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On Davies' conjecture and strong ratio limit 
properties for the heat kernel 

Yehuda Pinchover 

Abstract. 

We study strong ratio limit properties and the exact long time 
asymptotics of the heat kernel of a general second-order parabolic 
operator which is defined on a noncompact Riemannian manifold. 

§1. Introduction 

Let P be a linear, second-order, elliptic operator defined on a non­
compact, connected, C 3-smooth Riemannian manifold M of dimen­
sion d with a Riemannian measure dx. Here P is an elliptic operator 
with real, Holder continuous coefficients which in any coordinate system 
(U; x1, ... , xd) has the form 

d d 

P(x, 8x) =- L aij(x)aiaj + L bi(x)ai + c(x). 
i,j=l i=l 

We assume that for each x E M the real quadratic form "L-1,j=l aij(x)~i~j 
is positive definite. The formal adjoint of P is denoted by P*. Denote 
the cone of all positive (classical) solutions of the equation Pu=O in M 
by Cp(M). The generalized principal eigenvalue is defined by 

Ao = Ao(P, M) :=sup{ A E lR : CP->.(M) =1- 0}. 

Throughout this paper we always assume that Ao ~ 0 (actually, as it 
will become clear below, it is enough to assume that Ao > -oo). 
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We consider the parabolic operator L 

(1.1) Lu = Ut +Pu on M x (0, oo). 
We denote by 1ip(M x (a, b)) the cone of all nonnegative solutions of the 
equation Lu = 0 in M x (a, b). Let kjrl(x, y, t) be the minimal (positive) 
heat kernel of the parabolic operator L in M. If for some x =I y 

100 
kjrl(x,y,T)dT < o6 (respect., 100 

kjrl(x,y,T)dT = oo), 
then Pis said to be a subcritical (respect., criticaQ operator in M [18]. 

Recall that if>.< >.0 , then P->. is subcritical in M, and for >. :::; >.o, we 
have k~>.(x,y,t)=e>.tkjr~(x,y,t). Furthermore, Pis critical (respect., 
subcritical) in M, if and only if P* is critical (respect., subcritical) in 
M. If P is critical in M,. then there exists a unique positive solution 
cp E Cp(M) satisfying cp(x0 ) = 1, where xo E M is a fixed reference 
point. This solution is called the ground state of the operator P in M 
[15, 18]. The ground state of P* is denoted by cp*. A critical operator 
Pis said to be positive-critical in M if cp*cp E L 1(M), and null-critical 
in M if cp*cp ¢. L 1(M). In [15, 17] we proved: 

Theorem 1.1. Let x, y EM. Then 

if P- >.o is positive-critical, 

otherwise. 

Furthermore, for>.< >.o, let G.p;t_;>..(x,y) := J0
00 kjrl_;>..(x,y,T)dT be the 

minimal (positive) Green function of the operator P->. on M. Then 

(1.2) 

Having proved that limt_.00 e>.otkjr~ (x, y, t) always exists, we next 
ask how fast this limit is approached. It is natural to conjecture that 
the limit is approached equally fast for different points x, y E M. Note 
that in the context of Markov chains, such an (individual) strong ratio 
limit property is in general not true [5]. The following conjecture was 
raised by E. B. Davies [7] in the selfadjoint case. 

Conjecture 1.1. Let Lu = Ut + P(x, 8x)u be a parabolic operator 
which is defined on a Riemannian manifold M. Fix a reference point 
xo EM. Then 

(1.3) l . kjrl (x, y, t) ( ) 
1m =a x,y 

t---+oo kjrl(xo,xo,t) 
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exists and is positive for all x, y E M. 

The aim of the present paper is to discuss Conjecture 1.1 and closely 
related problems, and to obtain some results under minimal assump­
tions. 

Remark 1.1. Theorem 1.1 implies that Conjecture 1.1 holds true in 
the positive-critical case. So, we may assume in the sequel that P is not 
positive critical. Also, Conjecture 1.1 does not depend on the value 
of .A0 , hence from now on, we shall assume that .Ao = 0. 

Remark 1.2. In the selfadjoint case, Conjecture 1.1 holds true if 
dimCp(M) = 1 [2, Corollary 2.7]. In particular, it holds true for a 
critical selfadjoint operator. Therefore, it would be interesting to prove 
Conjecture 1.1 at least under the assumption 

(1.4) dimC~(M) = dimCp·(M) = 1, 

which holds true in the critical case and in many important subcriti­
cal cases. Recently, Agmon [1] has obtained the exact asymptotics (in 
(x, y, t)) of the heat kernel for a periodic (non-selfadjoint) operator on 
~d. It follows from Agmon's results that Conjecture 1.1 holds true in 
this case. For a probabilistic interpretation of Conjecture 1.1, see [2]. 

Remark 1.3. Let tn --+ oo. By a standard parabolic argument, we 
may extract a subsequence { tnk} such that for every x, y E M and s < 0 

(1.5) 

exists. Moreover, a(·,y,·) E 1tp(M x ~-)·Note that in the selfadjoint 
case, the above is valid for all s E ~'since (2.7) holds in selfadjoint case 
[7, Theorem 10]. 

Remark 1.4. The example constructed in [16, Section 4] shows a 
case where Conjecture 1.1 holds true on M, while the limit function 
a(x, y) = 1 is not a .A0-invariant positive solution. Compare this with 
[7, Theorem 25] and the discussion therein above Lemma 26. Note also 
that in general, the limit function a(x, y) in (1.3) need not be a product 
of solutions of the equations Pu = 0 and P*u = 0, as is demonstrated 
in [6], in the hyperbolic space, and in Example 4.2. 

The outline of the rest of paper is as follows. In the next section we 
study the existence of the strong ratio limit for the heat kernel. It turns 
out that if this limit exists, then it equals 1. This implies that any limit 
solution u(·, y, s) of (1.5) is time independent and is a positive solution 
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of the equation Pu = 0 in M. In Section 3 we discuss the relationship 
between Conjecture 1.1 and the parabolic Martin compactification of 
'Hp(M x IlL), while in Section 4 we study the relation between this 
conjecture and the parabolic and elliptic minimal Martin boundaries. 
Finally, in Section 5 we study Conjecture 1.1 under the assumption that 
the uniform restricted parabolic Harnack inequality holds true. 

The author wishes to express his gratitude for the referee's careful 
reading and valuable comments. 

§2. Strong ratio properties 

In the symmetric case the function t ~--+ kp:t(x, x, t) is log-convex, and 

therefore, a polarization argument implies that limt->oo kZ~(,y,t~)s) = 1 
P x,y, 

for all x, y EM and s E JR. [7]. In the nonsymmetric case we have: 

Lemma 2.1. For every x, y E M and s E JR., we have that 

(2.1) I. . f kp:t(x, y, t + s) < 1 < 1. kp:t(x, y, t + s) 
1mm M( ) 1msup M( ) t->oo kp X, y, t - - t->oo kp X, y, t 

Similarly, for any s > 0 

(2.2) I. . f kp:t (x, y, (n± 1)s) 1 1. kp:t (x, y, (n± 1)s) 
1mm M < < 1m sup --"----',-M..,-.:...;__:_ _ __:_....:... 
n->oo kp (x,y,ns) - - n->oo kp (x,y,ns) 

In particular, iflimt_,00 [kp:t(x,y,t+s)jkp:t(x,y,t)] exists, it equals to 1. 

Proof We may assume that P is not positive-critical. Let s < 0. 
By Theorem 1.1 and the parabolic Harnack inequality we have 

(2.3) 
kp:t (X, y, t + S) ( ) 

1 ~lim sup M( ) ~ C s, y . 
t-->00 kp x, y, t 

Suppose that liminft_,oo kZ~(::;)s) = e > 1. It follows that there exists 

0 < q < 1 and T8 > 0 such that 

M M kp (x, y, t) < qkp (x, y, t + s) 

By induction and the Harnack inequality, we obtain that there exist M < 
0 and C > 0 such that kp:t(x, y, t) < CeMt for all t > 1, a contradiction 
to the assumption Ao=O. Therefore, (2.1) is proved for s < 0, which in 
turn implies (2.1) also for s > 0. (2.2) can be proven similarly. 0 

R k 2 1 Th d"t" I" . f k-;:'(x,y,t+s) >_ 1 for s > 0 is emar . . e con 1 Ion 1mm t->oo k-;:'(x,y,t) 

sometimes called Lin's condition [11]. 
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Corollary 2.1. Let x, y E M. Suppose that 

(2.4) 1. kp:t(x,y,(n+1)s) Im ~~~~--~~ 
n-+oo kp:t(x, y, ns) 

exists for every s > 0 (i.e., the ratio limit exists for every "skeleton" 
sequence of the form tn = ns, where n = 1, 2, ... and s > 0). Then 

(2.5) 1. kp:t(x, y, t + r) 
Im = 1 

t-+oo kp:t(x, y, t) 
VrER 

Proof. By Lemma 2.1, the limit in (2.4) equals 1. By induction, 

1. klr(x,y,ns+r) 1 h d lfl\ h' h (b th t' Imn-+oo kM( ) = , were r=qs, an qE~, w IC y e con I-
P x,y,ns 

nuity of a limiting solution) implies that it holds for Vr E IR. Hence, [9, 
Theorem 2] implies (2.5). 0 

Remark 2.2. If there exist x 0 , y0 EM and 0 <so < 1 such that 

( . kp:t(xo, Yo, t +so) 
2.6) M(xo,yo,so):=hmsup kM( ) <oo, 

t-+oo p xo,yo,t 

then by the parabolic Harnack inequality, for all x, y, z, wE K CC M, 
t > 1, we have the following Harnack inequality of elliptic type: 

M ( ) M ( So ) M ( so ) M kp z,w,t ~C1kp xo,yo,t+ 2 ~C2kp xo,yo,t- 2 ~C3kp (x,y,t). 

Similarly, (2.6) implies that for all x, y E M and r E IR: 

( ) 1. . f kp:t ( x, y, t + r) 
0 < m x,y,r := Imm kM( ) ~ 

t-+oo P xo,yo,t 

(2.7) 1. kp:t(x,y,t+r) ( ) 
Imsup kM( ) = M x,y,r < oo. 
t-+oo p xo,yo,t 

Lemma 2.2. (a) The following assertions are equivalent: 
(i) For each x, y E M there exists a sequence s 1 ---. 0 of negative 

numbers such that for all j 2': 1, and s = s1, we have 

(2.8) lim kp:t(x, y, t + s) = 1. 
t-+oo kp:t(x,y,t) 

(ii) The ratio limit in (2.8) exists for any x, y E M and s E IR. 

(iii) Any limit function u(x, y, s) of the quotients ~"t~x,y,tn·tj with 
p Xo,Xo, n 

tn---. oo does not depend on s and has the form u(x, y), where u(·, y) E 

Cp(M) for every yEM and u(x, ·)ECp· (M) for every xEM. 

(b) If one assumes further (1.4), then Conjecture 1.1 holds true. 
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Proof. (a) By Lemma 2.1, if the limit in (2.8) exists, then it is 1. 
(i) '* (ii). Fix x0 , Yo EM, and take so < 0 for which the limit (2.8) 

exists. It follows that any limit solution u(x,y,s) E 'Hp(M x IlL) of a 

sequence ~"t~x,y,tn;s; with tn---+ oo satisfies u(xo, yo, s+so) =u(xo, Yo, s) 
p Xo,yo, n 

for all s < 0. So, u(x0 , y0 , ·) is so-periodic. It follow from our assumption 
and the continuity of u that u(x0, y0 , ·) is the constant function. Since 
this holds for all x, y E M and u, it follows that (2.8) holds for any 
x, yEM and sER 

(ii) =} (iii). Fix y E M. By Remark 1.3, any limit function u of the 

sequence kt(x,y,tn+s) with tn---+ oo belongs to 'Hp(M x JR._). Since 
kp (xo,xo,tn) 

(2.9) 
k-j;l(x, y, t + s) 
k-j;l (xo, xo, t) 

k-j;l(x, y, t) k-j;l(x, y, t + s) 
k-j;l(xo, xo, t) k-j;l(x, y, t) 

(2.8) implies that such au does not depend on s. Therefore, u = u(x, y), 
where u(·, y) E Cp(M) and u(x, ·) E Cp· (M). 

(iii) '* (i). Write 

(2.10) 
k-j;l (X, y, t + S) 

k-j;l (x, y, t) 
k-j;l(x, y, t + s) k-j;l(xo, xo, t) 
k-j;l (xo, xo, t) k-j;l (x, y, t) 

Let tn ---+ oo be a sequence such that the sequence ~t~x,y,tn;s; converges 
p xa,xo, n 

to a solution in 'Hp(M x lR,_ ). By our assumption, we have 

l. k-j;l(x,y,tn+s) 1. k-j;l(x,y,tn) ( ) 
Ill = Ill kM( ) = U X, y > 0, n--+oo k-j;l(xo, xo, tn) n--+oo p Xo, Xo, tn 

which together with (2.10) implies (2.8) for all s E R 

(b) The uniqueness and (iii) imply that kf>1(x,y,t+s) ---+ u(x)u*(y) where 
kf>1 (xo,xo,t) u(xo)u* (xo)' 

uECp(M) and u* ECp· (M), and Conjecture 1.1 holds. D 

Remark 2.3. Let M ~ JR.d be a smooth domain and P and P* be 
(up to the boundary) smooth operators. Denote by C~(M) the cone of 
all functions in Cp(M) which vanish on oM. Suppose that one of the 
conditions (i)-(iii) of Lemma 2.2 is satisfied. Clearly, for any fixed y 

any limit function u(·, y) of Lemma 2.2 belongs to the Martin boundary 
'at infinity' which in this case is C~(M). Therefore, Conjecture 1.1 
holds true if the Martin boundaries 'at infinity' of P and P* are one­
dimensional. As a simple example, take P = - ~ and M = JR.~. 
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Lemma 2.3. Suppose that Pis null-critical, and for each x, y EM 
there exists a sequence {sj} of negative numbers such that Sj---+ 0, and 

(2.11) liminf k~(x, y, t + s) > 1 
t-+oo k~(x, y, t) -

for s = Sj, j = 1, 2, .... Then Conjecture 1.1 holds true. 

Proof Let u(x, y, s) be a li~it function of a sequence ~"t~x,y,tnis? 
. p Xo,Xo, n 

with tn---+ oo and s < 0. By our assumption, u(x, y, s + sj) ::;::: u(x, y, s), 
and therefore, u 8 (x,y,s) ~ 0 for all s < 0. Thus, u(·,y,s) (respect., 
u(x, ·, s)) is a positive supersolution of the equation Pu = 0 (respect., 
P*u = 0) in M. Since Pis critical, it follows that u(·,y, s) E Cp(M) 
(respect., u(x, ·, s) E Cp· (M)), and hence u 8 (x, y, s) = 0. By the unique­
ness, u equals to ((x~cp:~y)), and Conjecture 1.1 holds true. 0 cp xo cp x0 

Remark 2.4. Suppose that Pis null-critical, and fix xo =1- Yo· Then 
using Theorem 1.1 and [14, Theorem 2.1] we have for x =f. y: 

(i) lim k~(x, y, t) = lim k~(xo, yo, t) = 0, 
t-+oo t-+oo 

(iii) 

Therefore, Conjecture 1.1 would follow from a strong ratio Tauberian 
theorem if additional Tauberian conditions are satisfied (see, [3, 19]). 

§3. The parabolic Martin boundary 

The large time behavior of quotients of the heat kernel is obviously 
closely related to the parabolic Martin boundary (for the parabolic Mar­
tin boundary theory see [8]). Theorem 3.1 relates Conjecture 1.1 and 
the parabolic Martin compactification of 1i.p(M x IlL). 

Lemma 3.1. Fix y E M. The following assertions are equivalent: 
(i) For each x E M there exists a sequence Sj ---+ 0 of negative 

numbers such that 

(3.1) 
lim k~(x, y, t + s) 

t-+oo k~ (x, y, t) 

exists for s = sj, j = 1, 2, .... 
(ii) Any pambolic Martin function in 1i.p(M x IlL) corresponding 

to a Martin sequence {(y, -tn)}~11 where tn ---+oo, is time independent. 
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Proof. L t KM( ) l" k~(x,y,tn+s) be such a Martin 
J· e p x, y, s = Imn-+oo k~(xo,y,tn) 

function. The lemma follows from the identity 

k-f;'l (x, y, tn + s) 

k-f;'l(xo, y, tn) 

and Lemma 2.2. 

k-f;'l (x, y, tn + s) k-f;'l (x, y, tn) 

k-f;'l(x, y, tn) k-f;'l(xo, y, tn) ' 

0 

Theorem 3.1. Assume that (2.6) holds true for some xo, Yo E M, 
and so > 0. Then the following assertions are equivalent: 

(i) Conjecture 1.1 holds true for a fixed xo EM. 
(ii) 

(3.2) 

exists, and the limit is positive for every x, y, XI, Yl E M. 
(iii) 

(3.3) l . k-f;'l(x,y,t) 
Im M , 

t->oo kp (y, y, t) 
and l . k-f;'l (x, y, t) 

Im --7..,....:-..;...::;..;_:_ 
t->oo k-f;'l (x, x, t) 

exist, and these ratio limits are positive for every x, y EM. 
(iv) For any y E M there is a unique nonzero parabolic Martin 

boundary point y for the equation Lu = 0 in M x JR. which corresponds 
to any sequence of the form { (y, -tn) }~=I such that tn --> oo, and for 
any x E M there is a unique nonzero parabolic Martin boundary point 
x for the equation Ut + P*u = 0 in M x JR. which corresponds to any 
sequence of the form { (x, -tn) }~=l such that tn --> oo. 

Moreover, if Conjecture 1.1 holds true, then for any fixed y E M 
(respect., x EM), the limit function a(·, y) (respect., a(x, ·))is a positive 
solution of the equation Pu = 0 (respect., P*u = 0}. Furthermore, the 
Martin functions of part (iv) are time independent, and {2.8} holds for 
all x, y E M and s E JR.. 

Proof (i) :::} (ii) follows from the identity 

k-f;'l(x,y,t) k-f;'l(x,y,t) (k-f:l(x1,y1,t))-l 
M = M . M 

kp (xi, YI, t) kp (xo, xo, t) kp (xo, xo, t) 

(ii) :::} (iii). Take x1 = Yl = y and x1 = Yl = x, respectively. 
(iii) :::} (iv). It is well known that the Martin compactification does 

not depend on the fixed reference point xo. So, fix y E M and take it 
also as a reference point. Let { -tn} be a sequence such that tn --> oo 
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and such that the Martin sequence kf~~~:,~,~)) converges to a Martin 

function K -j;l (x, y, t). By our assumption, for any t we have 

l. k-j;l(x,y,t+tn) 1. k-j;l(x,y,T) b() 0 1m =Im =x> 
n--->ook-j;l(y,y,t+tn) T--->ook-j;l(y,y,T) ' 

where b does not depend on the sequence { -tn}· On the other hand, 

Since 

we have 

r k-j;l(y, y, t + tn) = KM( - t) = f(t) 
Im kM( t ) P y, y, . n--->oo p y, y, n 

k-j;l(x, y, t + tn) 
k-j;l (y, y, tn) 

k-j;l(x, y, t + tn) 
- M kp (y,y,t+tn) 

k-j;l(y, y, t + tn) 
k-j;l(y,y,tn) 

K-j;l(x, y, t) = b(x)f(t). 

By separation of variables, there exists a constant ,\ such that 

Pb-.Ab=O onM, !' + Af = 0 on~' f(O) = 1. 

Since b does not depend on the sequence { -tn}, it follows in particular, 

that ,\ does not depend on this sequence. Thus, lim7 _, 00 k{J~,y,t+)) = 
p y,y,T 

f(t) = e->.t. Lemma 2.1 implies that,\= 0. It follows that b is a positive 
solution of the equation Pu = 0, and 

(3.4) 
M _ . k-j;l(x,y,t-T) 

Kp (x, y, t) = hm M( ) = b(x). T--->-00 kp y, y, -T 

The dual assertion can be proved similarly. 
(iv) =} (i). Let K-j;l(x, y, t) be a Martin function, and so > 0 such 

that K-j;l(x0 , y, s0 /2) > 0. Consequently, K-j;l(x, y, s) > 0 for s 2': s0 . 

Using the substitution T = s + s0 we obtain 

l. k-j;l(x,y,T) 1. {k-j;l(x,y,s+so) 
1m =Im x 

T--->ook-j;l(xo, xo, T) s--->oo k-j;l(y, y, s) 

k-j;l(y, y, s) k-j;l(xo, y, s+2so)} 
k-j;l(xo, y, s+2so)k-j;l(xo, xo, s+so) 

K-j;l(x,f},so)K~(xo,y,so) 
K -j;l (xo, y, 2so) 

The last assertion of the theorem follows from (3.4) and Lemma 2.2. 0 
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§4. Minimal positive solutions 

In this section we discuss the relation between Conjecture 1.1 and 
the parabolic and elliptic minimal Martin boundaries. 

Remark 4.1. By the parabolic Harnack inequality for P*, we have 
for each 0 < E < 1 

(4.1) k-j;l (x, Yo, t -E) :S C(yo, E )k-j;l (x, Yo, t) 'Vx EM, t > 1. 

Therefore, if { (y0 , tn)} is a nontrivial minimal Martin sequence with 
tn __. -oo, then one infers as in [10] that the corresponding minimal 
parabolic function in 'Hp(M x IlL) is of the form u(x, t) = e->-tu>. (x, Yo) 
with A :S 0 and U>. E exrCp_>.(M), where exrC is the set of extreme 
rays of a cone C. If further, for some xo EM and s < 0 one has 

(4.2) l .. fk-j;l(xo,yo,t+s) > 1 Imin ' 
t--->oo k-j;l(xo,yo,t) -

then A = 0, and consequently, u is also a minimal solution in Cp(M). 
Recall that in the selfadjoint case, the ratio limit in ( 4.2) equals 1. 

Lemma 4.1. Suppose that the ratio limit in (2.8) exists for all x, y E 

M d T11l L t ( ) l' k~(x,y,tn+s) h t J'f an s E m.. e a x, y := Imn__, 00 kM( t ) , w ere n __. oo. J 
p Xo,Xo, n 

for some y0 E M the function u(x) := a(x, Yo) is minimal in Cp(M), 
then a(x, y) = u(x)v(y), where v E Cp· (M). 

Proof Fix y EM and E > 0. By the parabolic Harnack inequality 
for P* and Lemma 2.2, we have 

(4.3) 
k-j;l(x,y,t-s) C( )k-j;l(x,yo,t) 

M < y,E M( kp (xo,xo,t) - kp xo,xo,t) 
'VxEM. 

Therefore, a(x, y) :S C(y)u(x) which implies the claim. 0 

The following examples demonstrate that if Conjecture 1.1 holds true 
while (1.4) does not hold, then the limit function a(·, y) is typically a 
non-minimal solution in Cp(M). 

Example 4.1. Consider a (regular) Benedicks domain M ~ ffi.d such 
that the cone of positive harmonic functions which vanish on BM is of 
dimension two. By [6], Conjecture 1.1 holds true in this case, the limit 
function is not a product of two (separated) harmonic functions, and 
therefore, a(·, y) is not minimal in C_,6.(M) for any y EM. 
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Example 4.2. Consider a radially symmetric Schrodinger operator 
H:=-~+V(Ixl) on JR.d with a bounded potential. Suppose that >.0 = 0, 
and that the Martin boundary of H on JR.d is homeomorphic to sd-l 
(see [12]). Clearly, any Martin function corresponding to {(yo, tn)} with 
xo =yo =0 is radially symmetric. It follows that Davies' conjecture holds 
true for xo = y = 0, and the limit function is the normalized positive radial 
solution in CH(JR.d). This solution is not minimal in CH(JR.d). Thus, any 
limit function u(·, y) is not minimal in CH(JR.d). 

We conclude this section with some related problems. The following 
conjecture was posed by the author in (15, Conjecture 3.6]. 

Conjecture 4.1. Suppose that P is a critical operator in M, then 
the ground state cp is a minimal positive solution in the cone 1-lp(M xlR.). 

Note that if (2.11) holds true, then by Theorem 3.1, the ground 
state is a Martin function in 1-lp(M x JR.). 

Example 4.3. Consider again the example in [16, Section 4]. In that 
example -~ is subcritical in M, >.o = 0, and (1.4) and Conjecture 1.1 
hold true. Hence, 1 is a Martin function in 1-l-~(M x JR.). On the other 
hand, 1 E exrC-~(M) but 1 ¢ exr'J-l_~(M x JR.). So, Conjecture 4.1 
cannot be extended to the subcritical "Liouvillian" case (see also [4]). 

Thus, it would be interesting to study the following problem which 
was raised by Burdzy and Salisbury [4] for P = -~and M C JR.d. 

Question 4.1. Assume that >.0 = 0. Determine which minimal 
positive solutions in Cp(M) are minimal in 1-lp(M x JR._). 

§5. Uniform Harnack inequality and Davies' conjecture 

In this section we discuss the relationship between the parabolic 
Martin boundary of '}-{ p ( M x lR._), the elliptic Martin boundaries of 
Cp_.x(M), >. ~ >.0 = 0, and Conjecture 1.1 under a certain assumption. 

Definition 5.1. We say that the uniform restricted parabolic Har­
nack inequality (in short, (URHI)) holds in '}-{p (M x ]R_) iffor any c > 0 
there exists a positive constant C = O(c) > 0 such that 

(5.1) u(x,t-c)~Cu(x,t) \f(x,t)EMxlR._ and VuE'J-lp(MxJR._). 

It is well known that (URHI) holds true if and only if the separation 
principle (SP) holds true, that is, u =f- 0 is in exr'J-lp(M x lR._) if and 
only if u is of the form e->-tv.x(x), where v.x E exrCp_.x(M) [10, 13]. In 
particular, the answer to Question 4.1 is simple if (URHI) holds. 
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Lemma 5.1. (i) Suppose that (URHI) holds true, then for any s < 0 

. k;t(x, y, t + s) 
R+ := hmsup M( ) ::; 1 

t->oc kp X, y, t 
(Lin's condition). 

(ii) Assume further that for some xo, Yo E M and so < 0 

n ·= 1. . f k;t(xo, yo, t +so) > 1 
t__. 1m1n M ) , 

t->oc kp (xo, Yo, t -

then any limit function u(x, y, s) of ~~~x,y,tn:s; with tn --+ oo does not 
p Xo1Y01 n 

depend on s, and has the form u(x, y), where u(·, y) E Cp(M) for every 
y EM and u(x, ·) E Cp· (M) for every x EM. 

(iii) If one assumes further (1.4), then Conjecture 1.1 holds true. 

Proof. (i) By (URHI), if u E exr'Hp(M x IlL), then u(x, t) 
e-.\tu.\(x), where,\::; 0. Consequently, for every u E 1-{p(M x ~-) 

(5.2) u(x, t + s)::; u(x, t) \i(x, t) EM xiiL, and \is< 0, 

and equality holds for somes < 0 and (x, t) EM x ~- if and only if 
uECp(M). Clearly, (5.2) implies that 

. k;t(x,y,t+s) 
R+ := hmsup kM( ) ::; 1 \ix, y EM and s < 0, 

t->oc p X, y, t 

which together with Lemma 2.1 implies R+ = 1. 
(ii) At the point (xo, Yo, so) we haveR_ = R+ = 1, therefore, 

(5.3) lim k;t(xo, Yo, t +so) = 1. 
t->oc k;t(xo,Yo,t) 

Consequently, for any sequence tk --+ oo satisfying 

. k;t(x,yo,tk+T) 
hm kM( ) = u(x, T) \i(x, T) EM x ~-, 

k->oc p Xo, Yo, tk 

we have u(xo, so) = u(x0 , 2s0 ) = 1, and therefore, u E Cp(M). The 
other assertions of the lemma follow from Lemma 2.2. 0 

Remark 5.1. From the proof of Lemma 5.1 it follows that if (URHI) 
holds true, then a sequence tn --+ oo satisfies 
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for some xo, Yo E M and so =I 0 if and only if 

lim kj';1(x, y, tn + s) = 1 
n--->oo kj';1(x,y,tn) 

Vx, y E M and s E JR. 

Corollary 5.1. Suppose that (URHI) holds true, then there exists 

a sequence tn ____, oo such that limn_,= k~(x,y,t~)) = a(x, y) exists and 
p Xo,Xo, n 

is positive for all x,y EM. Moreover, a(·,y) E Cp(M), and a(·,y) is a 
parabolic Martin function for ally E M. For each x E M the function 
a(x, ·) satisfies similar properties with respect toP*. 

Proof Take So =I 0 and {tn} such that limn--->oo k~Jfo,yo,t,+so) = 1, 
kp (xo,yo,t,) 

and use Remark 5.1 and a standard diagonalization argument. D 
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