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spaces of harmonic functions on domains in IRn 
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Abstract. 

For the unit disc JI]) in tC, the harmonic Hardy spaces H_P, 1 ::; 
p < oo, are defined as the set of harmonic functions h on JI]) satisfying 

The classical Littlewood-Paley inequalities for harmonic functions [3] 
in JI]) are as follows: Let h be harmonic on JI]). Then there exist positive 
constants C1, Cz, independent of h, such that 

(a) for 1 < p::; 2, 

(b) For p :0:: 2, if hE H_P, then 

In the paper we consider generalizations of these inequalities 
to Hardy-Orlicz spaces 'H,p of harmonic functions on domains !1 £; 
Rn, n :0:: 2, with Green function G satisfying the following: There 
exist constants a and {3, 0 < {3 ::; 1 ::; a < oo, such that for fixed 
to E !1, there exist constants C1 and Cz, depending only on t 0 , such 
that C18(x)"::; G(to,x) for all X En, and G(to,x)::; Cz8(x) 13 for all 
x E !1 \ B(to, ~8(to)). 

Received March 30, 2005. 
Revised April 30, 2005. 
2000 Mathematics Subject Classification. 30D55, 31B05. 
Key words and phrases. Green's function, Hardy-Orlicz spaces, harmonic 

function, harmonic majorant, holomorphic function, subharmonic function. 



364 M. Stoll 

§1. Introduction 

For the unit disc[]) inC, the harmonic Hardy spaces 1-(P, 1 :S: p < oo, 
are defined as the set of harmonic functions h on []) satisfying 

The classical Littlewood-Paley inequalities for harmonic functions [3] in 
[]) are as follows: Let h be harmonic on []). Then there exist positive 
constants cl' c2' independent of h, such that 

(a) for 1 < p :S: 2, 

(b) For p 2: 2, if hE 1-(P, then 

(1.2) J k (1-lzi)P- 11\lh(z)IPdxdy :S: C2llhll~-

In 1956 T. M. Flett [2] proved that for analytic functions inequality 
(1.1) is valid for all p, 0 < p :S: 2. Hence if u = Reh, h analytic, then 
since IV'ul = lh'l it immediately follows that inequality (1.1) also holds 
for harmonic functions in []) for all p, 0 < p :S: 2. A short proof of the 
Littlewood-Paley inequalities for harmonic functions in []) valid for all 
p, 0 < p < oo has also been given recently by Pavlovic in [5]. The 
Littlewood-Paley inequalities are also known to be valid for harmonic 
functions in the unit ball in JRn. In fact Stevie [7] h¥ recently proved that 
for n 2: 3, inequality (1.1) is valid for all p E [~=i, 1]. In [10] analogue's 
of the Littlewood-Paley inequalities have been proved by the author for 
domains Din JRn for which the Green function satisfies G(to, x) ;:::; b(x) 
for all x E D \ B(t0 ~b(t0 )), where b(x) denotes the distance from x to 
the boundary of D. In the same paper it was proved that for bounded 
domains with C1·1 boundary the analogue of (1.1) is also valid for all 
p, 0 < p :s: 1. 

In the present paper we extend the Littlewood-Paley inequalities 
to harmonic functions in the Hardy-Orlicz spaces 7-{1/J on domains D <;; 
JRn, n 2: 2, with Green function G satisfying the following conditions: 
There exist constants a and (3, 0 < (3 :S: 1 :S: a < oo, such that for fixed 
t0 E D, there exist constants C1 and C2, depending only on t 0 , such that 

(1.3) 

(1.4) 

C1b(x)"' :S: G(t0 , x) 

G(to, x) :S: C2b(x)P 

for all x E D, and 

for all XED\ B(t0 , ~b(to)) 1 . 
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Let n be an arbitrary domain in JR.n, n 2: 2, and let 'ljJ be a non
negative increasing convex function on [0, oo) satisfying 'lj;(O) = 0 and 

(1.5) 'lj;(2x) ::; c'lj;(x) 

for some positive constant c. We denote by 1i1/J(O) the set of real or 
complex valued harmonic functions h on n for which '1/J(Ihl) has a har
monic majorant on n. Since 'ljJ is convex and increasing, the function 
'1/J(Ihl) is subharmonic on n. The existence of a harmonic majorant con
sequently guarantees the existence of a least harmonic majorant. For 
hE 1{1/J we denote the least harmonic majorant of '1/J(Ihl) by Hj, and for 
fixed to E 0 we set 

(1.6) 

It is known that N1f;(h) is given by 

(1.7) N1/J(h) = lim { '1/J(ih(t)l)dw~o(t), 
n-+oo lann 

where {On} is a regular exhaustion of 0 and w;,o is the harmonic measure 
on ann with respect to the point t 0 • Here we assume that to E On for 
all n. With 'lj;(t) = tP, 1 ::; p < oo, one obtains the usual Hardy 1{P 

space of harmonic functions on n, with 

(1.8) 

which is the usual norm on 7-(.P(O), p 2: 1. 
In the paper we prove the following generalizations of the Littlewood

Paley inequalities. 

Theorem 1. Let 0 c;; JR.n be a domain with Green function G sat
isfying inequalities (1.3) and (1.4). Let 'ljJ 2: 0 be an increasing convex 
C 2 function on [0, oo) with '1/J(O) = 0 satisfying (1.5). Set <p( t) = '1/J( Vt). 
Then there exist positive constants C1 and C2 such that the following 
hold for all hE 1i1/J(O). 

1As in [1] [4], if !1 is a bounded k-Lipschitz domain, then such constants 
a and (3 exist. If the boundary of n is C 2 or C 1 •1 ' then a = (3 = 1, and 
the inequalities can be established by comparing the Green function G to 
the Green function of balls that are internally and externally tangent to the 
boundary of !1. By the results of Widman [11], the inequalities are also valid 
with a= (3 = 1 for domains with C 1 ·" or Liapunov-Dini boundaries. 
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(a) If c.p is concave on [0, oo), then 

N,p(h)::::: c1 ['l/J(Ih(ta)l) + fo o(x) 13 - 2'l/J(o(x)IV'h(x)l)dx]. 

(b) If c.p is convex on [0, oo), then 

'l/!(lh(ta)l) + fo o(x)'"-2'l/J(o(x)IV'h(x)l) dx::::: C2N,p(h). 

An immediate consequence of the previous theorem with 'lj;(t) 
tP, 1 :::; p < oo, is the following: 

Theorem 2. Let 0 £; ffi.n be a domain with Green function G sat
isfying inequalities (1.3) and (1.4), and let 1 :::; p < oo. Then there 
exist positive constants cl and c2 such that the following hold for all 
hE HP(O). 

(a) For 1 :::; p:::; 2, 

llhll~::::: cl [lh(to)IP + fo o(x)f3+p-2l\7h(x)IP dx] . 

(b) For 2:::; p < oo, 

lh(ta)IP + fo o(x)"+v-21\i'h(x)IP dx:::; C2llhll~-

§2. Preliminaries 

Our setting throughout the paper is ffi.n, n 2 2, the points of which 
are denoted by x = (x1, ... , Xn) with euclidean norm lxl = Jxi + · · · + x~. 
For r > 0 and x E ffi.n, set Br(x) = B(x,r) = {y E ffi.n: lx- Yl < r} 
and Sr(x) = S(x, r) = {y E ffi.n : lx - Yl = r }. For convenience we 
denote the ball B(O,p) by Bp, and the unit sphere 8 1 (0) by S. Lebesgue 
measure in ffi.n will be denoted by d>.. or simply dx, and the normalized 
surface measure on S by da. The volume of the unit ball B 1 in ffi.n will 
be denoted by Wn. For an integrable function f on ffi.n we have 

r f(x)dx = nwn roc rn-l r f(r() da(() dr. 
}JRn Jo Js 

Finally, for a real (or complex) valued C 1 function f, the gradient off 
is denoted by \7 f, and iff is C 2 , the Laplacian 6..f off is given by 

n 82f 
6..f = L fi2· 

1=1 xj 
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Let n be an open subset of !Rn' n ~ 2, with n <;; !Rn. For X E n, let 
O(x) denote the distance from X to the boundary of 0, and set 

(2.1) B(x) = B(x, ~o(x)) = {yEn: IY- xi < ~o(x)}. 

Then for ally E B(x) we have 

(2.2) ~o(x) ~ o(y) ~ ~o(x). 

For the proof of Theorem 1 we require several preliminary lemmas. 

Lemma 1. For f E £ 1 (0) and ry E IR, 

r o(xfilf(x)i dx ~ r o(wp-n [ r if(x)i dx] dw. Jo Jo J B(w) 

Note. The notation A ~ B means that there exist constants c1 and 
c2 such that c1A ~ B ~ c2A. 

Proof. The proof is a straightforward application of Tonelli's the
orem, and consequently is omitted. Details may be found in [10]. 

Lemma 2. For u E C 2 (Bp), p > 0, 

1 u(p() da(() = u(O) + { ~u(x)Gp(x) dx, 
S jBp 

where 
(2.3) 

Gp(x) = { n(n1 ~ 2)wp [lxl!_, - pn
1

' l ' 
21f log G"f' 

0 < lxl ~ p, n ~ 3, 

0 < lxl ~ p, n = 2, 

is the Green function of Bp with singularity at 0. 

D 

Proof. The proof is an immediate consequence of Green's formula 
and hence is omitted. D 

Lemma 3. Let t.p be an increasing absolutely continuous function 
on [0, oo) with t.p(O) = 0. 

(a) If t.p is convex, then t.p(x) + t.p(y) ~ t.p(x + y) for all x, y E [0, oo ). 
(b) lft.p is concave, then t.p(x)+t.p(y) ~ t.p(x+y) for all x, y E [0, oo). 
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Proof (a) Suppose t.p is convex. Since t.p is absolutely continuous 
and increasing, t.p(x) = J; t.p1 where t.p1 2: 0. Hence 

r+y 1x+y 
t.p(x + y) = Jo t.p' = t.p(x) + x t.p'. 

But 

1x+y t.p1(t)dt =lay t.p1(x + t)dt. 

Since t.p is convex, t.p1 is increasing. Thus 

lay t.p'(x + t)dt 2: lay t.p'(t)dt = t.p(y), 

from which the result follows. The proof of (b) is similar. 0 

Lemma 4. Suppose 'P is an increasing C 2 function on (0, oo) with 
t.p(O) = 0 and 

(2.4) 2tt.p"(t) + t.p'(t) 2: 0, t > 0. 

Let h be a harmonic function on Bp, p > 0. 
(a) If t.p is concave, then 

{ p2~'P(ihi2)dx::::; C { 'P(P2i'Vhi2)dx. 
JB,;4 JB, 

(b) If t.p is convex and satisfies inequality (1.5), then 

{ p2~'P(ihi 2)dx 2: C { t.p(p2i'Vhi 2)dx. 
JB, JB,;2 

Remark. If u is a positive real-valued C 2 function, then 

~t.p(u2 ) = 2IY'ul2 [2t.p"(u2)u2 + t.p'(u2)] + 2t.p'(u2 )u~u. 
Thus the hypothesis 2tt.p"(t) + t.p'(t) 2: 0 guarantees that t.p(u2) is sub
harmonic whenever u is subharmonic. For 1/;p( t) = tP, the function 
'Pp ( t) = 1/;p ( v't) = tPI2 satisfies inequality (2.4) if and only if p 2: 1. 

Proof We only prove the Lemma for n 2: 3, the special case n = 2 
is similar. (a) Suppose t.p is concave. Set E = p/4, 15 = p/2, and let G8 
be the Green function of B8 with singularity at 0. For lxl ::::; E, 

G8 X- -----1 [ 1 1 ] 
( ) - n(n- 2)wn lxln-2 Jn-2 

> __ _ __ _ C 2-n 1 [4n-2 2n-2] 
- n(n- 2)wn pn-2 pn-2 - nP . 
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Hence 

which by Lemma 2 

= Cpn- 2 [is zp(lh(b(W)da(()- zp(ih(OW)] . 

Since zp is concave, fs zp(lhl 2)da::::; zp Us lhl 2da). Thus 

h::::; Cpn-2 [zp (is ih(<5(Wda(())- zp(ih(O)i 2)]. 

Since zp is concave and increasing with zp(O) = 0, by Lemma 3 

zp(b)- zp(a)::::; zp(b- a), 0 <a::::; b. 

Therefore 

which by Green's identity (Lemma 2) 

Hence 

h ::::; Cpn-2zp (2 sup IV'h(xW r Gli(x)dx). 
xEBo JB, 

But 

Therefore since <5 = ~p, 

which since zp is increasing 

::::; Cpn-2 sup zp(p2IV'h(x)i2). 
xEBo 
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But since x --> cp(p2I'Vh(x)i2) is subharmonic, 

for all x E B0 . Therefore, combining the above we have 

(b) Suppose cp is convex and satisfies inequality (1.5). By Lemma 2 

which since cp is convex 

But by Lemma 3, 

Thus by Lemma 2, 

For lxl ::::; f and n ~ 3, G0(x) ~ Cnp2-n, where Cn = 22n-S /n(n- 2)wn. 
Therefore 

which since I'Vh(x)i2 is subharmonic and f = p/4 

By inequality (1.5) 

cp (2n:3P21'Vh(O)I2) ~ cn:3 cp(p2I'Vh(O)I2), 
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where cis the constant in inequality (1.5). Combining the above gives 

Since G.,(x) :::; Cnlxl 2-n we have 

where Cn is a constant depending only on n. 
For wE B.,, set hw(x) = h(w + x). Thus 

which by the change of variable y = w + x 

Therefore, 

which by Fubini's theorem 

But 

Therefore, 

which completes the proof. D 

Lemma 5. Let '1/J and cp be as in Theorem 1, and let h be harmonic 
on 0. Assume that '1/J(Ihl) E C2 (0). Then for 'Y E JR, the following hold: 
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(a) If cp is concave, then 

fo 5(x)" ~1/J(Jh(x)l)dx :S:: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx. 

(b) If cp is convex and satisfies inequality (1.5), then 

fo 5(x)" ~1/J(Jh(x)J)dx 2: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx. 

Proof. (a) By Lemma 1 

fo J(x)" ~1/J(Ih(x)l)dx 

:s:: c f J(w)'-n [ f ~1/J(Ih(y)l)dyl dw. 
Jn J B(w,k8(w)) 

Set p = ~J(w) and u(x) = h(w + x). Then 

f 
1 

~1/J(Jh(y)J)dy = f ~1/J(Iu(x)l)dx, 
} B(w,88(w)) } Bp/4 

which by Lemma 4 

:s:: cp- 2 r ?jJ(pJV'u(x)l)dx 
jBp 

= CJ(w)-2 f 1/J(~J(w)JV'h(y)l)dy. 
}Bp(w) 

But ~J(w) :S:: J(y) for all y E Bp(w). Hence since ?jJ is increasing, 
1/J(~J(w)JV'h(y)J) :S:: ?jJ(J(y)JV'h(y)l), and thus 

r ~1/J(Ih(y)J)dy :s:: CJ(w)-2 r ?jJ(J(y)JV'h(y)J)dy. 
j B(w,k8(w)) J B(w) 

Finally, by Lemma 1, 

r J(wp-n-2 [ r ?jJ(J(y)JV'h(y)J)dyl dw 
Jn JB(w) 

:S:: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx, 

which proves (a). The proof of part (b) proceeds in the same manner, 
except that this case also requires inequality (1.5). 0 
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§3. Proof of Theorem 1 

Before proving Theorem 1 we require two preliminary results about 
subharmonic functions. Let s+(O) denote the set of non-negative sub
harmonic functions on n that have a harmonic majorant on n. As in 
the Introduction, for f E s+(n) we let Hf denote the least harmonic 
majorant off on n. For convenience we will assume that f E C 2 (0). 
As in [8],[9] we have the following. 

Lemma 6. Let n be a domain in JRn, n ~ 2, with Green function 
G, and let f E C2(0). Then f E s+(f!) if and only if there exists toE 0 
such that 

(3.1) in G(to, x)!:l.f(x) dx < oo. 

If this is the case, then by the Riesz decomposition theorem 

(3.2) HJ(x) = f(x) +in G(x, y)!:l.f(y) dy 

If the subharmonic function f is not C 2 ' then the quantity !:l.f(x) dx 
may be replaced by dJ.Lf, where J.LJ is the Riesz measure of the subhar
monic function f. 

Lemma 7. Let n be a domain in JRn, n ~ 2, with Green function G 
satisfying (1.3) and (1.4). Let t 0 En be fixed, and let a and {3 be as in 
inequalities (1.3) and (1.4) respectively. Then there exists constants C1 
and C2, depending only on t 0 and 0, such that for all f E S+(f!)nC2(0), 

C, [!(to) + [ J(x)"ll.f(x)dx] <; Ht(t0 ) 

~ C2 [ 1 f(x)dx + 1 o(x)/3 !:l.f(x)dx]. 

B(ta) !1 

Proof The left side of the previous inequality is an immediate con
sequence of identity (3.2) and inequality (1.3). For the right side, inte
grating equation (3.2) over B(to) gives 

H,(to) = ~ { f(x) dx + ~ { { G(x, y)!:l.f(y) dy dx, 
WnPo 1 B(t0 ) WnPo 1 B(t0 ) 1n 
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where Po= !J(t0 ). By Fubini's theorem, 

~ f f G(x,y)~f(y)dydx = ~ { ~f(y) { G(x,y)dxdy. 
WnPo J B(ta) Jn WnPo Jn J B(ta) 

Set 

I(y) = _l_ { G(x, y) dx. 
Wnp;; j B(ta) 

To complete the proof it remains to be shown that I(y)::::; CJ(y)f3. 
If y ~ B(t0 ), then since x ___, G(x, y) is harmonic on B(to) and G 

satisfies inequality (1.4), 

I(y) = G(t0 , y)::::; Czil(y)f3. 

Suppose y E B(t0 ) and n :::0:3. Then since G(x,y)::::; cnlx- yi 2-n, 

I(y)::::; Cn n r lx-yl2-ndx::::; Cn n r lx-yl2-ndx = 2nCnP~-n. 
WnPo } B(ta) WnPo } B(y,2p0 ) 

But for y E B(t0 ), Po::::; 2il(y). Thus 

I(y)::::; 2ncn2!3J(y)f3p~-n-{3 = CJ(y)f3, 

where C is a constant depending only on t 0 and n. 0 

Proof of Theorem 1. (a) Let 'ljJ be as in the statement of the 
theorem, and let h be a real-valued harmonic function on n. Set h,(x) = 
h(x) + iE. Then h, is harmonic on n and '1/J(ih,i) E C2 (D). Hence by 
Lemma 7, 

N,p(h,) ::::; Cz [ r '1/J(Ih,(x)i) dx + r J(x)f3 ~'1/J(Ih,(x)l) dx] ' 
} B(ta) Jn 

which by Lemma 5(a) 

::::; Cz [ r '1/J(Ih,(x)i) dx + r J(x)f3- 2'lj;(J(x)IV'h(x)i) dx]. 
}B(ta) Jn 

Letting E ___, o+ gives 

N,p(h) ::::; Cz [ max '1/J(ih(x)i) + f J(x)f3- 2 'l/J(il(x)IV'h(x)i) dx] . 
xEB(ta) Jn 
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It remains to be shown that 
(3.3) 

max ~(lh(x)l) ::::: c [~(lh(to)l) + f J(x)P- 2~(J(x)IV'h(x)l) dx] . 
xEB(to) Jn 

Without loss of generality we take t 0 = 0. As a consequence of the 
Fundamental Theorem of Calculus, for all x E B(t0 ), 

lh(x)l ::; lh(O)I +Po max IV'h(y)l. 
yEB(tu) 

Since ~ is increasing, convex, and continuous, and satisfies property 
(1.5) 

~(lh(x)l) ::; ~ ['lj!(lh(O)I) + max 'lj!(PoiY'h(y)l)] . 
2 yEB(~) 

Also, since y-+ 'lj!(poiY'h(y)l) is subharmonic, 

But Po::; J(y)::; 3p0 for ally E B(t0 ), and ~J(y) ::; J(x) ::; ~J(y) for all 
x E B(y, ~Po)· Thus 

'lj!(poiY'h(y)i) ::; C(po) In J(x) 13 - 2 '1j!(J(x)IV'h(x)l) dx, 

from which inequality (3.3) now follows. This completes the proof of (a). 
The proof of (b) is an immediate consequence of Lemma 7 and Lemma 
5(b). 

§4. Remarks 

The techniques employed in this paper may also be used to prove 
analogue's of Theorems 1 and 2 for Hardy-Orlicz spaces of holomorphic 
functions on a domain n <;; en' n 2': 1. 

In this setting the spaces H,p are traditionally defined as in [6, page 
83]. For a non-negative, non-decreasing convex function 'lj! on ( -oo, oo) 
with limt->-oo 'lj!(t) = 0, the Hardy-Orlicz space H1f;(O) is defined as the 
set of holomorphic functions f on n for which 'lj!(log If!) has a harmonic 
majorant on n. As in (1.5) we set N1f;(f) = H~(t0 ), where H~ denotes 
the least harmonic majorant of 'lj!(log lfl). With 'lj!(t) = ePt, 0 < p < oo, 
one obtains the usual Hardy HP space of holomorphic functions on n. 



376 M. Stoll 

To obtain the analogue of Theorem 1 one considers the function cp(t) = 
'l/J(! logt). In this setting, hypothesis (2.4) can be replaced by 

( 4.1) Xcp 11 (X) + cp1 (X) 2: 0 

for all x E (0, oo ). If the above holds, then it is easily shown that 
for J holomorphic on n, cp(lfl 2 ) is plurisubharmonic on n, hence also 
subharmonic. Clearly cp(x) = w(!logx) satisfies (4.1) whenever 'ljJ is 
convex. The details of the statements and proofs of the appropriate 
theorems are left to the reader. 
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