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Stability analysis for a stripe solution in the 
Gierer-Meinhardt system 

Kota Ikeda 

Abstract. 

We consider the Gierer-Meinhardt system on a rectangle in two­
dimensional space. This system is considered to generate some spiky 
pattern for a wide range of parameters. On a rectangle, this system 
also has a stripe solution, which is known to be unstable from numerical 
results. In this paper, we show the instability of the stripe pattern in 
a mathematically rigorous manner by using the SLEP method. 

§1. Introduction 

In this paper, we consider the following Gierer-Meinhardt system: 

aA 2 AP 
- = E ~A- A+-, (x, y) E ( -1, 1) x ( -L, L), t > 0, at Hq 
aH 1N Tat= d~H- p,H + ~ Hs, (x, y) E ( -1, 1) X ( -L, L), t > 0, 

aA aH 
ax = ax = 0, X= ±1, y E ( -L, L), t > 0, 

(GM) 

aA aH 
ay = ay = 0, y = ±L, x E ( -1, 1), t > 0. 

This system was proposed by A.Gierer and H.Meinhardt in 1972 as a 
mathematical model for biological morphogenesis [3]. In the system 
(GM), A and H represent the scaled activator concentration and in­
hibitor concentration, respectively, E, d, J-t and T are positive parameters, 
and the exponents p, q, r and s satisfy p > 1, q > 0, r > 0, s 2::: 0, and 
D = qr- (p- 1)(s + 1) > 0. The conditions for these parameters im­
ply that the Gierer-Meinhardt system exhibits the Turing instability so 
that a homogeneous steady state becomes unstable by spatially inhomo­
geneous disturbance (see [15]). Therefore we expect that the spatially 
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inhomogeneous state (or a spatial pattern) will appear in the Gierer­
Meinhardt system. Indeed, some mathematicians succeeded in proving 
the existence of a stable spiky pattern. See, e.g., [1], [2], [5], [10], [16], 
[17], [18]. 

On the other hand, it is known that stripe patterns are not observed 
in numerical simulations for the Gierer-Meinhardt system, though other 
reaction diffusion models may generate stable stripe patterns. The au­
thors of the paper [9] considered how the choice of reaction terms af­
fects the tendency to generate either striped, spotted (spotted is equal 
to spiky), or reversed spotted pattern, and this consideration was con­
firmed in [9], by numerically simulation. Our aim here is to verify the 
consideration in a mathematically rigorous manner. To this aim, we will 
prove that some stationary solution with a stripe pattern is necessarily 
unstable in (GM). 

We formulate our problem as follows. Let us first consider the fol­
lowing one-dimensional steady state problem: 

X E (-1, 1), 

(1.1) 
X E (-1, 1), 

X= ±1. 

In [5], [10], [17], it is shown that there exists a stationary solution with 
a single spike at the origin, which will be denoted by (a(x), h(x)). Since 
(a, h) is independent of y-variable and the region of (GM) is a rectangle, 
it is clear that (a, h) also satisfies (GM). Since a has its peak over y-axis, 
we call (a, h) stripe solution of (GM). See Lemma 1 below for a more 
precise existence result. 

Our purpose in this paper is to analyze the stability of (a, h) in 
(GM). In order to study the stability of the stripe solution, it suf­
fices to consider an eigenvalue problem associated with the linearized 
system of (GM). Due to the lack of y-dependency of (a, h), without 
loss of generality, we may assume that the eigenfunction (¢, ry) satis­
fies (<P(x, y), ry(x, y)) = (<P(x)'l/Jk(y), ry(x)'l/Jk(Y)), where '1/Jk is defined by 
'1/Jk(Y) = cosk7ry/2L (resp. sink7ry/2L) if k is even (resp. odd). Then 
we are led to the following eigenvalue problem on a bounded interval: 
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where l = br /2L. 
We now describe our main result, which shows that (P) has exactly 

one real and positive eigenvalue. 

Theorem 1. Let (a, h) be a stripe solution of ( 1.1). Fix l -1- 0. Then 
there exist do > 0 and Eo > 0 such that for each d > do and E < Eo, (P) 
has exactly one real eigenvalue A satisfying lim, ..... 0 A > 0. In particular, 
the stationary solution (a, h) is unstable. 

Here we remark two related results on the instability of stripe pat­
terns in the Gierer-Meinhardt system. One is the work of Doelman and 
van der Ploeg [2], and another is that of Kolokolnikov et al. [6]. In both 
of these works, stationary solutions with the stripe pattern depending 
on only one spatial variable are considered for 2-dimensional Gierer­
Meinhardt system. Hence, as described as above, eigenvalue problems 
on one dimensional space with a parameter l arises naturally. In [2], the 
eigenvalue problem was studied on the whole line by using the theory 
of Evans functions, which does not seem to be powerful in the case of 
bounded interval. On the other hand, in [6], the eigenvalue problem 
was considered on a bounded interval as our formulation. In order to 
analyze the eigenvalue problem, Kolokolnikov et al. adopt the NLEP 
(Non-Local Eigenvalue Problem) method by assuming that the expo­
nents satisfy some extra conditions; p, r satisfy either p = r = 2, or 
r = p + 1 and 1 < p ::; 5. In our work, we will use the SLEP (Sin­
gular Limit Eigenvalue Problem) method without assuming any extra 
conditions on the exponents. 

SLEP method introduced in [8] has been used in many papers (see 
[7], [11]-[14]). The authors of [13], [14] considered the stability of planar 
interfaces of a reaction-diffusion system in two-dimensional space. Since 
each of their equilibrium solutions, denoted by (u" v,), has only one 
thin layer, and u, approaches a step function as E--? 0, their eigenvalue 
problems are essentially the same as in the case of [8]. On the contrary, 
our eigenvalue problem is essentially different from theirs because (a, h) 
has spiky pattern in one-dimensional space. This paper is the first case 
that SLEP method is used to analyze the stability of a solution with 
spiky pattern. 

In order to explain how we use the SLEP method, we first carry 
out formal calculations in Section 2. Then in Section 3, we give some 
key lemmas, in particular for the stripe solution (a, h). By using the 
lemmas, we describe an outline of a proof for our theorem in Section 4. 

We use the following useful notations throughout our paper. First 
we define several Banach spaces for open intervals and notations associ­
ated with their Banach spaces. We denote by L2 (-R,R), H 1(-R,R), 
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H 2 (-R, R) the usual Lebesgue space and Sobolev spaces. Let H-1 (-R, R) 
be the dual space of H 1( -R, R). Let II · 11£2(-R,R), II · IIHl(-R,R)' II · 
IIH2(-R,R)' and (·, ·)£2(-R,R) be the usual norms and inner product 
in each Banach space. We denote by < ·, · > the pairing between 
H-1 (-1,1) and H 1 (-1,1). 

Secondly, let us define a streched-coordinate y by y = x / f for x E 

(-1,1). Note that -1/t: < y < 1/t:. For a function '1/J(x), we denote 
the streched function of ;fi(y) by ;fi(y) = '1/J(t:y). Furthermore we define 
,P(y) = y'E;fi(y) if '1/J E L2 ( -1, 1) satisfies 11'1/JII£2(- 1,1) = 1. Then we have 

ll,fJII£2( -1/e,1/e) = 1. 
Thirdly we prepare some definitions and notations for simplicity. 

By a constant c, we mean a generic constant independent of f. For each 
function rp(y) on ( -1/t:, 1/t:), we extend it to the whole line by a natural 
way, that is, ¢ = 0 for sufficiently large IYI· Then we do not need to 
distinguish the extended function from the original function, so we use 
the same symbol ¢ to denote the extended function. 

§2. Formal calculations 

In this section, we carry out formal calculations to give the idea for 
the proof of our theorem. We rewrite (·, ·)£2(- 1,1) as (·, ·) for simplicity 
throughout this seCtion. At first, we reformulate the eigenvalue problem 
(P) to the following form: 

A(~) = (~~ JJJ (~)' 
where Le and Me are differential operators defined by 

and f~, fl., g~ and gf. are given by 

p-1 

~~ = -(1 + t:2l2) + p \q ' 
e r ar-1 

9a = Tf hs' 

Since we are interested in an unstable eigenvalue of (P), it suffices to 
restrict A to the right half-plane of C denoted by 

A+ = {A E c I Rd ::::: 0 } . 
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Furthermore, we can also show that any eigenvalue of (P) in A+ satisfy­
ing lime-+O Re>.. > 0 cannot be the eigenvalues of Le. Hence we can solve 
the first equation of (P) with respect to ¢to obtain 

(2.1) 

We can decompose (Le - >..)-1 into three parts by using pairs of eigen­
values and eigenfunctions of Le, denoted by { ~i, 'Pi} ~0 , satisfying ~0 > 
~i > ~~ > ··· (see (3.1)), and II'P~II£2(-1,1) = 1 for each i 2': 0 as follows: 

(L - >..)-1 = (·,'Po) Ill€ + (·,'PO Ill€ + R 
E ~O _A YO ~l _A Y1 e,>., 

where Re,>. is defined by 

00 (. €) 
R =~~Ill€ e,>. - ~ ~€ _ An· 

i=2 • 

Substituting (2.1) into the second equation of (P), we obtain 

(2 2) (-M - g€ R (-f€ ·) + >..)TJ = (- Jt,TJ, 'Po) g€ Ill€ + (- Jt.TJ, 'PO g€ Ill€ 
• E a e,>. h ~o-A aYO ~l-A aY1' 

We can show that (-Me- g~Re,>. (- fh. ·) + >..) is invertible, and its inverse 
operator is denoted by Ke,>. : H- 1 ( -1, 1) ---> H 1 ( -1, 1) (see Lemma 5). 
Applying Ke,>. to the both sides of (2.2), we have 

(2.3) TJ = (-fi,TJ,'Po) K (ge11le) + (-fi,TJ,'P0 K (ge11le). 
~O _A e,>. aYO ~l _A e,>. aY1 

This implies that TJ must be written as 

(2.4) 

where a, j3 are some constants. Substituting (2.4) into (2.3), we have 

aKe,>.(g~'Po) + f3Ke,>.(g~'P0 = aAooKe,>.(g~'Po) + f3Ao1Ke,>.(g~'Po) 
+aAlOKe,>.(g~ipO + f3AuKe,>.(g~ipO, 

where 
Aii = (Ke,>.(g~'Pj),-fh.'PD/(~i- >..), i,j = o, 1. 

Since Ke,>.(g~'Po) and Ke,>.(g~ipi) are linearly independent, it follows 
that 

(a) = (Aoo Ao1) (a). 
j3 A10 Au J3 



578 K. Ikeda 

From (o:,/3)t f. 0, we have (A00 -1)(A11 -1)- A10 A01 = 0. Hence we 
obtain 
(2.5) 

((K£,>.(g~cpij),- ff.cpij)- ~6 + >.)((K£,>.(g~cpi),- ff.cpi)- ~i + >.) 

= (K£,>.(g~cpij),- ff.cpi)(K£,>.(g~cpi),- ff.cpij). 

Here we take the limit of r:---. 0 in (2.5). First we have ~6 ---. ~0 > 0 
and ~i ---. 0 as r:---. 0, as described in Section 3. Moreover, in Section 4, 
we shall see that 

1 f£ £ J: - Vf- hcp0 ---.c1u, 
1 f£ £ - Vf- h<p1 _..... 0, 

in n- 1 ( -1, 1) as r: ---. 0, where c1 , c2 are positive constants uniformly 
bounded in large d > 0, and 8 is Dirac's 8-function at the origin (see 
Lemma 4). Furthermore we see that there exists an operator K*,>. : 
n- 1( -1, 1) _..... H 1( -1, 1) such that K£,A _..... K*,A as f _..... 0 in a certain 
sense (see Lemma 9). Finally we have >.(>. - ~0 + c1c2 < 8, K*,>.8 > 
) = 0 as r: ---. 0. Since we consider an unstable eigenvalue satisfying 
lim£-->0 Re>. > 0, >. must satisfy >. = ~0 - c 1c2 < 8, K*,>.8 >. Since 
< 8, K*,>.8 > is small if d is large, as shown in Section 4, we see that 
there exists an unstable eigenvalue satisfying (2.5) by using the implicit 
function theorem. 

§3. Known results and key lemmas 

To prove Theorem 1, we need some properties of the stationary 
solution (a, h) of (1.1) with a single spike at the origin. We describe 
them according to [5], [17]. The following lemma gives the asymptotic 
behavior of (a, h) as r:---. 0. Here we define (a(y), h(y)) = (a(r:y), h(r:y)) 
by using the streched-coordinate. 

Lemma 1 ( [5], [17]). Iff is sufficiently small, there exists a solution 
(a, h) of (1.1) with the following property: There exists a constant c > 0 
independent of r: such that lla- (qf(p-l)wiiH2(- 1/£, 1/£) :::; cr:, where w, ( 
are defined by 

w(y) = p · , ( = J.l tanh !!:. , ( + 1 ) 1/(p-1) ( 2../dii ~) (p-1)/D 

2cosh2 (p-1)y/2 JIRwrdy d 

respectively. Moreover, for each R > 0, one has sup_R~y~R lh(y) -(1---. 
0 as r: ---. 0. 
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This lemma implies that (ii, h) approaches ((qf(P-llw, () as E----+ 0. 
Next we find that ii has the exponentially decaying property similar to 
w. ,Here we note that ce-IYI :::; w:::; c' e-IYI for y E JR. with some constants 
c,c. 

Lemma 2. For every sufficiently large R > 0, there exists Eo > 0 
such that ce-IYI :::; ii:::; c' e-IYI forE< Eo and R:::; IYI :::; 1/E, where c, c' 
are positive constants independent of E, R, d. 

Next we consider pairs of the eigenvalues and eigenfunctions of Le, 
denoted by {~;, tpi}~0 . In particular, we shall study the properties 
of {~0 , 'Po}, {~]', tpl}. Without loss of generality, we may assume that 
{ tpi} ~0 is an orthonormal system in L 2 ( -1, 1). It can be shown in the 
same way as in the proof of Lemma 3.10 in [7] that there exists a constant 
'"'! > 0 independent of E such that 

(3.1) ~8 > '"'( > ~~ > -'"'( > ~~ > ~~ > .... 

Furthermore, ~0 ----+ ~0 and ~1 ----+ 0 as E ----+ 0, where ~0 is a unique positive 
eigenvalue of the following eigenvalue problem: 

(3.2) 
y E JR., 
IYI ----+ 00. 

We denote the eigenfunctions corresponding to the eigenvalue ~0 , 0 of 
(3.2) by 'f30, 'f3i, which are normalized as ll'f3oii£2(IR) = 1 and ll'f3iii£2(IR) = 
1, respectively. In the same way as in the proof of Lemma 3.10 in [7], it 
follows that 'f3i converges to 'f3i as E ----+ 0 in C2 (JR) for i = 0, 1 and has 
the exponentially decaying property similar to 'f3i for i = 0, 1. 

Lemma 3. Set B = max{l/2, 1- r/2}. Then there exist a constant 
c > 0 independent of E and Eo > 0 such that 

(3.3) I dk ,?,'I < ce-&lyl 
dyk rl -

forE < Eo, y E ( -1/E, 1/E) and k = 0, 1, 2. Furthermore, 'f3i converges 
to tPi in C 2 (JR.) as E ----+ 0 for i = 0, 1. 

§4. Outline of the proof of Theorem 1 

In order to prove Theorem 1, we will consider the convergence of 
each term in (2.5). As the first step, we study the asymptotic behavior 
of ff:.'Po/Vf, ff:.'Pi!Vf, ,jfg~'Po and ,jfg~'P'i in H-1(-1, 1) as E----+ 0 and 
determine constants c1, c2. 
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Lemma 4. In the limit of E _, 0, one has 

(4.1) - ~ff.cpg _, c1b, - ~ff.cp'i _, 0, Vf_g~cpg _, c2b, Vf-g~cp'i _, 0 

in H- 1 ( -1, 1), where c1 and c2 are positive constants defined by 

c1 = q((q-p+1)/(p-1) I: wPij!~dy, 
_ r ;-(q(r-1)-s(p-1))/(p-1) 100 r-1 '*d c2 = -., w cp0 y. 

T -oo 

Proof. For each z E H 1 ( -1, 1), we have 

1
1 1 11/e (iP 

- ;;:fl. cpgzdx = q-_ -l{!gzdy 
-1 V E -1/e hq+l 

_, z(O)q((q-p+1)/(p-1) I: wP~j;~dy. 
Hence we obtain -ff.cp6/Vf- _, c1 c5 in s-1(-1,1) as E _, 0. There­
mainder of the lemma is shown in a similar way. So we omit the de­
tails. Q.E.D. 

In Section 1, we used Ke,>-. which is the invertible operator and K*,>-. 
which is the limiting operator of Ke,>-. as E -t 0 in a certain sense. In 
what follows, we give precise definition of these operators. To do so, we 
consider the following bilinear form: 

( 4.2) 

where).. E A+, z 1, z2 E H 1( -1, 1). Here we abbreviate (·, ·)£2(-1,1) as 
(·, ·) for simplicity. Applying Lax-Milgram's theorem to this bilinear 
form, we define Ke,>-. as follows. 

Lemma 5. For each T E s- 1 ( -1, 1), there exists a unique ¢ E 

H 1 ( -1, 1) such that 

(4.3) Be,>-.(¢, 1/;) =< T, 1j; > for 1j; E H 1 ( -1, 1), 

where E is sufficiently small, d is sufficiently large, and ).. E A+. More­
over, the operator 

is well-defined by¢= Ke,>-.T. In addition, Ke,>-. is analytic with respect 
to ).. and continuous with respect to E. 
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In order to prove Lemma 5, we first study the asymptotic behavior 
of g~Re,>.(- ff.:) contained in the right-hand side of (4.2). 

Lemma 6. For each z E H 1( -1, 1) and>. E A+, it holds that 

( 4.4) 
g~Rc,>.(- fhz) -+ z(O)Fc5 

g~ d~ Rc,>.(- fhz)-+ z(O) ~~ c5 

in H-1( -1, 1), 

in H-1( -1, 1) 

as E -+ 0. Here F = F(>.) is an analytic function in A+, which is 
real-valued for real >., defined by 

F(>.) = qr (Df(p-1)(¢o,wr-1)£2(JR), 
T 

where ¢o is some function belonging to H 1 (R.), is independent of E, z and 
has the exponentially decaying property such as 1¢0 1 ::; ce-IYI for y E R., 
with a constant c > 0 independent of>. E A+. Furthermore, in the limit 
of E -+ 0, one has 

llg~Rc,>.(- fhz)- z(O)Fc5IIH-1(-1,1l -+ 0 

uniformly in llziiHl(-1,1) :"::: M. 

Proof Since the proof needs length argument, we only describe the 
outline of the proof. 

Setting ¢€ = Rc,>.(- fhz) and using the streched-coordinate y = xjE, 

we can show that ¢€ is uniformly bounded in H 1(R.). Hence there exists 
¢o E H 1(R.) independent of E, z such that ¢€ -+ z(O)q((q-p+1l/(P- 1l¢0 

weakly in H 1( -1, 1) as E -+ 0. Here we do not need to choose a sub­
sequence of E. In addition, we find that ¢0 is a unique solution of the 
following problem: 

for y E R Using this equation, we .obtain the exponentially decaying 
property of ¢0 . Finally, by this property of ¢0 , we have (4.4). 

Next we show that the last part of the lemma by contradiction. 
Suppose that there exist a constant "" > 0 independent of E > 0, En and 
Zn E H 1( -1, 1) such that En-+ 0 as n-+ oo, llzniiHl(-1,1) :"::: M, and 

llg~n R£n,>.(-f~n Zn)- Zn(O)FJIIH-1(-1,1) :::::: /'i,. 

By llzniiHl(-1,1) :"::: M, there exists zo E H 1( -1, 1) such that Zn -+ zo 
weakly in H 1 ( -1, 1). Here we may replace Zn with an appropriate sub­
sequence if needed, but we use the same notation. Since H 1 ( -1, 1) is 
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compactly embedded in a Holder space, we may assume that Zn con­
verges to z0 uniformly on [-1, 1]. Then we have 

llg~n R,n,>.(-f~n Zn) - Zn(O)F8II :::; llg~n R,n,>.(-f~n (zn - zo))ll 

+llg~nR,n,>.(-f~nzo)- zo(O)F8II + ll(zo(O)- Zn(O))F8II, 

where we abbreviate II· IIH-1(-1,1) as II· II for simplicity. All terms of 
the right side of the above inequality converge to 0 as n -t 0, which is a 
contradiction. Q.E.D. 

Next we consider the convergence of arz/Eh8 +1 in H- 1 (-1,1) as 
E -t 0, contained in the term g'f,z, where z E H 1 ( -1, 1). 

Lemma 7. For any z E H 1 ( -1, 1), in the limit of E -t 0, it holds 
that 

(4.6) --z -t z(O)~D/(p- 1 ) wrdy8 in H-1(-1 1) ar 1 
Eh8+1 1R 1 • 

Furthermore, for each M > 0, one has as E ___. 0 

II Eh~~ 1 z- z(O)~D/(p- 1 ) l wr dy8IIH-l(-1,1) -t 0 

uniformly in llziiHl(-1,1) :SM. 

Proof. It is easy to show (4.6). The last part of the lemma can be 
shown in the same argument as in the proof of Lemma 6. We omit the 
details. Q.E.D. 

We can prove Lemma 5 by applying Lemmas 6 and 7. In what 
follows, we abbreviate II · IIHl(-1,1) as II · IIHL 

Proof. For any z1 , z2 E H 1 ( -1, 1), we have 

IB,,>.(Z1, z2)l :S ~max{ d, dl 2 + 11 + ri.XI}IIz1IIH1IIz2IIH1, 
T 

and for any z E H 1(R), we have 

(4.7) IB ( )I min{d,dl2+J.t}ll ll 2 e,>. z, Z 2: 27 Z Hl· 

By these two inequalities, we can apply Lax-Milgram's theorem to B,,>., 
that is, for each T E H-1( -1, 1), there exists a unique ¢> E H 1( -1, 1) 
such that 
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forE> 0 and A E A+. Then we define the operator K€,>.: H- 1 ( -1, 1)----> 
H 1 ( -1, 1) by KE,>.T = ¢, which implies that K€,>. is well-defined. 

Secondly we shall show that K€,>. is continuous with respect toE and 
analytic with respect to A E A+ in a certain sense. We take any T E 

-1( ) 1( ' ' H -1,1 . Then, for each 1jJ E H -1, 1), E, E > 0, and A, A E A+, 
we have 

Using this, we obtain 

Substituting (K€,>. - K€' y )T into 1/J and using the inequality ( 4. 7), we 
obtain 

On the other hand, the right side of ( 4.8) is estimated from above as 

IBc',>.'(KE,>.T,'lj;)- BE,>.(KE,>.T,1/J)I 

:S (11 (g~' R€' ,>.' (-J() - g~R€,>.(- fh·))KE,>.TIIH-' 

II ( s ar, s ar ) II , ) + n' hst1 - TE h~~1 KE,>.T H-' + lA - AIIIKE,>.TIIH' 111/JIIH'' 
€ 

where we write a, h as a€, h€ for E to distinguish a€, h€ from a€', he'. 
Hence we take 1/J = (K€,>. - K€, ,>.' )T in ( 4.8) and find from the above 
two inequalities that 
(4.9) 

Here it follows that IIKE,>.TIIH' ::; 2ri1TIIH-'/min{d,dl2 + t-t} so that 
IIKE,>.TIIH' is uniformly bounded in E > 0 and A E A+. By using this 
and Lemmas 6, 7, all terms in the right-hand side of (4.9) tend to 0 as 
E' ----> E and A' ----> A. Hence KE,>. is continuous with respect to E and 
analytic with respect to A. Q.E.D. 
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Next let us define K*,>.· From Lemmas 6, 7 we see that 

(g~R.,>.(- ff.zl), Z2)L2( -1,1) ----> F(A)Z1 (O)z2(0), 

(~ h~: 1 Z1,z2)£2(-1,1)----> f.D/(p- 1) l wrdyz1(0)z2(0) 

as E ----> 0. Hence we define B*,>.' which is the limiting form of B.,>. as 
E ----> 0, by 

where A E A+ and z1 , z2 E H 1 ( -1, 1). Here we set 

E = ~f.D/(p-1) r wr dy 
T J!R 

and abbreviate (·, ·)£2(- 1,1) as (·, ·). We apply Lax-Milgram's theorem 
to B*,>. as well as Be,>. to define K*,>.· 

Lemma 8. For each T E H- 1 ( -1, 1), there exists a unique ¢ E 
H 1( -1, 1) such that 

(4.10) 

where d is sufficiently large and A E A+. Moreover, the operator 

is well-defined by¢= K*,>.T and is analytic with respect to A. 

Proof. This lemma can be shown in the same way as in the proof 
of Lemma 5. So, we omit the details of the proof. Q.E.D. 

As described previously, B*,>. is the limiting form of Be,>. as E----> 0. 

Hence we expect that K.,>. converges to K*,>. as E----> 0 in a certain sense. 
Indeed, the following lemma holds. 

Lemma 9. Fix A E A+ and T E H- 1 (-1,1). Let En> 0, An E 

A+, and Tn E H-1( -1, 1) satisfy En ----> 0, An ----> A, and Tn ----> T in 
H- 1 ( -1, 1) as n----> oo, respectively. Then Ken,>.nTn converges to K*,>.T 
in H 1 ( -1, 1) as n ----> oo. 

Proof. We can show this lemma by a similar inequality to (4.9). 
So, we omit the details of the proof. Q.E.D. 
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Now we are in a position to prove Theorem 1. Since K* >.6 must 
satisfy B*,>.(K*,>.6, '1/J) =< 6, '1/J > for any '1/J E H 1 ( -1, 1), K*,>.6 is a 
solution of 

Finally, we have 

T 
(4.11) (K* >.6)(x) = dl 2 A {1 + (F- E)(K* >.6)(0)}Gd >.(x,O), , +J.L+T , , 

where Gd,>. is a Green's function with Neumann boundary condition for 
the following equation: 

d II 

dl 2 A G(·, z) + G(·, z) = 6z on ( -1, 1), 
+J.L+T 

where z E ( -1, 1) and 6z is Dirac's 6-function at z. Here we see from 
(4.11) that (K*,>-.6)(0) satisfies a compatibility condition so that we can 
solve (4.11) with respect to (K*,>-.6)(0) to obtain 

- TGd,>.(O, 0) 
(K*,>.6)(0)- dl2 + J.l + TA + TGd,>.(O, O)(E- F)' 

where Gd,>.(O, 0) is explicitly given by 

G (0 0) = J dz2 + J.l + T A 
d,>. ' 2Vd tanh( J dl2 + J.l + T A/ Vd) 

If dis sufficiently large, (K*,>-.6)(0) is much smaller than ~0 . Furthermore 
d(K*,>-.6)/dA is also small if dis sufficiently large. Therefore we obtain 
an unstable eigenvalue A by the implicit function theorem. 

It is not difficult to show that (P) has exactly one unstable eigenvalue 
and it is a real number. More precise proof will be given in a forthcoming 
paper [4]. 
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