The Littlewood-Paley inequalities for Hardy-Orlicz spaces of harmonic functions on domains in \mathbb{R}^{n}

Manfred Stoll

Abstract.

For the unit disc \mathbb{D} in \mathbb{C}, the harmonic Hardy spaces $\mathcal{H}^{p}, 1 \leq$ $p<\infty$, are defined as the set of harmonic functions h on \mathbb{D} satisfying

$$
\|h\|_{p}^{p}=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{p} d \theta<\infty .
$$

The classical Littlewood-Paley inequalities for harmonic functions [3] in \mathbb{D} are as follows: Let h be harmonic on \mathbb{D}. Then there exist positive constants C_{1}, C_{2}, independent of h, such that
(a) for $1<p \leq 2$,

$$
\|h\|_{p}^{p} \leq C_{1}\left[|h(0)|^{p}+\iint_{\mathbb{D}}(1-|z|)^{p-1}|\nabla h(z)|^{p} d x d y\right]
$$

(b) For $p \geq 2$, if $h \in \mathcal{H}^{p}$, then

$$
\iint_{\mathbb{D}}(1-|z|)^{p-1}|\nabla h(z)|^{p} d x d y \leq C_{2}\|h\|_{p}^{p}
$$

In the paper we consider generalizations of these inequalities to Hardy-Orlicz spaces \mathcal{H}_{ψ} of harmonic functions on domains $\Omega \subsetneq$ $\mathbb{R}^{n}, n \geq 2$, with Green function G satisfying the following: There exist constants α and $\beta, 0<\beta \leq 1 \leq \alpha<\infty$, such that for fixed $t_{o} \in \Omega$, there exist constants C_{1} and C_{2}, depending only on t_{o}, such that $C_{1} \delta(x)^{\alpha} \leq G\left(t_{o}, x\right)$ for all $x \in \Omega$, and $G\left(t_{0}, x\right) \leq C_{2} \delta(x)^{\beta}$ for all $x \in \Omega \backslash B\left(t_{o}, \frac{1}{2} \delta\left(t_{o}\right)\right)$.

Received March 30, 2005.
Revised April 30, 2005.
2000 Mathematics Subject Classification. 30D55, 31B05.
Key words and phrases. Green's function, Hardy-Orlicz spaces, harmonic function, harmonic majorant, holomorphic function, subharmonic function.

§1. Introduction

For the unit disc \mathbb{D} in \mathbb{C}, the harmonic Hardy spaces $\mathcal{H}^{p}, 1 \leq p<\infty$, are defined as the set of harmonic functions h on \mathbb{D} satisfying

$$
\|h\|_{p}^{p}=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{p} d \theta<\infty
$$

The classical Littlewood-Paley inequalities for harmonic functions [3] in \mathbb{D} are as follows: Let h be harmonic on \mathbb{D}. Then there exist positive constants C_{1}, C_{2}, independent of h, such that
(a) for $1<p \leq 2$,

$$
\begin{equation*}
\|h\|_{p}^{p} \leq C_{1}\left[|h(0)|^{p}+\iint_{\mathbb{D}}(1-|z|)^{p-1}|\nabla h(z)|^{p} d x d y\right] \tag{1.1}
\end{equation*}
$$

(b) For $p \geq 2$, if $h \in \mathcal{H}^{p}$, then

$$
\begin{equation*}
\iint_{\mathbb{D}}(1-|z|)^{p-1}|\nabla h(z)|^{p} d x d y \leq C_{2}\|h\|_{p}^{p} \tag{1.2}
\end{equation*}
$$

In 1956 T. M. Flett [2] proved that for analytic functions inequality (1.1) is valid for all $p, 0<p \leq 2$. Hence if $u=\operatorname{Re} h, h$ analytic, then since $|\nabla u|=\left|h^{\prime}\right|$ it immediately follows that inequality (1.1) also holds for harmonic functions in \mathbb{D} for all $p, 0<p \leq 2$. A short proof of the Littlewood-Paley inequalities for harmonic functions in \mathbb{D} valid for all $p, 0<p<\infty$ has also been given recently by Pavlović in [5]. The Littlewood-Paley inequalities are also known to be valid for harmonic functions in the unit ball in \mathbb{R}^{n}. In fact Stević $[7]$ has recently proved that for $n \geq 3$, inequality (1.1) is valid for all $\left.p \in \cdot \frac{n-2}{n-1}, 1\right]$. In [10] analogue's of the Littlewood-Paley inequalities have been proved by the author for domains Ω in \mathbb{R}^{n} for which the Green function satisfies $G\left(t_{o}, x\right) \approx \delta(x)$ for all $x \in \Omega \backslash B\left(t_{o} \frac{1}{2} \delta\left(t_{o}\right)\right)$, where $\delta(x)$ denotes the distance from x to the boundary of Ω. In the same paper it was proved that for bounded domains with $C^{1,1}$ boundary the analogue of (1.1) is also valid for all $p, 0<p \leq 1$.

In the present paper we extend the Littlewood-Paley inequalities to harmonic functions in the Hardy-Orlicz spaces \mathcal{H}_{ψ} on domains $\Omega \subsetneq$ $\mathbb{R}^{n}, n \geq 2$, with Green function G satisfying the following conditions: There exist constants α and $\beta, 0<\beta \leq 1 \leq \alpha<\infty$, such that for fixed $t_{o} \in \Omega$, there exist constants C_{1} and C_{2}, depending only on t_{o}, such that

$$
\begin{align*}
C_{1} \delta(x)^{\alpha} \leq G\left(t_{o}, x\right) & \text { for all } x \in \Omega, \text { and } \tag{1.3}\\
G\left(t_{0}, x\right) \leq C_{2} \delta(x)^{\beta} & \text { for all } x \in \Omega \backslash B\left(t_{o}, \frac{1}{2} \delta\left(t_{o}\right)\right)^{1} . \tag{1.4}
\end{align*}
$$

Let Ω be an arbitrary domain in $\mathbb{R}^{n}, n \geq 2$, and let ψ be a nonnegative increasing convex function on $[0, \infty)$ satisfying $\psi(0)=0$ and

$$
\begin{equation*}
\psi(2 x) \leq c \psi(x) \tag{1.5}
\end{equation*}
$$

for some positive constant c. We denote by $\mathcal{H}_{\psi}(\Omega)$ the set of real or complex valued harmonic functions h on Ω for which $\psi(|h|)$ has a harmonic majorant on Ω. Since ψ is convex and increasing, the function $\psi(|h|)$ is subharmonic on Ω. The existence of a harmonic majorant consequently guarantees the existence of a least harmonic majorant. For $h \in \mathcal{H}_{\psi}$ we denote the least harmonic majorant of $\psi(|h|)$ by H_{ψ}^{h}, and for fixed $t_{o} \in \Omega$ we set

$$
\begin{equation*}
N_{\psi}(h)=H_{\psi}^{h}\left(t_{o}\right) . \tag{1.6}
\end{equation*}
$$

It is known that $N_{\psi}(h)$ is given by

$$
\begin{equation*}
N_{\psi}(h)=\lim _{n \rightarrow \infty} \int_{\partial \Omega_{n}} \psi(|h(t)|) d \omega_{n}^{t_{o}}(t) \tag{1.7}
\end{equation*}
$$

where $\left\{\Omega_{n}\right\}$ is a regular exhaustion of Ω and $\omega_{n}^{t_{o}}$ is the harmonic measure on $\partial \Omega_{n}$ with respect to the point t_{o}. Here we assume that $t_{o} \in \Omega_{n}$ for all n. With $\psi(t)=t^{p}, 1 \leq p<\infty$, one obtains the usual Hardy \mathcal{H}^{p} space of harmonic functions on Ω, with

$$
\begin{equation*}
\|h\|_{p}=\lim _{n \rightarrow \infty}\left(\int_{\partial \Omega_{n}}|h(t)|^{p} d \omega_{n}^{t_{o}}(t)\right)^{1 / p} \tag{1.8}
\end{equation*}
$$

which is the usual norm on $\mathcal{H}^{p}(\Omega), p \geq 1$.
In the paper we prove the following generalizations of the LittlewoodPaley inequalities.

Theorem 1. Let $\Omega \subsetneq \mathbb{R}^{n}$ be a domain with Green function G satisfying inequalities (1.3) and (1.4). Let $\psi \geq 0$ be an increasing convex C^{2} function on $[0, \infty)$ with $\psi(0)=0$ satisfying (1.5). Set $\varphi(t)=\psi(\sqrt{t})$. Then there exist positive constants C_{1} and C_{2} such that the following hold for all $h \in \mathcal{H}_{\psi}(\Omega)$.

[^0](a) If φ is concave on $[0, \infty)$, then
$$
\mathcal{N}_{\psi}(h) \leq C_{1}\left[\psi\left(\left|h\left(t_{o}\right)\right|\right)+\int_{\Omega} \delta(x)^{\beta-2} \psi(\delta(x)|\nabla h(x)|) d x\right]
$$
(b) If φ is convex on $[0, \infty)$, then
$$
\psi\left(\left|h\left(t_{o}\right)\right|\right)+\int_{\Omega} \delta(x)^{\alpha-2} \psi(\delta(x)|\nabla h(x)|) d x \leq C_{2} \mathcal{N}_{\psi}(h)
$$

An immediate consequence of the previous theorem with $\psi(t)=$ $t^{p}, 1 \leq p<\infty$, is the following:

Theorem 2. Let $\Omega \subsetneq \mathbb{R}^{n}$ be a domain with Green function G satisfying inequalities (1.3) and (1.4), and let $1 \leq p<\infty$. Then there exist positive constants C_{1} and C_{2} such that the following hold for all $h \in \mathcal{H}^{p}(\Omega)$.
(a) For $1 \leq p \leq 2$,

$$
\|h\|_{p}^{p} \leq C_{1}\left[\left|h\left(t_{o}\right)\right|^{p}+\int_{\Omega} \delta(x)^{\beta+p-2}|\nabla h(x)|^{p} d x\right]
$$

(b) For $2 \leq p<\infty$,

$$
\left|h\left(t_{o}\right)\right|^{p}+\int_{\Omega} \delta(x)^{\alpha+p-2}|\nabla h(x)|^{p} d x \leq C_{2}\|h\|_{p}^{p}
$$

§2. Preliminaries

Our setting throughout the paper is $\mathbb{R}^{n}, n \geq 2$, the points of which are denoted by $x=\left(x_{1}, \ldots, x_{n}\right)$ with euclidean norm $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. For $r>0$ and $x \in \mathbb{R}^{n}$, set $B_{r}(x)=B(x, r)=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}$ and $S_{r}(x)=S(x, r)=\left\{y \in \mathbb{R}^{n}:|x-y|=r\right\}$. For convenience we denote the ball $B(0, \rho)$ by B_{ρ}, and the unit sphere $S_{1}(0)$ by S. Lebesgue measure in \mathbb{R}^{n} will be denoted by $d \lambda$ or simply $d x$, and the normalized surface measure on S by $d \sigma$. The volume of the unit ball B_{1} in \mathbb{R}^{n} will be denoted by ω_{n}. For an integrable function f on \mathbb{R}^{n} we have

$$
\int_{\mathbb{R}^{n}} f(x) d x=n \omega_{n} \int_{0}^{\infty} r^{n-1} \int_{S} f(r \zeta) d \sigma(\zeta) d r
$$

Finally, for a real (or complex) valued C^{1} function f, the gradient of f is denoted by ∇f, and if f is C^{2}, the Laplacian Δf of f is given by

$$
\Delta f=\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}}
$$

Let Ω be an open subset of $\mathbb{R}^{n}, n \geq 2$, with $\Omega \subsetneq \mathbb{R}^{n}$. For $x \in \Omega$, let $\delta(x)$ denote the distance from x to the boundary of Ω, and set

$$
\begin{equation*}
B(x)=B\left(x, \frac{1}{2} \delta(x)\right)=\left\{y \in \Omega:|y-x|<\frac{1}{2} \delta(x)\right\} . \tag{2.1}
\end{equation*}
$$

Then for all $y \in B(x)$ we have

$$
\begin{equation*}
\frac{1}{2} \delta(x) \leq \delta(y) \leq \frac{3}{2} \delta(x) \tag{2.2}
\end{equation*}
$$

For the proof of Theorem 1 we require several preliminary lemmas.
Lemma 1. For $f \in L^{1}(\Omega)$ and $\gamma \in \mathbb{R}$,

$$
\int_{\Omega} \delta(x)^{\gamma}|f(x)| d x \approx \int_{\Omega} \delta(w)^{\gamma-n}\left[\int_{B(w)}|f(x)| d x\right] d w
$$

Note. The notation $A \approx B$ means that there exist constants c_{1} and c_{2} such that $c_{1} A \leq B \leq c_{2} A$.

Proof. The proof is a straightforward application of Tonelli's theorem, and consequently is omitted. Details may be found in [10].

Lemma 2. For $u \in C^{2}\left(\overline{B_{\rho}}\right), \rho>0$,

$$
\int_{S} u(\rho \zeta) d \sigma(\zeta)=u(0)+\int_{B_{\rho}} \Delta u(x) G_{\rho}(x) d x
$$

where

$$
G_{\rho}(x)= \begin{cases}\frac{1}{n(n-2) \omega_{n}}\left[\frac{1}{|x|^{n-2}}-\frac{1}{\rho^{n-2}}\right], & 0<|x| \leq \rho, \quad n \geq 3 \tag{2.3}\\ \frac{1}{2 \pi} \log \frac{\rho}{|x|}, & 0<|x| \leq \rho, \quad n=2\end{cases}
$$

is the Green function of B_{ρ} with singularity at 0 .
Proof. The proof is an immediate consequence of Green's formula and hence is omitted.

Lemma 3. Let φ be an increasing absolutely continuous function on $[0, \infty)$ with $\varphi(0)=0$.
(a) If φ is convex, then $\varphi(x)+\varphi(y) \leq \varphi(x+y)$ for all $x, y \in[0, \infty)$.
(b) If φ is concave, then $\varphi(x)+\varphi(y) \geq \varphi(x+y)$ for all $x, y \in[0, \infty)$.

Proof. (a) Suppose φ is convex. Since φ is absolutely continuous and increasing, $\varphi(x)=\int_{0}^{x} \varphi^{\prime}$ where $\varphi^{\prime} \geq 0$. Hence

$$
\varphi(x+y)=\int_{0}^{x+y} \varphi^{\prime}=\varphi(x)+\int_{x}^{x+y} \varphi^{\prime}
$$

But

$$
\int_{x}^{x+y} \varphi^{\prime}(t) d t=\int_{0}^{y} \varphi^{\prime}(x+t) d t
$$

Since φ is convex, φ^{\prime} is increasing. Thus

$$
\int_{0}^{y} \varphi^{\prime}(x+t) d t \geq \int_{0}^{y} \varphi^{\prime}(t) d t=\varphi(y)
$$

from which the result follows. The proof of (b) is similar.
Lemma 4. Suppose φ is an increasing C^{2} function on $(0, \infty)$ with $\varphi(0)=0$ and

$$
\begin{equation*}
2 t \varphi^{\prime \prime}(t)+\varphi^{\prime}(t) \geq 0, \quad t>0 \tag{2.4}
\end{equation*}
$$

Let h be a harmonic function on $\bar{B}_{\rho}, \rho>0$.
(a) If φ is concave, then

$$
\int_{B_{\rho / 4}} \rho^{2} \Delta \varphi\left(|h|^{2}\right) d x \leq C \int_{B_{\rho}} \varphi\left(\rho^{2}|\nabla h|^{2}\right) d x
$$

(b) If φ is convex and satisfies inequality (1.5), then

$$
\int_{B_{\rho}} \rho^{2} \Delta \varphi\left(|h|^{2}\right) d x \geq C \int_{B_{\rho / 2}} \varphi\left(\rho^{2}|\nabla h|^{2}\right) d x
$$

Remark. If u is a positive real-valued C^{2} function, then

$$
\Delta \varphi\left(u^{2}\right)=2|\nabla u|^{2}\left[2 \varphi^{\prime \prime}\left(u^{2}\right) u^{2}+\varphi^{\prime}\left(u^{2}\right)\right]+2 \varphi^{\prime}\left(u^{2}\right) u \Delta u .
$$

Thus the hypothesis $2 t \varphi^{\prime \prime}(t)+\varphi^{\prime}(t) \geq 0$ guarantees that $\varphi\left(u^{2}\right)$ is subharmonic whenever u is subharmonic. For $\psi_{p}(t)=t^{p}$, the function $\varphi_{p}(t)=\psi_{p}(\sqrt{t})=t^{p / 2}$ satisfies inequality (2.4) if and only if $p \geq 1$.

Proof. We only prove the Lemma for $n \geq 3$, the special case $n=2$ is similar. (a) Suppose φ is concave. Set $\epsilon=\rho / 4, \delta=\rho / 2$, and let G_{δ} be the Green function of B_{δ} with singularity at 0 . For $|x| \leq \epsilon$,

$$
\begin{aligned}
G_{\delta}(x) & =\frac{1}{n(n-2) \omega_{n}}\left[\frac{1}{|x|^{n-2}}-\frac{1}{\delta^{n-2}}\right] \\
& \geq \frac{1}{n(n-2) \omega_{n}}\left[\frac{4^{n-2}}{\rho^{n-2}}-\frac{2^{n-2}}{\rho^{n-2}}\right]=c_{n} \rho^{2-n} .
\end{aligned}
$$

Hence

$$
I_{1}=\int_{B_{\epsilon}} \Delta \varphi\left(|h|^{2}\right) d x \leq C \rho^{n-2} \int_{B_{\delta}} \Delta \varphi\left(|h(x)|^{2}\right) G_{\delta}(x) d x
$$

which by Lemma 2

$$
=C \rho^{n-2}\left[\int_{S} \varphi\left(|h(\delta \zeta)|^{2}\right) d \sigma(\zeta)-\varphi\left(|h(0)|^{2}\right)\right]
$$

Since φ is concave, $\int_{S} \varphi\left(|h|^{2}\right) d \sigma \leq \varphi\left(\int_{S}|h|^{2} d \sigma\right)$. Thus

$$
I_{1} \leq C \rho^{n-2}\left[\varphi\left(\int_{S}|h(\delta \zeta)|^{2} d \sigma(\zeta)\right)-\varphi\left(|h(0)|^{2}\right)\right]
$$

Since φ is concave and increasing with $\varphi(0)=0$, by Lemma 3

$$
\varphi(b)-\varphi(a) \leq \varphi(b-a), \quad 0<a \leq b
$$

Therefore

$$
I_{1} \leq C \rho^{n-2} \varphi\left(\int_{S}|h(\delta \zeta)|^{2} d \sigma(\zeta)-|h(0)|^{2}\right)
$$

which by Green's identity (Lemma 2)

$$
=C \rho^{n-2} \varphi\left(2 \int_{B_{\delta}}|\nabla h(x)|^{2} G_{\delta}(x) d x\right)
$$

Hence

$$
I_{1} \leq C \rho^{n-2} \varphi\left(2 \sup _{x \in B_{\delta}}|\nabla h(x)|^{2} \int_{B_{\delta}} G_{\delta}(x) d x\right)
$$

But

$$
\int_{B_{\delta}} G_{\delta}(x) d x=\frac{1}{2 n} \delta^{2}
$$

Therefore since $\delta=\frac{1}{2} \rho$,

$$
I_{1} \leq C \rho^{n-2} \varphi\left(\frac{\rho^{2}}{4 n} \sup _{x \in B_{\delta}}|\nabla h(x)|^{2}\right)
$$

which since φ is increasing

$$
\leq C \rho^{n-2} \sup _{x \in B_{\delta}} \varphi\left(\rho^{2}|\nabla h(x)|^{2}\right)
$$

But since $x \rightarrow \varphi\left(\rho^{2}|\nabla h(x)|^{2}\right)$ is subharmonic,

$$
\varphi\left(\rho^{2}|\nabla h(x)|^{2}\right) \leq \frac{C}{\rho^{n}} \int_{B_{\rho}} \varphi\left(\rho^{2}|\nabla h(y)|^{2}\right) d y
$$

for all $x \in B_{\delta}$. Therefore, combining the above we have

$$
\int_{B_{\rho / 4}} \rho^{2} \Delta \varphi\left(|h|^{2}\right) d \lambda \leq C \int_{B_{\rho}} \varphi\left(\rho^{2}|\nabla h|^{2}\right) d \lambda .
$$

(b) Suppose φ is convex and satisfies inequality (1.5). By Lemma 2

$$
\int_{B_{\delta}} \Delta \varphi\left(|h(x)|^{2}\right) G_{\delta}(x) d x=\int_{S} \varphi\left(|h(\delta \zeta)|^{2}\right) d \sigma(\zeta)-\varphi\left(|h(0)|^{2}\right)
$$

which since φ is convex

$$
\geq \varphi\left(\int_{S}|h(\delta \zeta)|^{2} d \sigma(\zeta)\right)-\varphi\left(|h(0)|^{2}\right)=I_{2}
$$

But by Lemma 3,

$$
I_{2} \geq \varphi\left(\int_{S}|h(\delta \zeta)|^{2} d \sigma(\zeta)-|h(0)|^{2}\right)
$$

Thus by Lemma 2,

$$
\int_{B_{\delta}} \Delta \varphi\left(|h(x)|^{2}\right) G_{\delta}(x) d x \geq \varphi\left(2 \int_{B_{\delta}}|\nabla h(x)|^{2} G_{\delta}(x) d x\right)
$$

For $|x| \leq \epsilon$ and $n \geq 3, G_{\delta}(x) \geq c_{n} \rho^{2-n}$, where $c_{n}=2^{2 n-5} / n(n-2) \omega_{n}$. Therefore

$$
2 \int_{B_{\delta}}|\nabla h(x)|^{2} G_{\delta}(x) d x \geq \frac{2^{2 n-4} \rho^{2-n}}{n(n-2) \omega_{n}} \int_{B_{\epsilon}}|\nabla h(x)|^{2} d x
$$

which since $|\nabla h(x)|^{2}$ is subharmonic and $\epsilon=\rho / 4$

$$
\geq \frac{1}{2^{4} n(n-2)} \rho^{2}|\nabla h(0)|^{2} \geq \frac{1}{2^{n+3}} \rho^{2}|\nabla h(0)|^{2}
$$

By inequality (1.5)

$$
\varphi\left(\frac{1}{2^{n+3}} \rho^{2}|\nabla h(0)|^{2}\right) \geq \frac{1}{c^{n+3}} \varphi\left(\rho^{2}|\nabla h(0)|^{2}\right)
$$

where c is the constant in inequality (1.5). Combining the above gives

$$
\varphi\left(\rho^{2}|\nabla h(0)|^{2}\right) \leq c^{n+3} \int_{B_{\delta}} \Delta \varphi\left(|h(x)|^{2}\right) G_{\delta}(x) d x
$$

Since $G_{\delta}(x) \leq C_{n}|x|^{2-n}$ we have

$$
\varphi\left(\rho^{2}|\nabla h(0)|^{2}\right) \leq C_{n} \int_{B_{\delta}} \Delta \varphi\left(|h(x)|^{2}\right)|x|^{2-n} d x
$$

where C_{n} is a constant depending only on n.
For $w \in B_{\delta}$, set $h_{w}(x)=h(w+x)$. Thus

$$
\varphi\left(\rho^{2}|\nabla h(w)|^{2}\right) \leq C_{n} \int_{B_{\delta}} \Delta_{x} \varphi\left(\left|h_{w}(x)\right|^{2}\right)|x|^{2-n} d x
$$

which by the change of variable $y=w+x$

$$
=C_{n} \int_{B_{\delta}(w)} \Delta \varphi\left(|h(y)|^{2}\right)|y-w|^{2-n} d y
$$

Therefore,
$\int_{B_{\delta}} \varphi\left(\rho^{2}|\nabla h(w)|^{2}\right) d w \leq C_{n} \int_{B_{\delta}} \int_{B_{\delta}(w)} \Delta \varphi\left(|h(y)|^{2}\right)|y-w|^{2-n} d y d w$,
which by Fubini's theorem

$$
\leq C_{n} \int_{B_{2 \delta}} \Delta \varphi\left(|h(y)|^{2}\right)\left(\int_{B_{\delta}(y)}|y-w|^{2-n} d w\right) d y
$$

But

$$
\int_{B_{\delta}(y)}|y-w|^{2-n} d w=\int_{B_{\delta}}|x|^{2-n} d x=n \omega_{n} \frac{\rho^{2}}{4}
$$

Therefore,

$$
\int_{B_{\delta}} \varphi\left(\rho^{2}|\nabla h|^{2}\right) d \lambda \leq C_{n} \rho^{2} \int_{B_{2 \delta}} \Delta \varphi\left(|h|^{2}\right) d \lambda
$$

which completes the proof.
Lemma 5. Let ψ and φ be as in Theorem 1, and let h be harmonic on Ω. Assume that $\psi(|h|) \in C^{2}(\Omega)$. Then for $\gamma \in \mathbb{R}$, the following hold:
(a) If φ is concave, then

$$
\int_{\Omega} \delta(x)^{\gamma} \Delta \psi(|h(x)|) d x \leq C \int_{\Omega} \delta(x)^{\gamma-2} \psi(\delta(x)|\nabla h(x)|) d x
$$

(b) If φ is convex and satisfies inequality (1.5), then

$$
\int_{\Omega} \delta(x)^{\gamma} \Delta \psi(|h(x)|) d x \geq C \int_{\Omega} \delta(x)^{\gamma-2} \psi(\delta(x)|\nabla h(x)|) d x .
$$

Proof. (a) By Lemma 1

$$
\begin{aligned}
& \int_{\Omega} \delta(x)^{\gamma} \Delta \psi(|h(x)|) d x \\
& \quad \leq C \int_{\Omega} \delta(w)^{\gamma-n}\left[\int_{B\left(w, \frac{1}{8} \delta(w)\right)} \Delta \psi(|h(y)|) d y\right] d w
\end{aligned}
$$

Set $\rho=\frac{1}{2} \delta(w)$ and $u(x)=h(w+x)$. Then

$$
\int_{B\left(w, \frac{1}{8} \delta(w)\right)} \Delta \psi(|h(y)|) d y=\int_{B_{\rho / 4}} \Delta \psi(|u(x)|) d x
$$

which by Lemma 4

$$
\begin{aligned}
& \leq C \rho^{-2} \int_{B_{\rho}} \psi(\rho|\nabla u(x)|) d x \\
& =C \delta(w)^{-2} \int_{B_{\rho}(w)} \psi\left(\frac{1}{2} \delta(w)|\nabla h(y)|\right) d y .
\end{aligned}
$$

But $\frac{1}{2} \delta(w) \leq \delta(y)$ for all $y \in B_{\rho}(w)$. Hence since ψ is increasing, $\psi\left(\frac{1}{2} \delta(w)|\nabla h(y)|\right) \leq \psi(\delta(y)|\nabla h(y)|)$, and thus

$$
\int_{B\left(w, \frac{1}{8} \delta(w)\right)} \Delta \psi(|h(y)|) d y \leq C \delta(w)^{-2} \int_{B(w)} \psi(\delta(y)|\nabla h(y)|) d y
$$

Finally, by Lemma 1,

$$
\begin{aligned}
& \int_{\Omega} \delta(w)^{\gamma-n-2}\left[\int_{B(w)} \psi(\delta(y)|\nabla h(y)|) d y\right] d w \\
& \quad \leq C \int_{\Omega} \delta(x)^{\gamma-2} \psi(\delta(x)|\nabla h(x)|) d x
\end{aligned}
$$

which proves (a). The proof of part (b) proceeds in the same manner, except that this case also requires inequality (1.5).

§3. Proof of Theorem 1

Before proving Theorem 1 we require two preliminary results about subharmonic functions. Let $\mathcal{S}^{+}(\Omega)$ denote the set of non-negative subharmonic functions on Ω that have a harmonic majorant on Ω. As in the Introduction, for $f \in \mathcal{S}^{+}(\Omega)$ we let H_{f} denote the least harmonic majorant of f on Ω. For convenience we will assume that $f \in C^{2}(\Omega)$. As in $[8],[9]$ we have the following.

Lemma 6. Let Ω be a domain in $\mathbb{R}^{n}, n \geq 2$, with Green function G, and let $f \in C^{2}(\Omega)$. Then $f \in \mathcal{S}^{+}(\Omega)$ if and only if there exists $t_{o} \in \Omega$ such that

$$
\begin{equation*}
\int_{\Omega} G\left(t_{o}, x\right) \Delta f(x) d x<\infty \tag{3.1}
\end{equation*}
$$

If this is the case, then by the Riesz decomposition theorem

$$
\begin{equation*}
H_{f}(x)=f(x)+\int_{\Omega} G(x, y) \Delta f(y) d y \tag{3.2}
\end{equation*}
$$

If the subharmonic function f is not C^{2}, then the quantity $\Delta f(x) d x$ may be replaced by $d \mu_{f}$, where μ_{f} is the Riesz measure of the subharmonic function f.

Lemma 7. Let Ω be a domain in $\mathbb{R}^{n}, n \geq 2$, with Green function G satisfying (1.3) and (1.4). Let $t_{o} \in \Omega$ be fixed, and let α and β be as in inequalities (1.3) and (1.4) respectively. Then there exists constants C_{1} and C_{2}, depending only on t_{o} and Ω, such that for all $f \in \mathcal{S}^{+}(\Omega) \cap C^{2}(\Omega)$,

$$
\begin{aligned}
& C_{1}\left[f\left(t_{o}\right)+\int_{\Omega} \delta(x)^{\alpha} \Delta f(x) d x\right] \leq H_{f}\left(t_{o}\right) \\
& \leq C_{2}\left[\int_{B\left(t_{o}\right)} f(x) d x+\int_{\Omega} \delta(x)^{\beta} \Delta f(x) d x\right]
\end{aligned}
$$

Proof. The left side of the previous inequality is an immediate consequence of identity (3.2) and inequality (1.3). For the right side, integrating equation (3.2) over $B\left(t_{o}\right)$ gives

$$
H_{f}\left(t_{o}\right)=\frac{1}{\omega_{n} \rho_{o}^{n}} \int_{B\left(t_{o}\right)} f(x) d x+\frac{1}{\omega_{n} \rho_{o}^{n}} \int_{B\left(t_{o}\right)} \int_{\Omega} G(x, y) \Delta f(y) d y d x
$$

where $\rho_{o}=\frac{1}{2} \delta\left(t_{o}\right)$. By Fubini's theorem,
$\frac{1}{\omega_{n} \rho_{o}^{n}} \int_{B\left(t_{o}\right)} \int_{\Omega} G(x, y) \Delta f(y) d y d x=\frac{1}{\omega_{n} \rho_{o}^{n}} \int_{\Omega} \Delta f(y) \int_{B\left(t_{o}\right)} G(x, y) d x d y$.
Set

$$
I(y)=\frac{1}{\omega_{n} \rho_{o}^{n}} \int_{B\left(t_{o}\right)} G(x, y) d x
$$

To complete the proof it remains to be shown that $I(y) \leq C \delta(y)^{\beta}$.
If $y \notin B\left(t_{o}\right)$, then since $x \rightarrow G(x, y)$ is harmonic on $B\left(t_{o}\right)$ and G satisfies inequality (1.4),

$$
I(y)=G\left(t_{o}, y\right) \leq C_{2} \delta(y)^{\beta}
$$

Suppose $y \in B\left(t_{o}\right)$ and $n \geq 3$. Then since $G(x, y) \leq c_{n}|x-y|^{2-n}$, $I(y) \leq \frac{c_{n}}{\omega_{n} \rho_{o}^{n}} \int_{B\left(t_{o}\right)}|x-y|^{2-n} d x \leq \frac{c_{n}}{\omega_{n} \rho_{o}^{n}} \int_{B\left(y, 2 \rho_{o}\right)}|x-y|^{2-n} d x=2 n c_{n} \rho_{o}^{2-n}$.

But for $y \in B\left(t_{o}\right), \rho_{o} \leq 2 \delta(y)$. Thus

$$
I(y) \leq 2 n c_{n} 2^{\beta} \delta(y)^{\beta} \rho_{o}^{2-n-\beta}=C \delta(y)^{\beta}
$$

where C is a constant depending only on t_{o} and Ω.
Proof of Theorem 1. (a) Let ψ be as in the statement of the theorem, and let h be a real-valued harmonic function on Ω. Set $h_{\epsilon}(x)=$ $h(x)+i \epsilon$. Then h_{ϵ} is harmonic on Ω and $\psi\left(\left|h_{\epsilon}\right|\right) \in C^{2}(\Omega)$. Hence by Lemma 7,

$$
N_{\psi}\left(h_{\epsilon}\right) \leq C_{2}\left[\int_{B\left(t_{o}\right)} \psi\left(\left|h_{\epsilon}(x)\right|\right) d x+\int_{\Omega} \delta(x)^{\beta} \Delta \psi\left(\left|h_{\epsilon}(x)\right|\right) d x\right]
$$

which by Lemma 5(a)

$$
\leq C_{2}\left[\int_{B\left(t_{o}\right)} \psi\left(\left|h_{\epsilon}(x)\right|\right) d x+\int_{\Omega} \delta(x)^{\beta-2} \psi(\delta(x)|\nabla h(x)|) d x\right]
$$

Letting $\epsilon \rightarrow 0^{+}$gives

$$
N_{\psi}(h) \leq C_{2}\left[\max _{x \in B\left(t_{o}\right)} \psi(|h(x)|)+\int_{\Omega} \delta(x)^{\beta-2} \psi(\delta(x)|\nabla h(x)|) d x\right]
$$

It remains to be shown that

$$
\begin{equation*}
\max _{x \in B\left(t_{o}\right)} \psi(|h(x)|) \leq C\left[\psi\left(\left|h\left(t_{o}\right)\right|\right)+\int_{\Omega} \delta(x)^{\beta-2} \psi(\delta(x)|\nabla h(x)|) d x\right] \tag{3.3}
\end{equation*}
$$

Without loss of generality we take $t_{o}=0$. As a consequence of the Fundamental Theorem of Calculus, for all $x \in B\left(t_{o}\right)$,

$$
|h(x)| \leq|h(0)|+\rho_{o} \max _{y \in B\left(t_{o}\right)}|\nabla h(y)| .
$$

Since ψ is increasing, convex, and continuous, and satisfies property (1.5)

$$
\psi(|h(x)|) \leq \frac{c}{2}\left[\psi(|h(0)|)+\max _{y \in B\left(t_{o}\right)} \psi\left(\rho_{o}|\nabla h(y)|\right)\right]
$$

Also, since $y \rightarrow \psi\left(\rho_{o}|\nabla h(y)|\right)$ is subharmonic,

$$
\psi\left(\rho_{o}|\nabla h(y)|\right) \leq \frac{2^{n}}{\omega_{n} \rho_{o}^{n}} \int_{B\left(y, \frac{1}{2} \rho_{o}\right)} \psi\left(\rho_{o}|\nabla h(x)|\right) d x
$$

But $\rho_{o} \leq \delta(y) \leq 3 \rho_{o}$ for all $y \in B\left(t_{o}\right)$, and $\frac{1}{2} \delta(y) \leq \delta(x) \leq \frac{3}{2} \delta(y)$ for all $x \in B\left(y, \frac{1}{2} \rho_{o}\right)$. Thus

$$
\psi\left(\rho_{o}|\nabla h(y)|\right) \leq C\left(\rho_{o}\right) \int_{\Omega} \delta(x)^{\beta-2} \psi(\delta(x)|\nabla h(x)|) d x
$$

from which inequality (3.3) now follows. This completes the proof of (a). The proof of (b) is an immediate consequence of Lemma 7 and Lemma 5 (b).

§4. Remarks

The techniques employed in this paper may also be used to prove analogue's of Theorems 1 and 2 for Hardy-Orlicz spaces of holomorphic functions on a domain $\Omega \subsetneq \mathbb{C}^{n}, n \geq 1$.

In this setting the spaces \mathcal{H}_{ψ} are traditionally defined as in [6, page 83]. For a non-negative, non-decreasing convex function ψ on $(-\infty, \infty)$ with $\lim _{t \rightarrow-\infty} \psi(t)=0$, the Hardy-Orlicz space $\mathcal{H}_{\psi}(\Omega)$ is defined as the set of holomorphic functions f on Ω for which $\psi(\log |f|)$ has a harmonic majorant on Ω. As in (1.5) we set $N_{\psi}(f)=H_{\psi}^{f}\left(t_{o}\right)$, where H_{ψ}^{f} denotes the least harmonic majorant of $\psi(\log |f|)$. With $\psi(t)=e^{p t}, 0<p<\infty$, one obtains the usual Hardy \mathcal{H}^{p} space of holomorphic functions on Ω.

To obtain the analogue of Theorem 1 one considers the function $\varphi(t)=$ $\psi\left(\frac{1}{2} \log t\right)$. In this setting, hypothesis (2.4) can be replaced by

$$
\begin{equation*}
x \varphi^{\prime \prime}(x)+\varphi^{\prime}(x) \geq 0 \tag{4.1}
\end{equation*}
$$

for all $x \in(0, \infty)$. If the above holds, then it is easily shown that for f holomorphic on $\Omega, \varphi\left(|f|^{2}\right)$ is plurisubharmonic on Ω, hence also subharmonic. Clearly $\varphi(x)=\psi\left(\frac{1}{2} \log x\right)$ satisfies (4.1) whenever ψ is convex. The details of the statements and proofs of the appropriate theorems are left to the reader.

References

[1] H. Aikawa and M. Essén, Potential Theory - Selected Topics, In: Lecture Notes in Mathematics, 1633, Springer, 1996.
[2] T. M. Flett, On some theorems of Littlewood and Paley, J. London Math. Soc., 31 (1956), 336-344.
[3] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, Proc. London Math. Soc., 42 (1936), 52-89.
[4] F-Y Maeda and N. Suzuki, The integrability of superharmonic functions on Lipschitz domains, Bull. London Math. Soc., 21 (1989), 270-278.
[5] M. Pavlović, A short proof of an inequality of Littlewood and Paley, preprint, 2004.
[6] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[7] S. Stević, A Littlewood-Paley type inequality, Bull. Braz. Math. Soc., 34 (2003), 1-7.
[8] M. Stoll, A characterization of Hardy-Orlicz spaces on planar domains, Proc. Amer. Math. Soc., 117 (1993), 1031-1038.
[9] M. Stoll, Harmonic majorants for eigenfunctions of the Laplacian with finite Dirichlet integral, J. Math. Analysis and Appl., 274 (2002), 788811.
[10] M. Stoll, On generalizations of the Littlwood-Paley inequalities to domains in $\mathbb{R}^{n}(n \geq 2)$, preprint, 2004.
[11] K-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), 17-37.

Manfred Stoll
Department of Mathematics
University of South Carolina
Columbia, SC 29208
U.S.A.

E-mail address: stoll@math.sc.edu

[^0]: ${ }^{1}$ As in [1] [4], if Ω is a bounded k-Lipschitz domain, then such constants α and β exist. If the boundary of Ω is C^{2} or $C^{1,1}$, then $\alpha=\beta=1$, and the inequalities can be established by comparing the Green function G to the Green function of balls that are internally and externally tangent to the boundary of Ω. By the results of Widman [11], the inequalities are also valid with $\alpha=\beta=1$ for domains with $C^{1, \alpha}$ or Liapunov-Dini boundaries.

