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Lp-Lq maximal regularity of the Neumann problem 
for the Stokes equations in a bounded domain 

Yoshihiro Shibata 1 and Senjo Shimizu 2 

Abstract. 

We consider the Neumann problem for the Stokes equations with 
non-homogeneous boundary and divergence conditions in a bounded 
domain. We obtain a global in time Lp-Lq maximal regularity theorem 
with exponential stability. To prove the Lp-Lq maximal regularity, we 
use the Weis operator valued Fourier multiplier theorem. 

§1. Introduction and Results 

This paper is concerned with the Lp-Lq maximal regularity of the 
Neumann problem for the Stokes equations in a bounded domain 0 in 
!Rn (n ~ 2): 

(1.1) Vt- DivS(v,e) = f in 0 x (O,T), 

div v = g = div g 
S(v,e)v= h 

vl,=a = Vo 

in 0 x (0, T), 

on r X (O,T), 

in 0. 

Here, r is a 0 2•1 boundary of 0; v is the unit outward normal to f; 
v = (vb ... ,vn)* and e are unknown velocity and pressure, respectively, 
where M* denotes the transpose of M. J, g, g, h and vo are given 
functions; S(v, e) is the stress tensor defined by the formula: 

S(v, e) = D(v)- ei, 
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where D( v) is the deformation tensor of the velocities with element 
Dij(v) = aivj + ajvi, ai = a;axi, and I is the n X n identity matrix. 
This problem is obtained as a linearized problem of some time dependent 
problem with free surface for the Navier-stokes equations which describes 
the motion of an isolated finite volume of viscous incompressible fluid 
without taking surface tension into account. Such free boundary prob­
lem was first studied by Solonnikov [8]. In our forthcoming paper [7], 
we treat the problem by using the results obtained in the present paper. 

First of all, in order to state our main results precisely we introduce 
function spaces and some symbols which will be used throughout the 
paper. For any domain Din JRn, integer m and 1 ~ q ~ oo, Lq(D) and 
W;'(D) denote the usual Lebesgue space and Sobolev space offunctions 
defined on D with norms: II · t.<DJ and II · llw.;n<DJ, respectively. And 
also, for any Banach space X, interval I, integer f and 1 ~ p ~ oo, 
Lp(I, X) and WJ(I, X) denote the usual Lebesgue space and Sobolev 
space of the X-valued functions defined on I with norms: II· tpu.xJ and 
II · II t . , respectively. Set 

WP(l,X) 

w:;;'(D x I) = Lv(I, w:(D)) n W;'(I, Lq(D)), 

llullw~;;'<Dxi) = llutpu.wJ(D)) + llullwpn(l,Lq(D))' 

W~(D) = Lq(D), wg(I,X) = Lp(I,X), 

w:,o((O,T),X) = {u E w;((-oo,T),X) I u = 0 fort< 0}, 

wg,0 ((0, T), X)= Lv,o((O, T), X). 

Given a E JR, we set 

< Dt >a u(t) = .r-1 [(1 + s2)ai2Fu(s)](t), 

H;(JR,X) = {u E Lp(JR,X) I< Dt >au E Lp(JR,X)}, 

lluiiH~(IR,XJ =II < Dt >a uiiLp(~.xJ + lluiiLp(~.xJ · 

Here and hereafter, F and .r-1 denote the Fourier transform and its 
inverse, respectively. Set 

H:;~I2 (D x JR) = H~I2 (JR,Lq(D)) n Lv(lR, Wi(D)), 

lluiiH~;~/2(Dx~) = lluiiH~/2(~,Lq(D)) + llutp(~,WJ(D))' 

H::;:02 (D x (0, oo)) = {u E H:;~I2 (D x JR) I u = 0 fort< 0}. 

Finally, given 0 < T ~ oo we set 
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H 1' 1/ 2 (D X (0 T)) 
q,p,O ' 

= {u I 3 v E H::~:02 (D x (0, oo)), u =von D x (0, T)}, 

lluiiH~:!:~(Dx(o,r)) = inf{llviiH~;!/2(DxR) I 

v E H::~:02 (D x (0, oo)) with v = u on D x (0, T)}. 

Given Banach space X with norm II · llx, we set 

n 

xn = {v = (vl, ... , Vn)* I Vj EX}, llvllx = :~::)vjllx· 
j=l 

The dot · denotes the inner-product of JR.n. F = (Fij) means then x 
n matrix whose i-th row and j-th column component is Fij· For the 
differentiation of the n x n matrix of functions F = ( Fij), the n-vector 
of functions u = (ub ... , un)* and the scalar function (), we use the 
following symbols: Bt = 8tB = 8Bj8t, OjB = 8Bj8xj, 

VB= (81B, ... , onB)*, Ut = OtU = (8tul, ... , OtUn), Vu = (oiuj), 
n n n 

divu = Lojuj, Div F = (L8jF1j, ... , LojFnj)*. 
j=l j=l j=l 

The inner products(·, ·)n and(·, ·)r are defined by 

(u, v )n =In u(x) · v(x) dx, (u, v )r = l u(x) · v(x) do-, 

where do- denotes the surface element of r. We denote by C a generic 
constant and Ca,b, ... denotes a constant depending on the quantities a, 
b, .... The constants C and Ca,b, ... may change from line to line. 

To state our main results concerning the unique existence of solu­
tions to (1.1), first of all we discuss an analytic semigroup approach to 
the initial-boundary value problem: 

(1.2) Vt- DivS(v,B) = 0, divv = 0 inn X (O,oo), 

Set 

S(v, B)vlr = 0, vlt=O = vo. 

Jq(f2) = {w = (wl, ... ,wn)* E Lq(n)n I divw = 0 inn}, 

Gq(f2) = {Vw I wE W,i(n), wlr = 0}. 
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Then, by Grubb and Solonnikov [3], we know the second Helmholtz 
decomposition corresponding to (1.2): 

for 1 < q < oo, where EB denotes the direct sum. Let Pq be the solenoidal 
projection: Lq(n)n --+ Jq(O) along Gq(O) and we consider the resolvent 
problem corresponding to (1.2): 

(1.3) >.v - Div S( v, B) = Pq/, div v = 0 in n, S( v, B) vir = 0. 

If we take the divergence of the first equation of (1.3) and take the inner 
product between the boundary condition and v, we have 

(1.4) /161 = 0 in n, Blr = v · [S( v )v] - div vir, 

because v · v = 1 on r. We know that for any v E W,i(n)n there exists 
a unique BE WJ"(O) such that B solves (1.4) and enjoys the estimate: 

IIBIIwl(n) ~ Cllvllw2(n) · 
q q 

Let us define the map K: W,i(O) --+ WJ"(O) by B = K(v) for v E W,i(O). 
We know that (1.2) is equivalent to the reduced Stokes equation: 

>.v- Div S(v, K(v)) = Pqf inn S(v, K(v))vlr = 0. 

Set 

Aqv = -Div S(v, K(v)) for v E V(Aq), 

V(Aq) = {v E Jq(O) n w;(nt I S(v,K(v))vlr = 0}. 

By Grubb and Solonnikov [3] and Shibata and Shimizu [5], we know the 
following theorem. 

Theorem 1.1. Let 1 < q < oo. Aq generates the analytic semigroup 
{e-A•t(t)h~o on Jq(O). 

In order to state a global in time unique existence result, we intro­
duce the rigid space n defined by 

n ={Ax+ b I A: n x n anti-symmetric matrix, bE JR.n}. 

We know that u satisfies the condition: S(u) = 0 if and only if u En. 
If u E R, then divu = 0. Therefore, if u E R, then u satisfies (1.1) 
with f = g = g = h = 0 and vo = u. To obtain solutions of (1.1) 
in w,;,;(n X (0, oo))n X Lp((O, oo), Wi(O)) decaying as t --+ oo, initial 
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data and right members should be orthogonal to n. To represent the 
orthogonality, we introduce a basis {p€}~1 of n normalized as 

(pe,Pm)n = 8em, £, m = 1, ... , M, 

where Oem is the Kronecker symbol such as Oee = 1 and Oem = 0 with 
€ =1-m. 

We can now state our main result which shows the Lp-Lq maximal 
regularity with exponential stability of solutions of (1.1) global in time. 

Theorem 1.2. Let 1 < p, q < oo. Set 

where [·, ·]o,p denotes the real interpolation functor. Then, there exists a 
positive constant ')'o such that if initial data vo and right members f, g, 
g and h for (1.1) satisfy the conditions: 

vo E Vq,p(O), e'"'~t f E Lp((O, oo), Lq(O))n, e'"'~tg E Lp,o((O, oo), w;(n)), 

e'"'~tg E w;,0 ((0,oo),Lq(O))n, e'"'~th E H:::(o2 (0 x (O,oo))n 

for some ')' E [0, ')'o] and 

( vo, Pe) 0 = 0, (!( ·, t), Pe) 0 + (h( ·, t), Pe)r = 0 

for a. e. t > 0 and € = 1, ... , M, then (1.1) with T = oo admits a unique 
solution 

which satisfies the estimates: 

ll e'"'~tvll + lle'"'~t()ll 
w~;J<nx(O,oc)) Lp((O,oc),WJ(n)) 

::£ C {llvollv0 ,p(n) + lle'"'~tftp((o,oc),L 0 (n)) + lle'"'~tgiiLp((O,oc),WJ<nl) 

+ lle'"'~t?JIIwJ((o,oc),Lq(rl)) + lle'"'~thiiH~:!:i<nx(o,oc)J 

and the condition: 

(v(·, t),pe)n = 0 fort~ 0 and € = 1, ... , M. 

Remark 1.3. Let B;,~-l/p) (0) denote the Besov space defined by 
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From Steiger [9] and Triebel [10] we know that 

{v E B;,~-l/p)(O) I divv = 0 inn, S(v,K(v))vlr = 0} 

when 2(1- 1/p) > 1 + 1/q, 

{v E B 2(l-l/Pl(O) I divv = 0 in 0} q,p 

when 2(1- 1/p) < 1 + 1/q. 

The following theorem shows the Lp-Lq maximal regularity of solu­
tions of ( 1.1) local in time. 

Theorem 1.4. Let 1 < p, q < oo and T > 0. If initial data v0 and 
right members f, g, g and h for (1.1) satisfy the condition: 

vo E Vq,p(O), f E Lp((O, T), Lq(O))n, g E Lp,o((O, T), w;(O)), 

g E w;,0 ((0,T),Lq(O))n, hE H::;(o2 (0 x (O,T))n 

then (1.1) admits a unique solution 

(v, B) E Wi,~(O x (0, T))n x Lp((O, T), w;(O)) 

which enjoys the estimate: 

(1.5) llvllw~;~<ox(o,T)) + IIBIILp((O.T),WJ(o)) 

~ C(1 + T){llvollvq,p(o) + llftp((o,r),Lq(O)) + IIYtp((o,r),wJ<on 

+ II[JIIwJ((o,T),Lq(O)) + llhiiH~:!:g(ox(o,r)' 

where the constant Cis independent ofT, v, (), J, g, g and h. 

Remark 1.5. Solonnikov [8, Theorem 2] stated a maximal regular­
ity theorem on a finite time interval (0, T) corresponding to Theorem 

1.4 under the condition that p = q > 3, replacing H~/2 ((0, T), Lq(O)) 
and the constant C(1 + T) in (1.5) by w£12 ((0, T), Lq(O)) and some 
constant Cr which is a nondecreasing function ofT, respectively. 

§2. An idea of our proof of Theorems 1.2 and 1.4 

Roughly speaking, we can show our maximal regularity result as 
follows. First of all, we show the Lp-Lq maximal regularity of solutions 
to the model problems in the whole space and in the half-space by ap­
plying the Weis operator valued Fourier multiplier theorem (Theorem 
2.2, below) to the exact solution formulas, and therefore it is the key to 
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show the R boundedness of the family of solution operators to the corre­
sponding resolvent problem on B(Lq)· Several techniques to show the R 
boundedness can be found in [2]. After such analysis for the model prob­
lems, using the usual localization procedure and estimating the perturba­
tion terms by using the estimate: lle-A•tvollwl(o) ~ Cr112e-ctllvoiiL.(o) 

q 

(C, c > 0 and vo being orthogonal toR), we obtain the Lp-Lq maximal 
regularity result for (1.1) with g = g = h = 0. By using the solution 
to the Laplace equation with the zero Dirichlet boundary condition, we 
reduce the non-zero divergence condition to the divergence free case. Fi­
nally, non-homogeneous Neumann condition case is treated by using the 
solution to the dual problem with the homogeneous Neumann condition. 

In this section, we show an idea of our proof of the Lp-Lq maximal 
regularity of solutions to the whole space and the half-space model prob­
lems, which is one of the essential parts of our argument. In this paper, 
let us consider the heat equation instead of the Stokes equation for the 
sake of simplicity. The detail of the proof of Theorems 1.2 and 1.4 will 
be given in the forthcoming paper [6]. 

Let X and Y be Banach spaces with norms II ·II x and II · II Y, respec­
tively. B(X, Y) denotes the set of all bounded linear operators from X 
into Y and B(X) = B(X, X). 

Definition 2.1. A family of operators T C B(X, Y) is called R­
bounded, if there exists a constant C > 0 and p E [1, oo) such that for 
each m E N, N being the set of all natural numbers, Ti E T, Xj E X 
and for all sequences {rj(u)} of independent, symmetric, { -1, 1}-valued 
random variables on [0, 1] there holds the inequality: 

The smallest such Cis called R-bound ofT, which is denoted by R(T). 

We shall give an operator-valued Fourier multiplier theorem due to 
Weis [11]. We denote by V(JR.,X) the space of X-valued c=-functions 
with compact support and by V' (JR., X) = B(V(JR.), X) the space of 
X-valued distributions. The X-valued Schwartz spaces S(JR.,X) and 
S'(JR., X) are defined similarly. Given M E Ll,loc(lR., B(X, Y)), we may 
define an operator TM : .r-1V(JR., X)-> S'(JR., Y) by means of 

(2.2) 

for <P E S(JR., X) such that F<P E V(JR., X). Since .r-1V(JR., X) is dense 
in Lp(JR., X), we see that TM is a well-defined linear operator from a 
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dense subset of Lp(IR, X) to S'(IR, Y). Concerning the boundedness of 
the operator TM, the following theorem was proved by Weis [11]. 

Theorem 2.2. Suppose that X andY are UMD Banach spaces and 
let 1 < p < oo. Let M be a function in C1 (IR \ {0}, B(X, Y)) such that 
the following conditions are satisfied: 

R({M(r) IT E 1R \ {0}}) = ao < oo, 

R({rM'(r) IT E lR \ {0}}) = a1 < oo. 

Then, the operator TM defined by (2.2) is extended to a bounded linear 
operator from Lp(IR, X) into Lp(IR, Y) with norm 

IITMIIs(Lp(IR,X),Lp(l!l. YJJ ~ C(ao + ai), 

where C > 0 depends only on p, X and Y. 

First we consider a model problem in the whole space. Let us con­
sider the heat equation: 

(2.3) Ut - D..u = f in !Rn X R 

Let 1 < p, q < oo. Suppose that 

We would like to show that the solution u of (2.3) satisfies the Lp-Lq 
maximal regularity estimate: 
(2.4) 

lle--rtutiiLp(IR,Lq(l!l.n)) + lle--ytV'2uiiLp(I!I.,Lq(IRn)) ~ Clle--ytftp(IR,Lq(IRn)) 

for any')'~ 0. Wemayassumethatf E C0 (1Rnx!R+), becauseC0 (1Rnx 
IR+) is dense in Lp,o(IR+, Lq(!Rn)). We have the solution formula: 

-1 .C[f](~, .A) 
u(x, t) = £ [ .A+ l~l 2 ] (x, t), 

where£ and .c-1 denote the Fourier-Laplace transform and its inverse 
defined by 

[.Cf](~, .A) = /r f e->.t-ix·' f(x, t) dxdt = F[e--rt f](~, r), 
}Rn+l 

[£- 1g](x, t) = 1 /r r e>.t+ix·' g(~, A) d~dT 
(2n)n+l }JRn+l 

= e-rt .r-1 [g(~, 'Y + ir)](x, t), .A = 'Y + ir, 
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respectively. In particular, Ut is given by the formula: 

Set 

-1 A.C[f](~, A) 
ut(x, t) = .C [ A+ l~l 2 ] (x, t). 

k7 (T,x) = .r-1 [A(A + l~l 2 )- 1 ](x), A= 1 +iT, 

[K7 (T)g](x) = { k7 (T,x-y)g(y)dy. 
}JRn 

Then we have 

(2.5) 

If we can apply Theorem 2.2 to (2.5), we obtain 

(2.6) lle--ytuttp(li..Lq(~<n.ll ~ Clle--yt ftp(n«,Lq(ll.n)), V 1 ~ 0. 

357 

What we have to do to obtain (2.6) is that the R-boundedness of the fam­
ilies {K7(T) IT E JR.\ {0}} and {n97 K7(7) IT E JR.\ {0}} on B(Lq(lR.n)) 
for 1 < q < oo. To do this, we shall use the following proposition. 

Proposition 2.3. Let 1 < q < oo and {ks(x) I s E JR.\ {0}} be a 
family of L1,loc(lR.n) functions. Set 

K 8 g(x) = { k8 (x- y)g(y) dy, s E JR.\ {0}. 
}JRn 

Suppose that there exists a constant C > 0 independent of s E JR.\ {0} 
such that 

IIKsgiiL 2 (Rn) ~ CllgiiL 2 (l«n)' 'f g E £2(JR.n), 

(2.7) L IB~ks(x)l ~ Clxl-(n+1), V X E lR.n \ {0} 
1.81=1 

for all s E JR.\ {0}. Then, { Ks I s E JR.\ {0}} is R-bounded on B(Lq(lR.n)) 
and its R-bound is less than or equal to Cn,qC with some constant Cn,q· 

Proposition 2.3 follows from the Benedek, Calderon and Panzone 
theorem [1]. 

Using the inequality: 
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with some positive constant c and Plancherel's formula, we have 

To check the condition (2.7), we use the following lemma ([4, Theorem 
2.3]). 

Lemma 2.4. Let X be a Banach space and ll·llx its norm. Let a 
be a number> -n and set a= N +a-n, where N ~ 0 is an integer 
and o <a~ 1. Let !(E) be a function in C00 (1Rn \ {0}, X) such that 

&ff(E) E Lt(lRn,X), VIal~ N, 

ll&ff(E)IIx ~ CaiEia-l<>l, VE # 0, Va ENg. 

Then we have 

Since 

l&f .A( .A+ IEI 2)-1 (iE)131 ~ CIEI 1- 1" 1 

for any f3 E N0 with 1!31 = 1 and a E N0, by Lemma 2.4 we have 

L l&~k,(r,x)l ~ Clxl-(n+ll, Vx E JRn \ {0}, 
1/31=1 

where Cis a constant independent of r, '"Y and x. Therefore, by Proposi­
tion 2.3 we see that {K,(r) IrE lR\ {0}} is R-bounded, whose R-bound 
is independent of'"'(~ 0. We also see that {r&7 K 7 (r) IrE lR \ {0}} is 
R-bounded, whose R-bound is independent of '"Y ~ 0. Therefore we can 
apply Theorem 2.2 to (2.5), and we have (2.6). 

Employing the same arguments as above, we can also show that 

(2.8) lle-1'tV'2uiiLp(IR,Lq(lRn)) ~ Clle-l't ftp(ll<,Lq(ll<n))' V'"'( ~ 0. 

Combining (2.6) with (2.8), we obtain (2.4). 
Next we consider a model problem in the half-space. Let us consider 

the Neumann problem: 

(2.9) Ut- ~U = 0 in JRf. X JR, OnUixn=O = hlxn=O, 

where lRf. = {x = (xt, ... , Xn) I Xn > 0}. Let 1 < p, q < oo. Suppose 
that 
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We would like to show that the solution u of (2.9) satisfies the Lp-Lq 
maximal regularity estimate: 
(2.10) 

lle--rtutiiL (R L (Rn)) + lle--rtyr2ut (R L (Rn)) ~ Clle--rthll 1 1 ; 2 
P ' q P ' q Hq:p (R+ xR) 

for any "( ~ 0. We may assume that h E C0 (Rf- x JR+), because 

C0 (Rf- x JR+) is dense in H::::02 (1Rf- x JR+)· 
Set x' = (x1, ... , Xn-d· We shall use the partial Laplace-Fourier 

transform with respect to ( x', t) and its inverse defined by 

Lx',t[f](~',xn,A) = !Ln e->.t-ix'·~' f(x',xn,t)dx'dt 

= Fx',t[e--yt J]((, Xn, T), A="(+ iT, 

r-1 [ ]( 1 ) 1 Jr { At+ix'·( (C' ') dC'd "-'e,>. g X ,Xn,t = (21r)n }JRn e g <, ,Xn,A <, T 

= e7t F~,~[g((, Xn, "(+iT)] (x', t), 

where Fx',t and F~,~ denote the Fourier transform and its inverse with 
respect to (x', t) and ((, T), respectively. 

Setting B = J.X + lel 2 with ReB > 0, we have the solution for­
mula: 

u(x, t) = -£~\[B-le-Bxn Lx',t[h]((, 0, .X)](x', t) 

= 100 8yn£~\[B-le-B(xn+Yn) Lx',t[h]((, Yn, .X)](x', t) dyn 

= {oo £~\[B-le-B(xn+Yn)( -B£x',t[h]((, Yn, .X) 
lo ' 

+ Lx' ,t[8nh] ((, Yn, .X))](x', t) dYn· 

In particular, Ut is given by the formula: 

Ut(x, t) = 100 e7tF~,~[.XB- 1 e-B(xn+yn)( -BLx',t[h]((, Yn, .X) 

If we set 

+ Lx',t[8nh]((, Yn, .X))] (x', t) dYn· 

k7 (T,x) = F~ 1 [.XB- 1 e-Bxn](x'), .X="(+ iT, 

[K7(T)j](x) = { k7 (T,X1 - y',xn +yn)f(y)dy, 
lrrq 
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then we have 

(2.11) 

h"~(x, t) = F~,~[-B.Cx',t[hJ(e, Xn, A) + .Cx',t[BnhJ(e, Xn, A)](x', t). 

To show the R-boundedness of {K7 (r) I T E lR \ {0} }, we use the 
following proposition. 

Proposition 2.5. Let 1 < q < oo. Let G be a domain in R.n and 
T = {T11 I J..L EM} C B(Lq(G)) be a family of the kernel operators: 

T11 f(x) = Ia k11 (x, y)f(y) dy 

for x E G and f E Lq(G). Suppose that there exists a ko(x, y) such that 

for almost all x, y E G and any J..L EM. Set 

Tof(x) = Ia ko(x, y)f(y) dy. 

If T0 E B(Lq(G)), then T is R-bounded on B(Lq(G)), whose R-bound 
is less than or equal to Cn,q,ciiToii 8 <L.<GJJ · 

Proposition 2.5 can be proved following ideas due to Denk, Hieber 
and Pruss [2]. 

Since we can show that 

with some positive constant d > 0, by Lemma 2.4 and the change of 
variable: xne = r/, we have 

and therefore if we set 

r Cg(y) 
Kog(x) = }JRn (lx'- Y'l2 + (xn + Yn)2)n/2 dy, 

+ 

then we have 
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Therefore, applying Proposition 2.5, we see that {K,(r) IT E JR.\ {0}} 
is R-bounded on B(Lq(lR.f-)), whose R-bound is independent of 'Y ~ 0. 
In the same manner, we also see that { r87 K 1 ( r) I T E JR. \ {0}} is 
R-bounded on B(Lq(lR.f-)), whose R-bound is independent of 'Y ~ 0. 
Applying Theorem 2.2 to (2.11), we have 

(2.12) 

Since 

h'(x, t) = F~.~[-J>. + lei 2Fx',t[e-'th]((, Xn, r) 

+ Fx',t[e-'t8nh]((, Xn, r)](x', t), 

we obtain 

Combining (2.12) with (2.13) we obtain 

(2.14) 

Employing the same argument as above, we can also show that 

(2.15) 

Combining (2.14) with (2.15) we obtain (2.10). 
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