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Abstract. 

In this survey note, we consider 2 x 2 systems of conservation laws 
with an umbilic point. At the umbilic point, the characteristic speeds 
coincide and the Jacobian matrix of the flux functions is diagonalizable. 
It is shown that if there are no undercompressive shocks with viscous 
shock profile then any compressive shock has a viscous shock profile and 
any overcompressive shock has a infinitely many viscous shock profiles. 

§1. Introduction. 

We consider one-dimensional flow of three immiscible fluid phases 
in a porous medium [25]. In the oil reservoir flow, the fluid is composed 
of water, oil and gas. The conservation of mass of water and oil and 
Darcy's Law are expressed by the systems of two equations 

(I) 

where U t(u, v) and B denotes the effects of capillary pressure [5, 
22, 30]. The systems (I) are a generalization of the classical Buckley­
Leverett equation for two-phase flow [7]. The difficulty with this ap­
proach is that the systems (I) have an elliptic region OE where the 
eigenvalues of the Jacobian matrix F'(U) are not real: 

(2) OE = { U: 9E(U) = det [F'(U)- ~trF'(U) ·I] > 0}. 

In the elliptic region nE, the initial value problem of the systems with 
B(U) = 0 is ill-posed. Majda and Pego find a sufficient condition for 
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the linearized instability of the system (1) in terms of B(U) and F 1(U) 
[21]. Let us define 

{ [ 
1 tr [B(U)- 1 F 1(U)] l } 

(3) n = U: gBy(U) = det F (U)- tr [B(U)- 1] ·I ?: 0 

to be the Majda-Pego instability region [5]. The Majda-Pego instability 
region n of the systems (1) contains strictly the elliptic region ne. In 
fact 

(4) 
tr [B(U)- 1F'(U)] 1 1 

gBT(U)- ge(U) = ( tr [B(U)- 1] - 2trF (U) 
)

2 

In the Majda-Pego instability region n, the nonuniqueness [4, 6, 14] and 
the nonexistence [8, 9, 10] of solutions for Riemann problems can occur 
even in strictly hyperbolic region. In addition, we remark that 

{U: ge(U) = 0} 

{U : :3CT, det [F1(U) - CT I] = 0 and tr [F1 (U) - CT I]} 

is the coincidence locus where the characteristic speeds coincide and that 

{U: gBy(U) = 0} 

{U: :3CT,det [F1(U)- CTI] = 0 and tr{B(U)- 1 [F1(U)- CTil} = o} 

is the Bogdanov- Takens locus where the Bogdanov-Takens bifurcation 
occurs. Thus if the closure of the elliptic region ne shrink to be a point 
U*, then the systems (1) are reduced to the systems having an isolated 
umbilic point. Thus the systems are strictly hyperbolic except at one 
point U* and the point U* is an umbilic point, namely the eigenvalues 
.\ 1 (U), .\2 (U) of the Jacobian matrix F 1(U) are real distinct at any point 
except the point U* and F 1 ( U*) has the multiple real eigenvalues. We 
have the Taylor expansion of F(U) near U = U*: 

F(U) = F(U*) + F 1(U*)(U- U*) + Q(U- U*) + 0(1)IU- U*l 3 

where Q : R 2 ___, R 2 is a homogeneous quadratic mapping. The following 
hypothesis describes the class of the systems to be studied in this note: 

Hypothesis 1. The closure of the elliptic region ne for the systems 
( 1) shrink to an isolated umbilic point U* satisfying 

(1) F 1(U*) is diagonalizable thus F 1(U*) =.\*I where.\* := .A 1 (U*) 
= .\2(U*), 
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(2) F(U) = F(U*) + F'(U*)(U- U*) + Q(U- U*), 
(3) B(U) =I. 

89 

AftertheGalileanchangeofvariables: x-+ x->..*t, F(U)-+ F(U)­
F(U*) and U -+ U + U*, we observe that the system of equations (1) is 
reduced to 

(5) Ut + Q(U)x = EUxx, (x, t) E R X R+. 

Now by a change of unknown functions V = s- 1u with a regular con­
stant matrix S, we have a new system of equations vt + P(V)x = EVxx 
where P(V) = s- 1Q(SV). Thus we come to 

Definition 1. Two quadratic mappings Q1 (U) and Q2 (U) are said 
to be equivalent, if there is a constant matrix S E GL2 (R) such that 

(6) 

A general quadratic mapping Q(U) has six coefficients and GL2 (R) 
is a four dimensional group. Thus by the above equivalence transforma­
tions, we can eliminate four parameters. These procedures are success­
fully carried out by Schaeffer and Shearer [26] and they obtained the 
following normal forms. 

Let Q(U) be a hyperbolic quadratic mapping with an isolated umbilic 
point U = 0, then there exist two real parameters a and b with a =F 1 + b2 

such that Q(U) is equivalent to ~'VC where 'V = t(8u,8v) and 

(7) 

Therefore, in this note, we confine ourselves to the systems 

(8) ( u ) + ~ ( au2 + 2buv + v 2 
) = E ( u ) (a =F 1 + b2). 

v t 2 bu2 + 2uv v 
X XX 

We remark that if a= l+b2 then the coincidence locus consists of the line 
bu + v = 0. The classification of the systems (8) in [26] is the following: 
Case I is a< ~b2 ; Case II is ~b2 <a< l+b2 ; for a> l+b2, the boundary 
between Case III and Case IV is 4{ 4b2-3(a-2) P-{16b3 +9(1-2a)b }2 = 
0. The drastic change across a= 1 + b2 was recognized by Darboux [11] 
even in the 19th century. Appendix of [26] states, in collaboration with 
Marchesin and Paes-Leme, that the quadratic approximation of the flux 
functions for oil reservoir flow is either Case I or Case II, to which we 



90 F. Asakura and M. Yamazaki 

shall confine ourselves in the following argument. The corresponding 
systems of conservation laws are 

(9) ( u) +~ ( au2 +2buv+v2
) =O (af= 1 +b2 ). 

v t 2 bu2 + 2uv x 

The Riemann problem for (9) is the Cauchy problem with initial data 
of the form 

(10) U(x O) = { UL for x < 0, 
' UR for x > 0 

where UL, UR are constant states. The structure of the rarefaction waves 
is investigated in [11]. A jump discontinuity defined by 

(11) U ( x t) = { U L for x < st, 
' UR for x > st 

is a shock wave, piecewise constant weak solution to the Riemann prob­
lem, provided these quantities satisfy the Rankine-Hugoniot condition: 

(12) 

We say that the above discontinuity is a j-compressive shock wave (j = 
1, 2) if it satisfies the Lax entropy conditions [19, 20]: 

Here we adopt the convention .Ao = -oo and ,\3 = oo. We shall also face 
with the overcompressive shock wave: a jump discontinuity satisfying 

and also the undercompressive shock wave satisfying 

A state U R can be joined to a state U L by a shock wave ( 11) if and only 
if UR E H(UL) where 

called Hugoniot locus through U L· In [19], it is shown that the Hugoniot 
locus through UL in a neighborhood of UL consists of a union of two 
curves through U L if U L is not an umbilic point. Introducing a parameter 
~by 

(17) 

\ 
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we have a rational parametrization of the Hugoniot locus through U L 

[2, 27]: 

(18) u 

(19) v 

(20) s 

(e- a~+ b)uo + 2(1- b~- e)vo 
~3 + 2b~2 +(a- 2)~- b 

2{b~- (a- 1)e- be}uo + ( -b +a~- ~3 )vo 
e+2be+(a-2)~-b 

(~2 + b~ + b2 - a)(uo~- vo) 
~3+2b~2 +(a-2)~-b · 

The denominator of the above parametrization <I>(~) = e + 2be +(a-
2)~- b has 3 distinct real zeros p,1 , p,2 , p,3 in Case I & II [2]. The expres­
sion (18), (19) shows that the Hugoniot locus through UL consists of 2 
curves through UL and a detached curve. In [2], we investigate shock 
waves for the systems of conservation laws (9) in Case I & II and it is 
shown that: 

Suppose that U L is not located on the medians { U = t ( u, v) : v = 
p,1u (j = 1, 2, 3)}. The Hugoniot locus consists of three components: 
1-Hugoniot curve, 2-Hugoniot curve and detached curve. In Case I, the 
1-Hugoniot curve ultimately consists of the 1-compressive as s -+ -oo 
in each side; the compressive part of the 2-Hugoniot curve is bounded; 
the detached curve is ultimately 1-compressive as s -+ -oo in one side. 
Overcompressive shock waves appear in Case II. Here, the 1-Hugoniot 
curve has the 1-compressive part ultimately ass-+ -oo in one side and 
the overcompressive part of this curve is bounded; the compressive part 
of the 2-Hugoniot curve is bounded and the overcompressive part of this 
curve ultimately appears as s -+ -oo in one side. The Hugoniot locus 
for UL = 0 (the umbilic point) is also studied: each half of medians 
constitute a wave curve. Overcompressive waves do not appear in Case 
I. 

Although we have an extensive bibliography: ([13, 15, 16, 17, 18, 
26, 27, 29, 31] etc.), the analysis of shock waves has been carried out 
mainly through numerical computations so far; thus rigorous mathemat­
ical study will be appreciated. Our aim of this note is to survey an idea 
of proof of the existence of a viscous shock profile for any compressive 
shock in Case I & II and infinitely many viscous shock profiles for any 
overcompressive shock in Case II. A more detailed proof will be given 
in [3]. We say that a shock wave (11) to the systems (9) has a viscous 
shock profile [12] if there exists a travelling wave solution U = fJ ( x-;,st), 
called viscous profile joining U L and U R, to the systems (8) with the 
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boundary conditions at the infinity 

(21) U( -oo) = UL and U( +oo) = UR. 

One can easily see that the shock wave (11) has a viscous profile(s) if 
and only if U L and U R are critical points joined by an orbit ( s) of the 
vector field X.(U; UL) where 

(22) X.(U; UL) = -s(U- UL) + F(U)- F(U£). 

The characters of shock waves can be stated in terms of the critical 
points of the vector fields X 8 (U;UL): 

Proposition 1. The shock wave ( 11) is 

• 1-compressive shock if and only if U L is repeller and U R is 
saddle. 

• 2-compressive shock if and only if U L is saddle and U R is at­
tractor. 

• overcompressive shock if and only if U L is repeller and U R is 
attractor. 

• crossing shock if and only if U L and U R are saddles. 

Proof The eigenvalues of dX.(U; UL) are -s + >-.1(U)(j = 1, 2). 
Q.E.D. 

We call, for example, an orbit from a repeller point to a saddle point 
repeller-saddle connection. 

§2. Existence of admissible shock waves. 

We begin with the classification of the critical points of the vector 
fields X 8 (U; UL). 

Lemma 1. The vector field X.(U, UL) has two, three or four 
critical points in the bounded region of U -plane. 

(i) If The vector field x.(U, UL) has four critical points in the 
bounded region of U -plane, then the critical points are one node and 
three saddles in Case I; two nodes and two saddles in Case II. 

(ii) If The vector field X.(U, UL) has three critical points in the 
bounded region of U -plane, then the critical points are two saddles. one 
saddle-node in Case I; one node, one saddle and one saddle-node in 
Case II. 

(iii) If The vector field Xs(U, UL) has two critical points in the 
bounded region of U -plane, then the critical points are two saddles in 
Case I; one node and one saddle or two saddle-nodes in Case II. 
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Proof. The Poincare transformation [1, 13] enables us to make a 
one-to-one correspondence from Uplane including the infinity to the unit 
sphere S 2 = {(x1 ,x2 ,x3 ) E R 3 ; xi +x~ +x~ = 1} by identifying two 
antipodal points. We study the critical points at the infinity which 
corresponds to the equator {x3 = O}(c;;; S2 ). A use of Poincare-Hopf 
theorem [23] gives the assertion. For a more detailed proof, we refer the 
reader to [3]. Q.E.D. 

Our new result is the following: 

Theorem 1. Suppose that (a, b) belongs to Case I& II. Suppose that 
there exist four critical points of Xs (U, U L) and one of the critical point 
and U L constitute a j -compressive (j = 1, 2) shock wave with shock speed 
s. If there are no saddle-saddle connections, then 

(1) 

(2) 

in Case I, there exists a viscous shock profile connecting U L 
and each of three saddle points. 
in Case II, two nodes consists of a attractor point and a repeller 
point. For each of two saddle points and each of two nodes, 
there exists a viscous profile connecting the saddle point and the 
node. There exist infinitely many viscous profiles connecting 
the repeller and the attractor. 

Idea of proof. We begin by remarking that the vector fields Xs(U; U L) 
have a potential. Namely, by setting 

(23) ¢s(U; UL) = {F'(UL)- sl}[U- UL] + C(U- UL) 

where {F'(UL)-sl}[V] =tv {F'(UL)-sl}V, the vector fields Xs(U; UL) 
can be represented by the gradient of ~¢8 (U; UL): 

(24) 
1 

Xs(U; UL) = 2V¢s(U; UL). 

Then the viscous shock profile U = U ( ~) joining U L and U R is a solution 
to 

(25) 

with the boundary condition at the infinity U( -oo) = UL and U( +oo) = 

U R· This is the equation of finding the steepest ascent path on the graph 
of cp8 (U; U£). We notice that U is a local minimum point, a local maxi­
mum point or a saddle point of ¢s(U; UL), respectively, according as it 
is a repeller point, an attractor point or a saddle point of the vector field 
Xs(U, UL), respectively. We suppose that (a, b) belongs to Case I and 
that U L and one of the other critical point constitute a !-compressive 
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shock wave. It can be shown that the level set {U: cp8 (U; UL) = 0} con­
sists of the point U = U L and three unbounded regular curves. For c be 
a positive small constant, the level set {U: cp8 (U; UL) = €} is composed 
of a small closed curve enclosing U L and three unbounded regular curves 
because UL is a local minimum point of cp8 (U; UL). Suppose that a crit­
ical point U 1 exists on the level set { ¢ 8 ( U; U L) = Pl} such that there 
are no critical points in {€:::; cp8 (U; UL) :::; Pl- €}. We can show that 
¢;1 [€,p1 - €] is a disjoint union of integral curves. On the other hand, 
we have the usual configuration of integral curves around a saddle point 
in a small neighborhood of U1 . Hence by choosing a sufficiently small f, 

the level set {¢;1 (p1 - €)} passes through such a neighborhood. Then 
the above configuration shows that there exists a unique integral curve 
connecting U L and U1 . If there are two or three critical points on the 
level set {¢8 (U; UL) =PI}, the argument is the same. Next we consider 
level sets { ¢8 (U; U L) = p} for p E (PI - f, Pl + f) with a positive small 
constant €. The configuration of level sets near a saddle point says that, 
as p varies from PI - f to Pl + f, the level set changes: {a closed curve 
and three unbounded regular curves} ---+ {an unbounded curve with a 
node and two unbounded regular curves} ---+ {three unbounded regular 
curves}. Let U2 be the second critical point contained in the level set 
{¢s(U; UL) = P2}· By the same argument, ¢; 1 [p1 + €,p2 - €] is a dis­
joint union of integral curves and there exists a unique integral curve 
from either UL or U1 to U2. By the assumption, there are no integral 
curves connecting two saddle points U1 and U2 . Therefore there exists 
a unique integral curve connecting UL and U2. Asp varies from p2 - € 

to P2 + f, the level set changes: {three unbounded regular curves} ---+ 
{an unbounded curve and two unbounded curves with an intersection} 
---+{three unbounded regular curves}. Let U3 be the third critical point 
contained in the level set {¢8 (U; UL) = p 3 }. Repeating the same argu­
ment between P2 and p3 ; we conclude that the point U3 is connected to 
U L by integral curve. Here we make a use of a generalization of Morse 
theory to non-compact level sets [24, 28]. Thus the theorem is proved. 
For a more detailed proof and a discussion fn Case II, we refer the reader 
to [3]. 
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