more general situation. It turns 
out that the elliptic parameter and the defining equation for this type 
fg is the hardest case treated in this paper (see §5.3). 
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1.5. Results 

In the following Table 1, we give a summary of the elliptic parame­
ters and the structure of the MWL for each type /n, to be constructed 
in the subsequent sections. 

The first column shows the type /n of elliptic fibration following 
Oguiso's notation (cf. [8]). The second column shows the configuration 
of singular fibers in the generic case, which means that ..\1 and ..\2 are 
algebraically independent elements of k over Qo, where Qo is the prime 
field ink. The third column shows the structure of MWL of the generic 
fiber E over k(u), again in the generic case. The last column gives the 
elliptic parameter which can be used for any ..\1, ..\2(# 0, 1). 

The explicit form of defining equations should be found in the text, 
since it is not suitable to tabulate here. We note that each of these 
defining equations has coefficients in Qo(At, ..\2)(u), where u is the ellip­
tic parameter. 

We see from the table that the elliptic parameters for /n for n = 
1, 2, 3 are of the form u = trp(xt, x2) with rp(x1, x2) E k(x1, x2), while 
those for /n for n > 3 are contained in k(xt, x2). 

1.6. Basic strategy of construction 

Theoretically, constructing an elliptic fibration on a K3 surface is to 
find a divisor that has the same type as a singular fiber in the Kodaira's 
list (cf. [4] [9]). In practice, however, we need to find two divisors, one 
for the fiber at u = 0, and the other for the fiber at u = oo, to write 
down an actual elliptic parameter. This is where the difficulty is. 

Once an elliptic parameter is found, we want to find a change of vari­
ables that converts the defining equation to a Weierstrass form. In most 
cases we encounter an equation of the form y2 = (quartic polynomial). 
We then use a standard algorithm to transform it to a Weierstrass form 
(see for example Cassels [1], or Connell [2]). 

Some elliptic fibrations have nontrivial Mordell-Weil group. To de­
termine the structure of Mordell-Weil lattice, we can use the method in 
[11] since we understand very well the intersection between the section 
and the components of singular fibers. Alternatively, we can compute 
the height pairing using the algorithm in [5] once we establish the con­
version to the Weierstrass form. Note that [11] and [5] use different 
normalization of the height pairing, and they differ by a multiple of 2. 
In this article we adopt the normalization used in [11]. 
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1.7. Remark 

Fix a type /n (n = 1, ... , 11). As noted in §1.5, each of the defin­
ing equation of E/k(u) constructed in this paper has the coefficients in 
Qo(AI, A2)(u), where u is the elliptic parameter, and AI (resp. A2) is the 
Legendre parameter for CI (resp. C2). Given Ci, there are in general six 
choices of Ai (i.e., six different level2-structures on Ci)· We have verified 
that, by different choices of AI or A2, we obtain as many nonisomorphic 
E's belonging to the same type /n, as predicted by Oguiso's result ([8, 
Table B, p. 652]), and thus solved Problem 2 when CI and C2 are not 
isogenous. The proof for this will be omitted in this paper, but we write 
down the results in a single special case where we take CI : y~ = x~ - 1 
and C2 : y~ = X~ - X2 (see §6). 

This paper is organized as follows, 

CONTENTS 

1. Introduction 
2. Elliptic parameters for /I. /3, /4, and /6 
3. More ( -2)-curves 
4. Elliptic parameters for /2, /7, /sand /u 
5. (2, 2)-curves and /5, /9 and /10 
6. Full list of the defining equations in a special case 
7. Closing remark 

§2. Elliptic parameters for /b /3, /4, and /6 

177 
184 
190 
194 
200 
209 
213 

In this section we construct elliptic fibrations that have two singular 
fibers consisting only of the twenty-four basic curves. We use combina­
tions of the following divisors of typical functions (cf. Examples in §1.4): 

(xi) = 2FI + Aw +Au + AI2 + AI3 - (2Fo + Aoo + A01 + Ao2 + Ao3), 

(x2) = 2GI + A01 +Au + A21 + A3I - (2Go + Aoo + Aw + A2o + A3o), 

(t) = GI + G2 + G3 + 2(AOI + Ao2 + Ao4) + 3Fo 

- (FI + F2 + F3 + 2(Aw + A2o + A3o) + 3Go). 
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2.1. ,/1 
An elliptic parameter for the type ,/1 fibration is given by 

It is easy to verify that the divisor of u is given by 

(u) = Fo + F1 + G2 + G3 + Ao2 + Ao3 + A12 + A13 

-(Go+ G1 + F2 + F3 + A2o + A21 + A3o + A31), 

which is indicated in Fig. 4. Choosing A00 as the 0-section of the group 

type18 

at u=O 

Fig. 4. /1 

type 18 

at u=oo 

structure, we obtain the Weierstrass equation of the elliptic fibration 

where the change of variables is given by 

Its discriminant is given by 
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where d( u) is a polynomial of degree 4 in u: 

d(u) = (.A1 - 1)2 u4 + 4(.Al- 1) u3 

- 2(.A1.A2 + .A1 + .A2 - 3) u2 + 4(.A2 - 1) u + (.A2 - 1)2. 

[The discriminant of d(u) vanishes if and only if .A1 = .A2. If .A1 = .A2, 
the elliptic fibration has two h fibers for general .A1.] 

The curve A11 corresponds to the 2-torsion section T = (0, 0). The 
correspondence between the curves and the sections are as follows: 

A22 ~ P1 = (4u2, -4u2((.Al -1)u2 + .A2 -1)) 

A23 ~ P2 = (4.A2u2, -4.A2u2((.Al- 1)u2 - .A2 + 1)) 

A32 ~ P3 = (4.Alu2,4.Alu2((.Al -1)u2 - .A2 + 1)) 

A33 ~ P4 = (4.A1.A2u2, 4.A1.A2u2((.A1 -1)u2 + .A2 -1)) 

A01 ~ P5 = (4.A2,4.A2((.Al + 1)u2 - .A2 -1)) 

Aw ~ P6 = (4.Alu4 , -4.Alu4 ((.Al + 1)u2 - .A2- 1)) 

These sections satisfy the following relations. 

P3 = P2 +T, 
P5 = P1 +P2, 

P4 = P1 +T, 
P6 = P5 +T. 

The Mordell-Weil group is generated by T, P1 and P2 in the general case 
where C1 and C2 are not isogenous. The height matrix with respect to 
{P1, P2} is shown to be 

G ~)-
2.2. /3 
As we have seen in Example 1.2 (§1.4), 

u =t 

gives an elliptic parameter of type /3· We regard (1.1) as a cubic curve 
in Xi and x2 with coefficients in k(u) = k(t). We choose (x1, x 2) = (0, 0) 
as the origin of the group structure. The Weierstrass form is given by 

Y 2 = X 3 + 4(.Al + 1)(.A2 + 1)u2 X 2 

+ 16u4 ((.A1.A2 + 1)(.Al + .A2 + 1) -1)X 

+ 16u4 ((.A1(.A1 -1)u2 + .A2(.A2 -1))2 + 4.A1.A2(.A1 + .A2)u2). 
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(This is relatively simple, but the intermediate calculations are rather 
complicated.) The change of variables between two forms of equations 
is given by 

X= 4(>.2(x1- 1)(x1- .At)+ .A1(x2- 1)(x2- -\2)- >.1>.2) t 2 

' X1X2 

8(x2- 1)(x2- >.2)(>.2(>.1 + 1)x1 + >.1(>.2 + 1)x2- >.1>.2) t 2 
Y= 2 

X1X2 

4>.1((>.1 + 1)x1- 2>.1) t4 4>.2((>.2 + 1)x2- 2>.2) t 2 
+ + 0 

X1 X2 

The discriminant is of the form u8d(u), where d(u) is an irreducible 
polynomial of degree 8. Besides two IV* fibers, the elliptic fibration has 
eight I1 fibers in the generic case. These eight I1 fibers can degenerate 
in four different ways; 2 I2 + 4 I1, 4 I2, 4 II or 2 IV. For more detail, see 
Prop. 5.1 in [14]. 

There are eight other Aij 's which define sections; the correspondence 
between these curves and the sections is as follows: 

A12 ...... P1 = (4u2(.Aiu2 - >.2(>.1 + 1)), 

-4u2 (2>.~u4 - >.1(>.1 + 1)(2>.2 -1)u2 + >.2(>.2 -1))) 

( 4u2(>.iu2 - >.~(>.1 + 1)) 
p2 = >.2 ' 

2 

_ 4u2 (2>.~u4 + >.1>.~(>.1 + 1)(>.2- 2)u2 - >.~(>.2 -1))) 
>.~ 

...... P3 = (-4(>.1(>.2 + 1)u2 - >.~), 

-4(>.1(,\1 -1)u4 - >.2(>.2 + 1)(2,\1 -1)u2 + 2>.~)) 

...... P4 = ( -4.A1.A2u2, -4u2(.A1(>.1- 1)u2 + >.2(>.2- 1))) 

...... Ps = ( -4>.1u2, -4u2(.A1(A1- 1)u2 - >.2(>.2- 1))) 

n _ (- 4(.Ai(>.2 + 1)u2 - >.~) 
...... £"6 - 2 ' 

>.1 
4(>.f(>.1 -1)u4 - >.i>-2(>.1- 2)(>.2 + 1)u2 - 2>.~)) 

>.~ 
...... P1 = ( -4>.2u2,4u2(.A1(,\1 -1)u2 - >.2(>.2 -1))) 

...... Ps = ( -4u2, 4u2(.A1(>.1- 1)u2 + >.2(>.2- 1))) 
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These sections satisfy the following relations: 

P1 = P5 +Ps, 

P3 = P1+Ps, 

P2 = P4 +P1, 

P6 = P4 + P5. 

We can show that P4 , P8 , P5 , and P7 generate the Mordell-Weil group in 
the generic case. The height matrix with respect to the basis {P4, Ps, P5, 
P1} is 

4 2 
3 3 
2 4 
3 3 

0 0 

0 0 

0 0 

0 0 
4 2 
3 3 
2 4 
3 3 

This is the direct sum of two copies of A2 [2], the dual lattice of A2 scaled 
by 2. 

2.3. /4 
The elliptic parameter for the fibration 1r1 in Example 1.1 is given 

by 

while the elliptic parameter for 1r2 is given by u = x2. For 7rt, the change 
of variables 

X= u(u- 1)(u- .At)x2, 

Y = u2 (u -1)2(u- .A1) 2 t, 

converts the equation (1.1) to 

Y 2 = X(X- u(u -1)(u- .At)) (X- .A2 u(u -1)(u- .A1)). 

The curve Go is the 0-section. Other sections are: 

G1 ~ T1 = (0,0), 

G2 ~ T2=(u(u-1)(u-.AI),O), 

G3 ~ T3=(.A2u(u-1)(u-.A1),0). 

Similar results hold for 1r2. 
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2.4. /6 
The divisor of the function xd x2 is given by 

(~~) = 2(FI + Aw +Go) + A12 + A13 + A2o + A3o 

- (2(Fo + Ao1 + GI) + Ao2 + Ao3 + A21 + A31)-

This is the difference of two disjoint divisors of type 12, and thus 

X1 
U=-

X2 

is an elliptic parameter of type /6· 

T3 ············· -----~---r------

type Ii 2==,11=7.~= 
-rr 

at u =co 

r-r-
type Ii at u = 0 

Fig. 5. /6 

In order to write down a Weierstrass equation using the curve F2 as 
the 0-section, we put 

Then we obtain the Weierstrass equation 
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Its discriminant is given by 

6.(u) = 16u8 (.Al- 1)2(-A2- 1)2(u- 1)2(u- -A1) 2(-A2u- 1)2(-A2u- .A1)2. 

Besides two I2 fibers at u = 0 and oo, there are four I2 fibers at u = 
1, AI, 1/.A2 and -Al/.A2. This elliptic surface has the following three 2-
torsion sections: 

F3 <--+ T1 = (0, 0), 

G2 <--+ T2=(u(u-.Al)(.A2u-1),0), 

G3 <--+ T3=(u(u-1)(-A2u-.Al),O), 

Note that A22, A23, A32, and A33 are components of four b fibers. 
The other components of these four I2 fibers are new ( -2)-curves not 
among the basic curves, which will be clarified in §3.2. 

§3. More ( -2)-curves 

In order to describe elliptic parameters for other types, we need 
more ( -2)-curves than the basic curves. When we constructed elliptic 
parameters of type / 6 just above, we obtained some new ( -2)-curves 
as components of I2 fibers. In this section we give a systematic way to 
obtain such ( -2)-curves. 

For our purpose, it is convenient to regard X = Km(C1 x C2) as 
a double cover of the product of projective lines: P 1 x P 1 = { (x1 
zl), (x2 : Z2)}. Let Pi: ci---+ P 1 (i = 1, 2) be the projection given by 

Pi: ci --+ P 1 

if Zi :f 0 

if Zi = 0 

Then the map Pl X P2 : A = cl X c2 ---+ P 1 X P 1 factors through 
1r : A/ LA ---+ P 1 x P 1. Let 1r be the morphism of degree two from X to 
P 1 x P 1 that makes the following diagram commutative: 

X 

--+ pl X pl 
7t 

We denote by Rij the point in P 1 x P 1 that is the image of the excep­
tional curve Aij by 1r. To obtain more ( -2)-curves, we look for curves 
in P 1 x P 1 which lift to a ( -2)-curve via the map n. 
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3.1. (1, 1)-curves 

Let L be a curve in P 1 x P 1 defined by a bihomogeneous equation 
of bidegree (1, 1): 

We call such a curve (1, 1)-curve for short. By an abuse of notation, we 
denote the image of Fi and Gi under 1r : S --> P 1 x P 1 by the same 
letters Fi and Gi, respectively. For example, F1 is the curve with the 
equation x 1 = 0, and G3 with x2 - A.2z2 = 0, etc. 

Let L be a (1, 1)-curve in P 1 x P 1. Its pullback 1r-1(L) ramifies at 
the intersection of L and Fi or Gj, except when the intersection point 
falls on Rij =Fin Gj. 

Lemma 4. Let L be a (1, 1)-curve. Then, 

(1) If L passes three of sixteen Rij 's, then 1r-1 (L) is a curve of 
genus 0. 

(2) If L passes two out of sixteen Rij 's, then 1r-1 (L) is a curve of 
genus 1. 

Proof In general a (1, 1 )-curve L intersects withE Fi (resp. E Gj) 
at four points. If L passes three of sixteen Rij 's, then it intersects with 
Fi one more time and Gj one more time outside Rij· This implies that 
1r- 1 (L) ramifies at two points. By Hurwitz's theorem 1r- 1 (L) is a curve 
of genus 0. Similarly, if L passes two out of sixteen Rij's, 1r- 1 (L) ramifies 
at four points, and it is a curve of genus 1. Q.E.D. 

A (1, 1)-curve is uniquely determined by a set of three points in a 
general position. If we choose Rioja, Ril]1 , Ri2 ]2 so that no two of them 
are on the same Fi or Gj, then they are in general position. Let i3 
and j 3 be the missing indices. In other words, we choose i 3 and j 3 such 
that {i0,it,i2,i3} = {jo,j1,]2,j3} = {0,1,2,3}. Under the condition 
that the two elliptic curves cl and c2 are not isomorphic, the (1, 1)­
curve passing through Rioja, Rid1 , and Ri2 J2 does not pass Ri3 ]3. Thus, 
choosing Rioja, Rid1 , Ri2 ]2 we obtain a (1, 1 )-curve whose pullback by 
1r is an irreducible ( -2)-curve in X. We denote such a (1, 1)-curve by 
Liojo,id1 ,i2 ]2, and its pullback by Liojo,il]1 ,i2 ]2. There are ninety-six such 
( -2)-curves. Also note that Liojo,id1 ,i2]2 intersects twice with each of 
Aiojo, Ai1]1 , and Ai2 ]2. 

The (1, 1)-curve Loo,11,22 passes through Roo, Rn, R22· It is given 
by the bihomogeneous equation x 2 z1 - x 1z2 = 0. In the sequel we write 
it in the affine form x 2 -x1 = 0 for simplicity. Loo,11,22 is denoted by A44 

in Oguiso [8], which appears in the / 2 fibration. We denote it by B33 to 



192 M. Kuwata and T. Shioda 

make it consistent with our notation, indicating that it intersects with 
F3 and G3 outside A33 . Note, however, that there are six ( -2)-curves 
of the form LioJo,il),,i2 ]2 that intersect with F3 and G3. 

Fig. 6 shows the curve B33 in the affine space Ax, x Ax2 x At. As a 
matter of fact, if we substitute x2 by x1 in (1.1), the equation factorizes 
into 

which implies that the intersection between x 2 - x 1 = 0 and the affine 
Kummer surface (1.1) has three irreducible components, namely A11 , 

Azz, and B33· We also see that a parametrization of B33 is given by 

0 

Fig. 6. ( -2)-curve B33 

The zero divisor of the function x 2 - x 1 E k(x1, x 2 , t) is A11 + A22 + 
B33, while the polar divisor is of the form D1 + D 2 + rA00 , where 

D1 = 2Fo + Aoo + A01 + Aoz + Ao3, 

Dz = 2Go + Aoo + Aw + Azo + A3o· 

Since Aoo intersects twice with the divisor A11 + Azz + B33, the inter­
section number Aoo · ( D1 + Dz + r Aoo) must be 2, which implies r = -1. 
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This shows 

(x2 - xl) = An + A22 + B33 

- (2Fo + 2Go + Aoo +Am + Ao2 + Ao3 + A10 + A2o + A3o). 

This and similar calculations of divisors are used to find the elliptic 
parameter with a prescribed divisor in §4 and §5. 

3.2. 12 fibers of type / 6 fibration 

The elliptic parameter u = xdx2, which is of type / 6 , defines a 
pencil of (1, 1)-curves x 1 - ux2 = 0. The general fiber of this elliptic 
fibration is the pullback of a (1, 1)-curve passing through R00 and R11 . 

If x 1 - ux2 = 0 passes through a third Rij, then its pullback is a singular 
fiber (see Fig. 7). Four fibers of type I2 , which are mentioned in §2.4 

arise as follows: 

Loo,11,23 + A23 
Loo,11,33 + A33 

3.3. Notation 

u=O u = lll..z u=l 

Fig. 7. pencil of (1, I)-curves 

at u = 1/ A2, 
at u = Al/A2, 

B33 + A22 
Loo,11,32 + A32 

at u = 1, 
atu=At. 

Even though the notation "B33" is ambiguous as we mentioned ear­
lier, it is quite convenient. We thus use the following notation in the 
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sequel: 
(3.1) 

B32 = Loo,n,23 : >.2x1 - x2 = 0, 
B22 = Loo,n,33 : >.2x1 - >.1x2 = 0, 

B33 = Loo,n,22 : x1 - x2 = 0, 
B23 = Loo,n,32 : x1 - >.1x2 = 0,. 

Later in §4.3 and §5.2, we introduce more ( -2)-curves of this type, B31, 
B12 and B13· 

§4. Elliptic parameters for ,/2, ,/1, /s and /n 

4.1. /2 
Using B33, we can construct an elliptic parameter of type ,/2- In 

fact, the divisor 

\ll2,o = F3 + A33 + G3 + B33 

is a divisor of type I4, and it does not intersect with the divisor of type 
I12 given by 

\ll2,oo = Fo + Ao2 + G2 + A12 + F1 + Aw 

+Go + A2o + F2 + A21 + G1 + Ao1 

(see Fig. 8 below). It turns out that the divisor of the function 

is W 2,0 - W 2,oo, and it is an elliptic parameter of type /2. Choosing A3o 
as the 0-section, we obtain the Weierstrass equation 

Y2 = X 3 + (u4 + 2 (2>.1>.2- >.1- >.2 + 2) u2 + (>.2- >.1)2)X2 

- 16>.1>.2(>.1 - 1)(>.2- 1) u2 X, 

where the change of variables is given by 

X=_ 4>.1(>.1- 1)(x1- x2)(x2- >.2) 
x1(x1 -1) ' 

y = _ 4>.1(>.1 -1)(x1- x2)(x2- >.2)(2x1- 2x2- >.1 + >.2) 
x1(x1- 1) 

4>.1(>.1- 1)(x1- x2)2(x2- >.2)3(2x1x2- x1- x2) 
+--~----~----~~----~~----------~ 

t 2x¥(x1- 1)3 
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type I 12 at u = co 

Fig. 8. / 2 

The discriminant of the fibration is of the form u4d(u), where d(u) is a 
polynomial of degree 8. The discriminant of d( u) vanishes if and only if 

1 A1 
Az = A1, 1- A1, ,, or-\--. 

/\1 /\1 - 1 

The curve Ao3 corresponds to the 2-torsion section T = (0, 0). The 
correspondence between the curves and the sections is as follows: 

A31 +--+ P1 = (4A1Az,4A1Az(u2 + A1 + Az))) 

A32 +--+ Pz = (4(A1- 1)(Az- 1), 

-4(A1- 1)(Az -1)(u2 - A1- Az + 2))) 

A13 +--+ P3 = ( -4u2(A1- 1)(Az- 1), 

4(A1- 1)(Az- 1)u2(u2 + A1 + Az))) 

Az3 +--+ P4 = ( -4A1Azu2 , -4A1Azu2(u2 - A1- Az + 2))) 

These sections satisfy the following relations. 

The Mordell-Weil group is generated by T, P1 and Pz in the general case 
where C1 and Cz are not isogenous. The height matrix with respect to 
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Thus the Mordell-Weillattice is isomorphic to A2[2]. 

4.2. /7 
Using the curves Baa and Ba2 introduced in §3.3, we can form two 

disjoint divisors of type 10: 

'll1,o = 2Ga + Aoa + A1a + Aaa +Baa, 

'll1,oo = 202 + Ao2 + A12 + Aa2 + Ba2-

Looking for the function whose divisor is 'll1,o - w7 ,00 , we obtain the 
elliptic parameter 

( 4.1) 

The divisor of the function 

u- 1 = _ (A2 -1)x2(x1 -1) 
(x2 -1)(A2Xl- x2) 

is given by the following divisor consisting only of the basic curves: 

This is a singular fiber of type 14 (see Fig. 9). Thus, the elliptic param­
eter given by (4.1) is of type /7· 

The change of variables 

X= A2u(u- 1)2xl 
X2 

A2(A2 -1)2x1(x1- 1)2x2(x2- A2)(x1- x2) 
(x2 - 1)a(A2X1 - X2)a 

y = A2(A2- 1)u2(u- 1)2 

t 
A2(A2 -1)a(x1- 1) 2x~(x2- A2)2(x1- x2)2 

t(x2 - 1)4(A2Xl - X2)4 

converts (1.1) to the Weierstrass equation 
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0 T 2 
type 14 at u = I 

Fig. 9. / 7 

Its discriminant is of the form u6 ( u -1) 10 d( u), where d( u) is a polynomial 
of degree 2. 

Generically, it has only one section other than 0-section: 

F2 ~ T = (0,0). 

4.3. /s 
To find an elliptic parameter of type /s, we need to construct a 12 

fiber. For this, we can make use of Baa once again. The divisor 

is of type 12 and it does not intersect with the divisor 

which is of type III*. We look for a function whose divisor is W s,o- W s, 00 , 

and we obtain the elliptic parameter of type /s 
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2 2 2 

type m• at u = oo 

Fig. 10. /s 

Let Ba1 be the ( -2)-curve Loo,13,22: (.X2 -1)xl +x2- .X2 = 0. Then 
Ba2 and Ba1 form a fiber of type h at u = 1. Also Aa2 and the pullback 
of a certain (2, 2)-curve form another fiber of type 12 at u = 1j(.X1.X2), 
while Aa1 together with the pullback of a certain (2, 2)-curve form the 
third fiber of type hat u = (.X1 -1)-1(.X2 -1)-1. The change of variables 

X= u((.Xl _ 1)(.X2 _ 1)u _ 1) (x2 -1)(.X2x1- x2), 
(.X2- 1)x2(x1 - 1) 

y = -u3((.X1 _ 1)(.X2 _ 1)u _ 1) .X2(x2 -1)(.X2x1- x2), 
t X2(X1 - 1) 

converts (1.1) to the Weierstrass equation 

Y2 = X 3 - u((2.X1.X2- .X1- .X2 + 2)u- 2)X2 

- u2 (u -1)(.X1.X2u -1)((-Xl- 1)(.X2 -1)u- 1)X. 

Its discriminant is 

A(u) = 16u8(u- 1)2(.X1.X2u -1)2((-Xl -1)(.X2 -1)u -1)2 

x (4.X1.X2(.X1 -1)(.X2 -1)u + (.X1- .X2)2). 

[If .X2 = -All 2- .X2, or .Xl/(2-Xl - 1), this elliptic fibration has fiber of 
type III for general .Xi-] 
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Generically, it has only one section other than 0-section: 

G2 f-+ T = (0, 0). 

4.4. /u 
Modifying the divisors appearing in the type /7 fibration we con­

structed in §4.2, we form two divisors 

Wu,o = Aa1 + A21 + 2G1 + 2Aol + 2Fo + 2Aoa + 2Ga + Aaa +Baa, 

Wu,oo = Aao + A2o + 2Go + 2Aw + 2Fl + 2A12 + 2G2 + Aa2 + Ba2-

They are of type 14 and they do not intersect with each other. 

2 2 0 

type 14 at u = co 

Fig. 11. / 11 

We look for a function whose divisor is Wu,o- Wu,oo, and we obtain 
the elliptic parameter of type /u: 
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The change of variables 

X= u (.A1- I)(x2- .A2)(x1- x2) 
X1(x1-I) 

(.A1- I) x2(x2- .A2)2(x1- x2)2 

= x~(x1- I)(x2- 1)(.A2x1- x2) ' 

y = u 2 (.A1 - I)(x2 - .A2)2(x1 - x2)2 

tx~(x1 -1)2 

_ (.A1 -I) x~(x2- .A2) 4 (x1 - x2)4 

- txt(xl -I)2(x2 -I)2(.A2x1- x2)2 

converts ( 1.1) to the Weierstrass equation 

Y 2 = X 3 + (.A1u2 - (2.A1.A2- .A1- .A2 + 2)u + .A2) uX2 

+ (.A1 -I)(.A2 -1)((.A1.A2 + I)u- 2.A2) u3 X+ .A2(.A1 -1)2(.A2 -1)2 u5 • 

Its discriminant is of the form u10d(u), where d(u) is a polynomial of 
degree 4. The discriminant of d( u) is too complicated to write down 
here. However, a simple search reveals that there are cases where four 
I1 fibers degenerate even when C1 and C2 are not isogenous. 

Remark. Suppose that the characteristic of the base field is 0. 
(I) If .A1 = -I and .A2 = 9 ± 4v'5, then the fibration has one I2 

fibers and one type II fiber. In this case j-invariant of C1 is I728 and 
that of C2 is 78608 = 24173 • They are not isogenous, and they can be 
defined over Q. 

(2) If .A1 =-I and .A2 = ±J=T, then the fibration has two type II 
fibers. In this case j-invariant of C1 is I728 and that of C2 is I28. They 
are not isogenous, and they can be defined over Q. 

§5. (2, 2)-curves and fs, fg and /10 

5.1. (2, 2)-curves 
Now the pullbacks of (1, I)-curves are not enough to construct all 

the elliptic fibrations in Oguiso's list. A pullback of a (2, 2)-curve is a 
candidate for missing ( -2)-curves. A nonsingular (2, 2)-curve in P 1 x P 1 

is a curve of genus I, and thus, we first look for (2, 2)-curves with a node. 
Then we try to impose conditions such that their pullbacks are ( -2)­
curves. Here, we do not try to make a systematic search as before. 

Actually, we can construct an elliptic fibration of type /s using 
only pullbacks of (I, I)-curves and the basic curves. As a by-product, 
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however, we obtain some new ( -2)-curves which are pullbacks of (2, 2)­
curves. Such curves have a node at Ru. They are given by an equation 
of the form 

The fact that it has a node at R 11 corresponds to the fact that the 
equation does not have the terms x~x~, x~x2z2, and x 1 z1 x~. In order 
to obtain such a (2, 2)-curve, we need to specify six points among Rij 

(1 ~ i, j ~ 4) such that no three among them are on the same Fi or 
Gj. We use such curves to construct an elliptic fibration of type /9 
and /10· 

5.2. /5 
An elliptic fibration of type f 5 has six I2 fibers together with one 

I(; fiber. In order to write down an elliptic parameter for /5, we need 
to identify these six I2 fibers. 

Let B33 and B32 be the ( ...,.2)-curves introduced in §3.3. Consider 
two more ( -2)-curves of this type: 

B12 := Loo,23,31 : >.2(x1 - >.1) + (>.1 - 1)x2 = 0, 

B13 := Loo,22,31 : x1- >.1 + (>.1 - 1)x2 = 0. 

Looking at Fig. 12, we see that B33 and B12 intersect each other only 
at two points above the intersection of lines x1 - x2 = 0 and >.2(x1 -
>.1) + (>.1 - 1)x2 = 0. Thus, the divisor B33 + B12 is a singular fiber 
of type I2. Similarly, B32 + B13 is another singular fiber of type I2. 
Furthermore, B33 + B12 and B32 + B13 do not intersect each other since 
the image of these curves in Ax1 x Ax2 intersect only at Rij (see Fig. 12 
below). 

Computing the divisors (x1 -x2), (>.2(x1 ->.1) + (>.1 -1)x2), (>.2x1-
x2) and (x1- >.1 + (>.1 -1)x2), we see that 

(x1- x2)(>.2(x1- >.1) + (>.1 -1)x2) 
U= ~----~~~----~~--~~~ 

(>.2x1 - x2) ( x1 - >.1 + (>.1 - 1 )x2) 

is an elliptic parameter of type f 5 • We have 

1 _ ->.1(>.2- 1) X2(X1 - 1) 
u- - (>.2x1- x2)(x1- >.1 + (>.1 -1)x2)' 

which shows that the fiber at u = 1 is a singular fiber of type I(;. Each 
of the divisors A12, A13, A32 and A33 is a component of a singular fiber 
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0 

Fig. 12. (1, I)-curves 

of type h The other ( -2)-curves are pullbacks of (2, 2)-curves. For 
example, the singular fiber at u = A1A2 - -\1 + 1 consists of A12 and the 
pullback of the (2, 2)-curve given by 

In order to obtain a Weierstrass equation using the curve Go as the 
0-section, we first put 

X _ (x1 - x2)(x1 - -\1) 
0 - x1((x1- -\1) + (-\1 -1)x2)' 

y; _ -\1(-\1 -1)tx2(x1 -1)(x1- -\1)(x2- xl) 
0- 2 ' 

x1(-\2x1- x2)((x1- -\1) + (-\1 -1)x2) 

and then put 

X= -\1(-\2 -1)(u -1)(u- -\1-\2 + -\1 -1)((-\1-\2- -\1- -\2)u + -\2)Xo, 

Y = -\i(-\2- 1)2(u- 1)2(u- -\1-\2 + -\1- 1)((-\1-\2- -\1- -\2)u + -\2)Yo. 

Then (X, Y) satisfy the Weierstrass equation 

Y 2 = X(X- a)(X- {3), 
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type 12 at u = oo 

type 12 

at u=O 
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a= -.X1(.X2- 1)(u- 1)((.X1.X2- 1)u- .X1 + 1) ((.X1.X2- .X1- .X2)u + .X2), 

(3 = .X1(.X2 -1)u(u -1)(u- .X1.X2 + .X1 -1)((.X1.X2- .X2)u- .X1 + .X2)· 

The discriminant of this fibration is given by 

.6(u) = 16-X~.X~(.Xl- 1)2u2(u -1)12 

x (u- A1A2 + A1 -1)2((.X1.X2 ~ 1)u- .X1 + 1)2 

x ((.X1.X2- .X2)u- .X1 + .X2) 2((.X1.X2- .X1- .X2)u + .X2) 2. 

The Mordell-Weil group ·of this elliptic surface has the following 
three sections: 

5.3. /9 

F3 +-t T1 = (0, 0), 

G2 +-t T2 = (a, 0), 

G3 +-t T3 = ((3, 0). 

In order to construct an elliptic fibration of type _/g, we need to find 
a divisor of type 10 different from the ones appearing in /4 or /7· To 
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do so we look for a ( -2)-curve P33 such that 2G3 + Ao3 + A33 + B33 + P33 

is of type I(;. We can show that P33 cannot be a pullback of a (1, 1)­
curve; if that were the case, B 33 and P 33 would have to intersect each 
other. Thus, we look for a (2, 2)-curve whose double cover serves as P33· 

P33 : A2x1 (x1-l)+(A 1-l)(x2 -l)(A2x1-x2) = 0 

\ 

Fig. 14. fiber at u = 0 

It turns out that the pullback of the (2, 2)-curve 

can be used as P33 . This curve is a component of a I2 fiber of the 
elliptic fibration of type ~5 which we constructed in the previous sub­
section. The (2, 2)-curve (5.1) has a node at R00 , and passes through 
Rn, R12, R22, R23, and R31 . Fig. 14 shows the projection of the ( -2)­
curves contained in the divisor Wg,o = 2G3 + Ao3 + A33 + B33 + P33· 

(The projection of A03 is R 03 , which is a point at infinity.) 
Similarly, let P32 be the pullback of the (2, 2)-curve 

Then, the divisor Wg, 00 = 2G2 + Ao2 + A32 + B32 + P32 is again of 
type I0, which does not intersect with 'l19,0 . Fig. 15 shows the curves 
contained in the divisor 'l19 ,00 • Looking for the function having the 
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Fig. 15. fiber at u = oo 

divisor Wg,o - Wg,00 , we find the elliptic parameter u given by 
(5.2) 

(x2- .A2)(x1- x2)(.A2x1(x1 -1) + (..\1 -1)(x2 -1)(.A2x1- x2)) 
u = (x2 -1)(.A2x1- x2)(.A2x1(x1 -1) + (..\1 -1)(x2- .A2)(x1- x2)) · 

We have 

u-1= 

(x2 -1)(.A2x1- x2)(.A2x1(x1 -1) + (..\1 -1)(x2- .A2)(x1- x2)) · 

The zero divisor of this function u - 1 is given by the following divisor 
consisting only of the basic curves: 

A01 + 2G1 + 3A21 + 4F2 + 5A2o + 6Go + 3Ago + 4Aw + 2F1. 

This is a singular fiber of type II* (see Fig. 16). Thus, the elliptic 
parameter given by (5.2) is of type /9· 

Our next task is to write down a Weierstrass equation. If we regard 
(5.2) as the defining equation of a curve in P 1 x P 1 defined over k(u), 
then we can show that this curve is a curve of genus 0, and thus it can 
be parametrized. In fact, we can parametrize x 1 and x2 satisfying (5.2) 
using the parameter 

~ = _ (x2 - 1)(A2Xl - X2). 
A2X1X2 
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0 2 4 

type n• at u = 1 

Fig. 16. fg 

Actual parametrizations of x1 and x2 are complicated and we omit here. 
Substituting x1 and x2 in the equation (1.1) by these parametrizations, 
we obtain an equation of a curve of genus 1with variables in (€, t) defined 
over k(u). This equation turns out to be a quadratic equation in t, and 
it is easily converted to a Weierstrass equation. Combining all these, we 
obtain the change of variables 

Xo= 
>.2(>.2 -1)x1(x1 -1) 
(x2- 1)(>.2x1 - x2) ' 

that converts (1.1) to a twisted form of Weierstrass equation 

u(u- 1)Y02 = xg + (>.1>.2- 2>.1- 2>.2 + 1)(u- 1)X~ 

- (>.1 + >.2 -1)(>.1>.2- >.1- >.2)(u -1)2Xo 

- >.1>.2(>.1- 1)(>.2- 1)(u- 1)2. 

By letting 
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we obtain the following Weierstrass equation: 

Y2 = X 3 + (.A1.A2- 2.A1 - 2.A2 + 1) u (u- 1)2 X 2 

- (.A1 + .A2 -1)(.A1.A2- .A1- .A2) u2 (u -1)4X 

- .A1.A2(.A1 - 1)(.A2- 1) u3(u- 1)5 • 

Its discriminant is of the form u6 (u-1) 10d(u), where d(u) is a polynomial 
of degree 2. The discriminant of d(u) is given by 

If either .A1 or .A2 is a sixth root of unity, then two I1 fibers of the fibration 
degenerate to form a type II fiber. 

5.4. /w 
In order to construct an elliptic fibration of type /w, we must find 

yet another divisor oftype I0. The divisor Wg,o = 2G3+Ao3+A33+B33+ 
P33 is a divisor of type I0 appearing in the elliptic fibration constructed 
in the previous subsection. Since neither B 33 nor P33 intersects with 
A13, we see that 

\llw,o = 2G3 + A13 + A33 + B33 + P33 

is also a divisor of type I0. We then find a divisor of type I6 that does 
not intersect with Ww,o: 

\ll1o,oo = B32 + A32 + 2G2 + 2Ao2 + 2Fo + 2A01 

+ 2Gl + 2A21 + 2F2 + 2A2o + 2Go + Aw + A3o 

(see Fig.17). Looking for the function having the divisor W1o,o - Ww,oo, 
we find the elliptic parameter of type /w given by 
(5.3) 

.(x2- .A2)(x1- x2)((.A1- 1)(x2- 1)(.A2x1- x2) + .A2x1(x1 -1)) 
U= . . 

X2(x2- 1)(xl -1)(A2Xl- X2) 

The curve in P 1 x P 1 over k(u) defined by (5.3) is a curve of genus 0. 
As in the case of fg, the parameter 

e- (xl - X2)(x2 - A2) 
- (x1- 1)x2 ' 
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2 0 2 

type 16 at u = oo 

Fig. 17. / 10 

can be used to parametrize this curve. We can proceed in a similar 
manner to the case of ,/9 and we obtain the change of variables 

Xo _ ..\1(..\1 -1)(x2 -1)(..\2x1- x2) 
- X1(x1-1) ' 

Yo_ ..\1(..\1 -1)(x2 -1)2(..\2x1- x2)2 

- tx~(x1 - 1)2 ' 

which converts (1.1) to 

uYcf = XJ- (u + ..\1 + ..\2 -1)(u- ..\1..\2 + ..\1 + ..\2)Xg 

+ ..\1..\2(..\1 - 1)(..\2 - 1)(2u- ..\1..\2 + 2..\1 + 2..\2 - 1)Xo 

+ ..\~..\~(..\1 -1)2(..\1 -1)2. 

Putting 
X = uXo, Y = u2Yo, 

we obtain the Weierstrass equation 

Y 2 = X 3 + u(u- ..\1- ..\2 + 1)(u + ..\1..\2- ..\1- ..\2)X2 

+ ..\1..\2(..\1- 1)(..\2- 1)u2(2u + ..\1..\2- 2..\1 - 2..\2 + 1)X 

+ ..\~..\~(..\1- 1)2(..\1 -1)2u3. 
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Its discriminant is of the form u6d(u), where d(u) is a polynomial of 
degree 2. We can show that d(u) can have a multiple root without C1 

and c2 being isogenous. 

§6. Full list of the defining equations in a special case 

In this section, we take as C1 and C2 the most familiar elliptic curves 

(6.1) 

and write down the full list of the defining equations of mutually non­
isomorphic elliptic fibrations on the Kummer surfaceS= Km(C1 x C2 ) 

in characteristic 0. Although they are very special among elliptic curves 
(e.g. automorphisms or complex multiplications), corrseponding Kum­
mer surface S serves as a more or less "typical" case, since C1 , C2 are 
not isogenous to each other. 

In this case, the number N ( n) of nonisomorphic elliptic fibrations 
on S of type /n has been determined by Oguiso as follows: 

N(n) = 1 for n = 2, 3, 5, 8, 9, 10, 

and 
N(n) = 2 for n = 1, 4, 6, 7, 11. 

(See Oguiso [8, p. 652]. We note that this number N is not typical 
among all non-isogenous curves, as shown there.) 

Now observe that the values of Legendre parameter >.i for the present 
ci are as follows: 

>.1 = -1, 2 or 1/2, >.2 = -w or - w2 , 

where w is a cubic root of unity. In the following, we write down the 
N = N(n) defining equations for each type /n· When N = 1, we give 
essentially the same equation as the one constructed in the previous 
sections, except that we make some coordinate change when it makes 
the equation look simpler. When N > 1, we make the same construction 
as before using a suitable equivalent value of >.i. We briefly indicate how 
to verify that the resulting defining equations are not isomorphic to each 
other. 



210 M. Kuwata and T. Shioda 

1 (u8 - 10u4 + 1)3 
J=- 0 

108 uB(uB- 14u4 + 1) 

(6.3) y2 = x(x2 + (u4 + 6(2w + 1)u2 + 1)x- 32u4), 

1 (u8 + 12(2w + 1)u6 -10u4 + 12(2w + 1)u2 + 1) 3 

J = 6912 u8(uB + 12(2w + 1)u6 + 22u4 + 12(2w + 1)u2 + 1) · 

Both the equations (6.2) and (6.3) have two Is fibers at u = 0 and oo and 
eight I1 fibers. Suppose they define isomorphic elliptic curves over k(u). 
Then there must be a linear transformation of u fixing 0 and oo which 
sends one J into the other, J denoting the classical absolute invariant 
of the generic fibre (normalized so that J = 1 for y2 = x3 - x). But 
this is impossible, as the positions of the eight 11 fibers are determined 
by the simple poles of J and they cannot be transformed by such a 
linear transformation. This proves that the two elliptic fibrations are 
not isomorphic to each other. 

6.2. /2 

(6.4) y2 = x(x2 - (3u4 + 6u2 - 1)x + 32u6), 

1 (9u8 - 60u6 + 30u4 - 12u2 + 1 )3 
J=- 0 

6912 u12(u4- 10u2 + 1)(9u4- 2u2 + 1) 

(6.5) 

These are the two obvious elliptic fibrations on S induced by the pro­
jections C1 X C2 --+ C1 or C2. 
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6.5. /5 

(6.8) y2 = x(x- 4)(x + 2u(u2 + 3u + 3)). 

J = _.!.._ (u6 + 6u5 + 15u4 + 20u3 + 15u2 + 6u + 4)3 

27 u2(u + 2)2(u2 + u + 1)2(u2 + 3u + 3)2 · 

6.6. /6 

(6.9) y2 = x(x + 2u2)(x- u(u2 - u + 1)), 

1 ( u4 + 5u2 + 1 )3 
J = - --'::--,.---,---::-__:.,~ 

27 u2(u4 + u2 + 1)2 · 

(6.10) y2 = x(x- wu2 )(x + u(2u -1)(u + w2)), 

4 w(2u2 - (w + 2)u- w2) 3 (2u2 - 2(w + 2)u- w2) 3 
J = - ___,!._c::-:-..:..._--:-:,;.,--___t.__~--=-=-=-=--_:_~----'~ 

27 u2 (u- 1)2(2u- 1)2(u + w2)2(2u + w2)2 
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The Legendre parameters we employed for the first equation (6.9) are 
A1 = -1, A2 = -w, while those for the second one (6.10) are A1 = 
2, A2 = -w. That the two equations define nonisomorphic elliptic fibra­
tions can be checked in the same way as the case for ,/1 above. 

6.1. /7 

(6.11) y2 = x(x2 - u(u + 1)(u + 2)x + u2(u + 2)2), 

J= ~(u2 +2u-2)3 . 
27(u-1)(u+3) 

(6.12) y2 = x(x2 + wu(u- 1)(u- 3w- 2)x + 2w2u2(u -1)2). 

J = _.!.._ (u2 - 2(3w + 2)u + 3w- 11)3 

27 (u2 - 2(3w + 2)u + 3w -13) · 

In this case, we can check that there is a linear transformation of u 
sending the first J into the second one. However it does not preserve 
the position of singular fibres which can be seen from the discriminants 
(but not from the absolute invariants). Hence (6.11) and (6.12) are not 
isomorphic. 
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6.8. /s 

(6.13) y2 = x(x2 + u(3u + 2)x + 1 + 3u + 3u2 + 2u3), 

4 (6u3 -3u-1)3 
J= --~~--~~~----~~--~ 

27 u2(2u + 1)2(u2 + u + 1)2(8u + 3) 

6.9. /9 

(6.14) 

6.10. / 10 

We omit J. 

6.11. /n 

(6.16) y2 = x 3 - 27u2(u4 + 6u3 + 5u2 - 6u + 1)x 

- 54u3 (u2 + 1)(u4 + 9u3 + 20u2 - 9u + 1). 

(6.17) y2 = x 3 - 27u2(4u4 - 12u3 + lO(w + 1)u2 - 6wu + w)x 

+ 27u3 (16u6 - 72u5 + 6(19 + 10w)u4 

- 63(1 + 2w)u3 + 3( -9 + 10w)u2 + 18u- 2). 

We omit J, but it can be checked that the two elliptic fibrations are not 
isomorphic to each other by a similar argument as before. 

Thus we have listed the defining equations of elliptic fibrations (with 
a section) on the Kummer surfaces= Km(Cl X C2) with ci given by 
(6.1) over an algebraically closed field k of characteristic 0. Needless 
to say that the function field k(x, y, u) defined by each of the equations 
(6.2) through (6.17) is isomorphic to one and the same function field 
k(S), which is the extension k(x 1 , x2, t) with t = yl/y2 determined by 
(6.1). 
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§7. Closing remark 

In closing this paper, it should be remarked that the problems posed 
in the Introduction (§1.1) should be interesting and worth considering 
for more general K3 surfaces. 

Even in the case of Kummer surfaces, we could ask such questions 
as follows: 

Problem 5. Study Problems 1 and 2 for the Kummer surface X= 
Km(A), when A is the Jacobian variety of a genus two curve. 

For this, the so-called 166-configuration of thirty-two ( -2)-curves on 
X should play an important role in place of the twenty-four basic curves 
used in this paper. A special case has been treated in Shioda [13]. 

According to Weil [15], a principally polarized abelian surface is 
either the Jacobian variety of a genus two curve or a product of two 
elliptic curves. Beyond the case of principally polarized abelian surfaces, 
we ask: 

Problem 6. Find at least one elliptic parameter for the Kummer 
surface X = Km( A) when A is a generic member in a family of polarized 
abelian surfaces. 

The coefficients in the defining equation (especially the discrim­
inant) for such should be related to some modular forms or theta­
functions of interest. 
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