Maximal functions, Riesz potentials and Sobolev's inequality in generalized Lebesgue spaces

Yoshihiro Mizuta and Tetsu Shimomura

Abstract

. Our aim in this paper is to deal with the boundedness of maximal functions in Lebesgue spaces with variable exponent. Our result extends the recent work of Diening [4], Cruz-Uribe, Fiorenza and Neugebauer [3] and the authors [8]. As an application of the boundedness of maximal functions, we show Sobolev's inequality for Riesz potentials with variable exponent.

§1. Introduction

Sobolev functions play a significant role in many fields of analysis. In recent years, the generalized Lebesgue spaces $L^{p(\cdot)}$ and the corresponding Sobolev spaces $W^{m, p(\cdot)}$ have attracted more and more attention, in connection with the study of elasticity, fluid mechanics and differential equations with $p(\cdot)$-growth; see Rǔziččka [16]. One of the most important results for Sobolev functions is so called Sobolev's embedding theorem, and the corresponding result has been extended to Sobolev spaces of variable exponent by many authors; see for example $[2,5,7,8,12,17]$. Our main task in this study is to obtain boundedness properties for Riesz potentials. For this purpose, the boundedness of maximal functions gives a crucial tool by a trick of Hedberg [11], which is originally based on the recent work by Diening [4].

Let Ω be an open set in \mathbf{R}^{n}. We use the notation $B(x, r)$ to denote the open ball centered at x of radius r. For a locally integrable function

[^0]f on Ω, we consider the maximal function $M f$ defined by
$$
M f(x)=\sup _{B} \frac{1}{|B|} \int_{\Omega \cap B}|f(y)| d y,
$$
where the supremum is taken over all balls $B=B(x, r)$ and $|B|$ denotes the volume of B. Let $p(\cdot)$ be a positive continuous function on Ω such that $p(x)>1$ on Ω. Following Orlicz [15] and Kováčik and Rákosník [13], we define the $L^{p(\cdot)}(\Omega)$ norm by
$$
\|f\|_{p(\cdot)}=\|f\|_{p(\cdot), \Omega}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{f(y)}{\lambda}\right|^{p(y)} d y \leq 1\right\}
$$
and denote by $L^{p(\cdot)}(\Omega)$ the space of all measurable functions f on Ω with $\|f\|_{p(\cdot)}<\infty$.

In this paper we are concerned with $p(\cdot)$ satisfying a condition of the form :

$$
|p(x)-p(y)| \leq \frac{\log (\varphi(|x-y|))}{\log (1 /|x-y|)}
$$

whenever $x \in \Omega, y \in \Omega$ and $|x-y|<1 / 2$, where φ is a positive nonincreasing function on $(0, \infty)$ of logarithmic type. Our typical example of φ is

$$
\left.\varphi(r)=a(\log (1 / r))^{b}(\log \log (1 / r))\right)^{c}
$$

for small $r>0$, where $a>0, b>0$ and $-\infty<c<\infty$. In case Ω is not bounded, we further assume that

$$
\left|p(x)-p_{\infty}\right| \leq \frac{C}{\log (e+|x|)} \quad \text { whenever } x \in \Omega,
$$

where $1<p_{\infty}<\infty$.
Our first aim in this paper is to find a function $\Phi(t, x)$ on $\mathbf{R} \times \Omega$ such that

$$
\int_{\Omega} \Phi(M f(x), x) d x \leq C \quad \text { whenever }\|f\|_{p(\cdot)} \leq 1
$$

(in Theorems 2.7 and 4.7 below). If $\varphi(r)=a(\log (e+1 / r))^{b}$, then our result was proved by Diening [4] (when $b=0$ and Ω is bounded), CruzUribe, Fiorenza and Neugebauer [3, Theorem 1.5] (when $b=0$ and Ω is not bounded), and the authors [8, Theorem 2.4] (when $b>0$ and Ω is bounded).

We consider the Riesz potential of order α for a locally integrable function f on Ω, which is defined by

$$
I_{\alpha} f(x)=\int_{\Omega}|x-y|^{\alpha-n} f(y) d y
$$

Here $0<\alpha<n$. As an application of the boundedness of maximal functions, we give Sobolev's inequality for Riesz potentials with variable exponent. We in fact find a function $\Psi(t, x)$ on $\mathbf{R} \times \Omega$ such that

$$
\int_{\Omega} \Psi\left(I_{\alpha} f(x), x\right) d x \leq C \quad \text { whenever }\|f\|_{p(\cdot)} \leq 1
$$

(see Theorems 3.5 and 5.6 below). In case $\varphi(r)=a(\log (e+1 / r))^{b}$, our result was proved by Samko [17] (when $b=0$ and Ω is bounded), Diening [5] (when $b=0$ and $p(\cdot)$ is constant outside of a large ball), Capone, Cruz-Uribe and Fiorenza [2, Theorem 1.6] (when $b=0$ and Ω is not bounded), and the authors [8, Theorem 3.4] (when $b>0$ and Ω is bounded).

For related results, see also Adams-Hedberg [1], Diening [5], EdmundsRákosník [6], Harjulehto-Hästö-Pere[10], Kokilshvili-Samko [12], KováčikRákosník [13], Nekvinda [14], Ružička [16] and the authors [9].

§2. Maximal functions

Throughout this paper, let C denote various constants independent of the variables in question.

Consider a positive nonincreasing function φ on the interval $(0, \infty)$ of logarithmic type, which has the following properties:
$(\varphi 1) \varphi(\infty)=\lim _{t \rightarrow \infty} \varphi(t)>0 ;$
$(\varphi 2)(\log (1 / t))^{-\varepsilon_{0}} \varphi(t)$ is nondecreasing on $\left(0, r_{0}\right)$ for some $\varepsilon_{0}>0$ and $r_{0}>0$.

Remark 2.1. (i) By condition ($\varphi 2$), we see that

$$
C^{-1} \varphi(r) \leq \varphi\left(r^{2}\right) \leq C \varphi(r) \quad \text { whenever } r>0
$$

which implies the doubling condition on φ.
(ii) We see from $(\varphi 2)$ that for each $\delta>0, t^{\delta} \varphi(t)$ is nondecreasing on some interval $(0, T), T=T(\delta)>0$.
(iii) Our typical example of φ is of the form

$$
\varphi(t)=a(\log (1 / t))^{b}(\log (\log (1 / t)))^{c}
$$

for small $t>0$, where $a>0, b>0$ and $c \in \mathbf{R}$.

In this section, let Ω be an open set in \mathbf{R}^{n}. Let $p(\cdot)$ be a positive continuous function on Ω satisfying
(p1) $1<p_{-}(\Omega)=\inf _{\Omega} p(x) \leq \sup _{\Omega} p(x)=p_{+}(\Omega)<\infty$;
(p2) $|p(x)-p(y)| \leq \log (\varphi(|x-y|)) / \log (1 /|x-y|)$ whenever $|x-y|<$ $1 / 2, x \in \Omega$ and $y \in \Omega$.

Lemma 2.2. If $0<r_{0}<1$ and $\log \varphi\left(r_{0}\right)>\varepsilon_{0}$, then $\log \varphi(r) / \log (1 / r)$ is nondecreasing on $\left(0, r_{0}\right)$.

Proof. Let $0<r_{1}<r_{2}<r_{0}<1$. By $(\varphi 2)$, we have

$$
\begin{aligned}
\frac{\log \varphi\left(r_{1}\right)}{\log \left(1 / r_{1}\right)} \leq & \varepsilon_{0} \frac{\log \left(\log \left(1 / r_{1}\right)\right)-\log \left(\log \left(1 / r_{2}\right)\right)}{\log \left(1 / r_{1}\right)}+\frac{\log \varphi\left(r_{2}\right)}{\log \left(1 / r_{1}\right)} \\
= & \frac{\log \varphi\left(r_{2}\right)}{\log \left(1 / r_{2}\right)}+\frac{1}{\log \left(1 / r_{1}\right)}\left\{\varepsilon_{0} \log \left(\frac{\log \left(1 / r_{1}\right)}{\log \left(1 / r_{2}\right)}\right)\right. \\
& \left.+\frac{\log \left(r_{1} / r_{2}\right)}{\log \left(1 / r_{2}\right)} \log \varphi\left(r_{2}\right)\right\} .
\end{aligned}
$$

Since $\log (1+t)<t$ for $t>0$,

$$
\log \left(\frac{\log \left(1 / r_{1}\right)}{\log \left(1 / r_{2}\right)}\right) \leq \frac{\log \left(r_{2} / r_{1}\right)}{\log \left(1 / r_{2}\right)}
$$

so that

$$
\begin{aligned}
& \frac{\log \varphi\left(r_{1}\right)}{\log \left(1 / r_{1}\right)}-\frac{\log \varphi\left(r_{2}\right)}{\log \left(1 / r_{2}\right)} \\
\leq & \frac{1}{\log \left(1 / r_{1}\right)}\left(\frac{\log \left(r_{2} / r_{1}\right)}{\log \left(1 / r_{2}\right)}\right)\left(\varepsilon_{0}-\log \varphi\left(r_{2}\right)\right)<0
\end{aligned}
$$

as required.
Let $1 / p^{\prime}(x)=1-1 / p(x)$. Then note that

$$
\begin{aligned}
p^{\prime}(y)-p^{\prime}(x) & =\frac{p(x)-p(y)}{(p(x)-1)(p(y)-1)} \\
& =\frac{p(x)-p(y)}{(p(x)-1)^{2}}+\frac{(p(x)-p(y))^{2}}{(p(x)-1)^{2}(p(y)-1)}
\end{aligned}
$$

Hence, in view of $(\varphi 2)$, we have the following result.

Lemma 2.3. There exists a positive constant C such that

$$
\left|p^{\prime}(x)-p^{\prime}(y)\right| \leq \omega(|x-y|) \quad \text { whenever } x \in \Omega \text { and } y \in \Omega
$$

where

$$
\omega(r)=\omega(r ; x, C)=\frac{1}{(p(x)-1)^{2}} \frac{\log (C \varphi(r))}{\log (1 / r)}
$$

for $0<r \leq r_{0}$ and $\omega(r)=\omega\left(r_{0}\right)$ for $r \geq r_{0}$.
In what follows, we may assume that $\omega(r)$ is nondecreasing as a function of $r \in(0, \infty)$. Moreover, if f is a function on Ω, then we set $f=0$ outside Ω.

Lemma 2.4. Let f be a nonnegative measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$. Then

$$
\{M f(x)\}^{p(x)} \leq C\left\{M g(x)\left(\varphi\left(M g(x)^{-1}\right)\right)^{n / p(x)}+1\right\}
$$

for all $x \in \Omega$, where $g(y)=f(y)^{p(y)}$.
Proof. For $0<\mu \leq 1$ and $r>0$, we have by Lemma 2.3

$$
\begin{aligned}
f_{B} & \equiv \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y \\
& \leq \mu\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}(1 / \mu)^{p^{\prime}(y)} d y+\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(y)} d y\right) \\
& \leq \mu\left((1 / \mu)^{p^{\prime}(x)+\omega(r)}+F\right)
\end{aligned}
$$

where $F=|B(x, r)|^{-1} \int_{B(x, r)} f(y)^{p(y)} d y$. When F is bounded, say $F \leq$ R_{0}, by considering $\mu=1$, we have

$$
f_{B} \leq C
$$

Hence it suffices to treat the case that $F \geq R_{0}>r_{0}^{-1}$; in this case we may assume that $0<r<r_{0}$ since $\|f\|_{p(\cdot)} \leq 1$. By considering $\mu=F^{-1 /\left\{p^{\prime}(x)+\omega(r)\right\}}$ when $F>1$, we find

$$
f_{B} \leq 2 F^{1 / p(x)} F^{\omega(r) /\left\{p^{\prime}(x)\left(p^{\prime}(x)+\omega(r)\right)\right\}} \leq 2 F^{1 / p(x)} F^{\omega(r) / p^{\prime}(x)^{2}}
$$

If $r \leq F^{-1}<r_{0}$, then we see from Lemma 2.2 that

$$
f_{B} \leq C F^{1 / p(x)}\left(\varphi\left(F^{-1}\right)\right)^{1 / p(x)^{2}} \leq C F^{1 / p(x)}\left(\varphi\left(F^{-1}\right)\right)^{n / p(x)^{2}}
$$

If $F^{-1}<r<r_{0}$, then

$$
\begin{aligned}
& F^{1 / p(x)+\omega(r) / p^{\prime}(x)^{2}} \\
\leq & C r^{-n / p(x)-n \omega(r) / p^{\prime}(x)^{2}}\left(\int_{B(x, r)} f(y)^{p(y)} d y\right)^{1 / p(x)+\omega(r) / p^{\prime}(x)^{2}}
\end{aligned}
$$

Since $r^{-n \omega(r) / p^{\prime}(x)^{2}} \leq C \varphi(r)^{n / p(x)^{2}}$ and $\int_{B(x, r)} f(y)^{p(y)} d y \leq 1$ by our assumption, we obtain

$$
\begin{aligned}
& F^{1 / p(x)+\omega(r) / p^{\prime}(x)^{2}} \\
\leq & C r^{-n / p(x)} \varphi(r)^{n / p(x)^{2}}\left(\int_{B(x, r)} f(y)^{p(y)} d y\right)^{1 / p(x)+\omega(r) / p^{\prime}(x)^{2}} \\
\leq & C r^{-n / p(x)} \varphi(r)^{n / p(x)^{2}}\left(\int_{B(x, r)} f(y)^{p(y)} d y\right)^{1 / p(x)} \\
\leq & C r^{-n / p(x)} \varphi\left(F^{-1}\right)^{n / p(x)^{2}}\left(\int_{B(x, r)} f(y)^{p(y)} d y\right)^{1 / p(x)} \\
\leq & C F^{1 / p(x)} \varphi\left(F^{-1}\right)^{n / p(x)^{2}} .
\end{aligned}
$$

Now it follows that

$$
f_{B} \leq C F^{1 / p(x)} \varphi\left(F^{-1}\right)^{n / p(x)^{2}}
$$

which completes the proof.
Lemma 2.5. For each $\delta>0$, there exists $T_{0}>e$ such that $s^{\delta} \varphi\left(s^{-1}\right)^{-1}$ is nondecreasing on $\left(T_{0}, \infty\right)$.

Proof. By $(\varphi 2)$, it follows that $(\log s)^{\varepsilon_{0}} \varphi\left(s^{-1}\right)^{-1}$ is nondecreasing on $\left(T_{1}, \infty\right)$ for some $T_{1}>e$. Since

$$
s^{\delta} \varphi\left(s^{-1}\right)^{-1}=s^{\delta}(\log s)^{-\varepsilon_{0}} \times(\log s)^{\varepsilon_{0}} \varphi\left(s^{-1}\right)^{-1}
$$

the present lemma is obtained.
Lemma 2.6. If $\|f\|_{p(\cdot)} \leq 1$, then

$$
\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-n / p(x)^{2}}\right\}^{p(x)} \leq C(M g(x)+1)
$$

for $x \in \Omega$.

Proof. For simplicity, set $a=M f(x)$ and $b=M g(x)$. By Lemma 2.4, we have

$$
a^{p} \leq C\left(b \varphi\left(b^{-1}\right)^{c p}+1\right)
$$

with $p=p(x)$ and $c=n / p^{2}$. We may assume that a is large enough, that is, $a>T_{0}>1$. Using Lemma 2.5, we find

$$
\left\{a \varphi\left(a^{-1}\right)^{-c}\right\}^{p} \leq C b \varphi\left(b^{-1}\right)^{c p} \times \varphi\left(C b^{-1 / p} \varphi\left(b^{-1}\right)^{-c}\right)^{-c p} .
$$

Note from ($\varphi 2$) that

$$
\varphi\left(C b^{-1 / p} \varphi\left(b^{-1}\right)^{-c}\right)^{-1} \leq C \varphi\left(b^{-1}\right)^{-1}
$$

Hence it follows that

$$
\left\{a \varphi\left(a^{-1}\right)^{-c}\right\}^{p} \leq C b
$$

whenever $a>T_{0}$, which proves

$$
\left\{a \varphi\left(a^{-1}\right)^{-c}\right\}^{p} \leq C(b+1),
$$

as required.
Theorem 2.7. Let Ω be an open set in \mathbf{R}^{n} such that $|\Omega|<\infty$. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\int_{\Omega}\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)} d x \leq C
$$

whenever f is a measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$.
Proof. Let $p_{0}(x)=p(x) / p_{0}$ for $1<p_{0}<p_{-}(\Omega)$. Then Lemma 2.6 yields

$$
\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-n / p_{0}(x)^{2}}\right\}^{p_{0}(x)} \leq C\left\{M g_{0}(x)+1\right\}
$$

for $x \in \Omega$, where $g_{0}(y)=f(y)^{p_{0}(y)}$. Choosing $p_{0}>1$ such that $n p_{0}^{2} / p(x)^{2}<A(x)$, we establish

$$
\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)} \leq C\left\{M g_{0}(x)+1\right\}^{p_{0}} .
$$

Since $g_{0} \in L^{p_{0}}(\Omega)$, we deduce the required inequality by the boundedness of maximal functions in $L^{p_{0}}$.

Remark 2.8. Set $\Phi(r, x)=\left\{r \varphi\left(r^{-1}\right)^{-A(x)}\right\}^{p(x)}$ for $r \geq 0$ and $x \in \Omega$. Then Theorem 2.7 assures the existence of $C>0$ such that

$$
\int_{\Omega} \Phi(M f(x) / C, x) d x \leq 1 \quad \text { whenever }\|f\|_{p(\cdot)} \leq 1
$$

As in Edmunds and Rákosník [6], we define

$$
\|f\|_{\Phi}=\|f\|_{\Phi, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} \Phi(|f(x)| / \lambda, x) d x \leq 1\right\}
$$

then it follows that

$$
\|M f\|_{\Phi} \leq C\|f\|_{p(\cdot)} \quad \text { for } f \in L^{p(\cdot)}(\Omega)
$$

If $\varphi(r)=a(\log (e+1 / r))^{b}$, then Theorem 2.7 was proved by Diening [4] (when $b=0$) and the authors [8, Theorem 2.4] (when b is general).

Remark 2.9. For $0<r<1 / 2$, let

$$
G=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<1,-1<x_{2}<1\right\}
$$

and

$$
G(r)=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<r, r<x_{2}<2 r\right\} .
$$

For $p(0)=p_{0}>1$, define

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}p_{0}-\log \left(\varphi\left(x_{2}\right)\right) / \log \left(1 / x_{2}\right) & \text { when } 0<x_{2} \leq r_{0} \\ p_{0} & \text { when } x_{2} \leq 0\end{cases}
$$

set $p\left(x_{1}, x_{2}\right)=p\left(x_{1}, r_{0}\right)$ when $x_{2}>r_{0}$. Here we take $r_{0}>0$ so small that $p\left(x_{1}, r_{0}\right)>1$. Consider

$$
f_{r}(y)=\chi_{G(r)}(y)
$$

with χ_{E} denoting the characteristic function of a set E, and set $g_{r}=$ $f_{r} /\left\|f_{r}\right\|_{p(\cdot), G}$. Then we insist for $0<r<r_{0}$:
(i) $\left\|f_{r}\right\|_{p(\cdot), G} \leq C_{1} r^{2 / p_{0}} \varphi(r)^{-2 / p_{0}^{2}}$;
(ii) $M g_{r}(x) \geq C_{2} r^{-2 / p_{0}} \varphi(r)^{2 / p_{0}^{2}}$ for $0<x_{1}<r$ and $-r<x_{2}<0$.

By integration of (ii) we see that

$$
\int_{G}\left\{M g_{r}(x)\left(\varphi\left(M g_{r}(x)^{-1}\right)\right)^{-2 / p(x)^{2}}\right\}^{p(x)} d x \geq C_{3}
$$

which means that Theorem 2.7 does not hold for $A(x)<2 / p(x)^{2}$.

Remark 2.10. For $0<r<1 / 2$, let G and $G(r)$ be as above. Define

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}p_{0}+\log \left(\varphi\left(x_{2}\right)\right) / \log \left(1 / x_{2}\right) & \text { when } 0<x_{2} \leq r_{0} \\ p_{0} & \text { when } x_{2} \leq 0\end{cases}
$$

and $p\left(x_{1}, x_{2}\right)=p\left(x_{1}, r_{0}\right)$ when $x_{2}>r_{0}$. Setting

$$
G^{\prime}(r)=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<r,-r<x_{2}<0\right\}
$$

we consider

$$
f_{r}^{\prime}(y)=\chi_{G^{\prime}(r)}(y)
$$

and set $g_{r}^{\prime}=f_{r}^{\prime} /\left\|f_{r}^{\prime}\right\|_{p(\cdot), G}$. Then we insist for $0<r<r_{0} / 2$:
(i) $\left\|f_{r}^{\prime}\right\|_{p(\cdot), G}=r^{2 / p_{0}}$;
(ii) $M g_{r}^{\prime}(x) \geq C_{1} r^{-2 / p_{0}}$ for $0<x_{1}<r$ and $r<x_{2}<2 r$;
(iii) $\int_{G}\left\{M g_{r}^{\prime}(x) \varphi\left(M g_{r}^{\prime}(x)^{-1}\right)^{-2 / p(x)^{2}}\right\}^{p(x)} d x \geq C_{2}$,
as above.

§3. Sobolev's inequality

Let $p(\cdot)$ be a continuous function on Ω satisfying (p1) and (p2). Further, suppose

$$
p_{+}=p_{+}(\Omega)<n / \alpha
$$

and set

$$
\frac{1}{p^{\sharp}(x)}=\frac{1}{p(x)}-\frac{\alpha}{n} .
$$

For $0<\alpha<n$, we consider the Riesz potential $I_{\alpha} f$ of measurable functions $f \in L^{p(\cdot)}(\Omega)$, which is defined by

$$
I_{\alpha} f(x)=\int|x-y|^{\alpha-n} f(y) d y
$$

recall that we set $f=0$ outside Ω. Set

$$
S_{f}=\left\{x \in \mathbf{R}^{n}: f(x) \neq 0\right\} .
$$

In this section, we assume

$$
\left|S_{f}\right|<\infty,
$$

where $|E|$ denotes the n-dimensional measure of a measurable set E.
Lemma 3.1. Let f be a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $\left|S_{f}\right| \leq 1$. Then

$$
\int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{-n / p^{\sharp}(x)} \varphi(\delta)^{n / p(x)^{2}}
$$

for $x \in \Omega$ and $\delta \in(0,1)$.
Proof. For $\mu>0$, since $\|f\|_{p(\cdot)} \leq 1$, we have

$$
\begin{aligned}
& \int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
\leq & \mu\left(\int_{S_{f} \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y+\int_{S_{f} \backslash B(x, \delta)} f(y)^{p(y)} d y\right) \\
\leq & \mu\left(\int_{S_{f} \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y+1\right) .
\end{aligned}
$$

Consider the set

$$
E=\left\{y \in S_{f}:|x-y|^{\alpha-n} \geq \mu\right\} \cap \Omega
$$

Then we have

$$
\int_{S_{f} \backslash\{E \cup B(x, \delta)\}}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y \leq\left|S_{f}\right| \leq 1
$$

by our assumption. Further, since $p^{\prime}(y) \leq p^{\prime}(x)+\omega(|x-y|)$ by Lemma 2.3, we have

$$
\begin{aligned}
& \int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y \\
\leq & \int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(x)+\omega(|x-y|)} d y
\end{aligned}
$$

If $\mu>1$, then we see that

$$
\begin{aligned}
& \int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(x)+\omega(|x-y|)} d y \\
\leq & \mu^{-p^{\prime}(x)-\omega(\delta)} \int_{\mathbf{R}^{n} \backslash B(x, \delta)}|x-y|^{(\alpha-n)\left(p^{\prime}(x)+\omega(|x-y|)\right)} d y \\
\leq & C \mu^{-p^{\prime}(x)-\omega(\delta)} \delta^{(\alpha-n)\left(p^{\prime}(x)+\omega(\delta)\right)+n} \\
\leq & C \mu^{-p^{\prime}(x)-\omega(\delta)} \delta^{p^{\prime}(x)(\alpha-n / p(x))} \varphi(\delta)^{(n-\alpha) /(p(x)-1)^{2}} \\
= & C \mu^{-p^{\prime}(x)-\omega(\delta)} \delta^{-p^{\prime}(x) n / p^{\sharp}(x)} \varphi(\delta)^{(n-\alpha) /(p(x)-1)^{2}} .
\end{aligned}
$$

Hence it follows that

$$
\begin{aligned}
& \int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
\leq & C \mu\left(\mu^{-p^{\prime}(x)-\omega(\delta)} \delta^{-p^{\prime}(x) n / p^{\sharp}(x)} \varphi(\delta)^{(n-\alpha) /(p(x)-1)^{2}}+1\right) .
\end{aligned}
$$

Considering $\mu=\delta^{-n / p^{\sharp}(x)} \varphi(\delta)^{n / p(x)^{2}}$ when δ is small, we see that

$$
\int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{-n / p^{\sharp}(x)} \varphi(\delta)^{n / p(x)^{2}},
$$

as required.
Lemma 3.2. Let f be a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $\left|S_{f}\right| \leq 1$. Then

$$
I_{\alpha} f(x) \leq C\left[\{M f(x)\}^{p(x) / p^{\sharp}(x)}\left\{\varphi\left(M f(x)^{-1}\right)\right\}^{\alpha / p(x)}+1\right]
$$

for $x \in \Omega$.
Proof. For $0<\delta<1$ we have by Lemma 3.1

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-n} f(y) d y+\int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
& \leq C \delta^{\alpha} M f(x)+C \delta^{-n / p^{\sharp}(x)} \varphi(\delta)^{n / p(x)^{2}} .
\end{aligned}
$$

Considering $\delta=\{M f(x)\}^{-p(x) / n}\left\{\varphi\left(M f(x)^{-1}\right)\right\}^{1 / p(x)}$ when $M f(x)$ is large enough, we see that

$$
I_{\alpha} f(x) \leq C\left[\{M f(x)\}^{p(x) / p^{\sharp}(x)}\left\{\varphi\left(M f(x)^{-1}\right)\right\}^{\alpha / p(x)}+1\right],
$$

as required.
Lemma 3.3. Let $p>1$ and $1 / p^{\sharp}=1 / p-\alpha / n$. For $\beta>\alpha$, set $c=\beta / p$ and $d=\gamma / p^{2}$, where $\beta / \gamma=\alpha / n$. If $s>0, t>0$ and $s^{p^{\sharp}} \leq C_{1}\left\{t^{p} \varphi\left(t^{-1}\right)^{c p^{\sharp}}+1\right\}$, then

$$
\left\{s \varphi\left(s^{-1}\right)^{-d}\right\}^{p^{\sharp}} \leq C_{2}\left\{t^{p} \varphi\left(t^{-1}\right)^{-d p}+1\right\}
$$

where C_{2} is a positive constant independent of s and t.
Proof. We may assume that t is large enough, that is, $t>T_{0}>1$. Using Lemma 2.5, we find

$$
\left\{s \varphi\left(s^{-1}\right)^{-d}\right\}^{p^{\sharp}} \leq C t^{p} \varphi\left(t^{-1}\right)^{c p^{\sharp}} \times \varphi\left(t^{-p / p^{\sharp}} \varphi\left(t^{-1}\right)^{-c}\right)^{-d p^{\sharp}}
$$

with $d=\gamma / p^{2}$. Note from ($\varphi 2$) that

$$
\varphi\left(t^{-p / p^{\sharp}} \varphi\left(t^{-1}\right)^{-c}\right)^{-1} \leq C \varphi\left(t^{-1}\right)^{-1}
$$

Hence it follows that

$$
\left\{s \varphi\left(s^{-1}\right)^{-d}\right\}^{p^{\sharp}} \leq C t^{p} \varphi\left(t^{-1}\right)^{(c-d) p^{\sharp}}=C t^{p} \varphi\left(t^{-1}\right)^{-d p}
$$

whenever $t>T_{0}$, which proves

$$
\left\{s \varphi\left(s^{-1}\right)^{-d}\right\}^{p^{\sharp}} \leq C\left\{t^{p} \varphi\left(t^{-1}\right)^{-d p}+1\right\}
$$

as required.
By Lemmas 3.2 and 3.3, we have the following result.
Corollary 3.4. Let f be a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $\left|S_{f}\right| \leq 1$. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\begin{aligned}
& \left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} \\
\leq & C\left[\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)}+1\right]
\end{aligned}
$$

for $x \in \Omega$.
Thus Theorem 2.7 and Corollary 3.4 yield the following Sobolev inequality for Riesz potentials.

Theorem 3.5. Let Ω be an open set in \mathbf{R}^{n} such that $|\Omega|<\infty$. Suppose $p_{+}(\Omega)<n / \alpha$. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\int_{\Omega}\left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} d x \leq C
$$

whenever f is a nonnegative measurable function on Ω with $\|f\|_{p(\cdot), \Omega} \leq$ 1.

Remark 3.6. If $\varphi(r)=a(\log (e+1 / r))^{b}$, then Theorem 3.5 was proved by the authors [8, Theorem 3.4]. See also Capone, Cruz-Uribe and Fiorenza [2, Theorem 1.6], Diening [4] and the authors [9, Theorem 3.3].

Remark 3.7. In Remark 2.9, we see that

$$
I_{\alpha} g_{r}(x) \geq C_{1} r^{-2 / p^{\sharp}(x)} \varphi(r)^{2 / p_{0}^{2}}
$$

for $0<x_{1}<r$ and $-r<x_{2}<0$. Hence we have

$$
\int_{G}\left\{I_{\alpha} g_{r}(x)\left(\varphi\left(I_{\alpha} g_{r}(x)^{-1}\right)\right)^{-2 / p(x)^{2}}\right\}^{p^{\sharp}(x)} d x \geq C_{2}
$$

Remark 3.8. In Remark 2.10, we see that

$$
I_{\alpha} g_{r}^{\prime}(x) \geq C_{1} r^{-2 / p_{0}^{\sharp}}
$$

for $0<x_{1}<r$ and $r<x_{2}<2 r$. Hence we have

$$
\int_{G}\left\{I_{\alpha} g_{r}^{\prime}(x)\left(\varphi\left(I_{\alpha} g_{r}^{\prime}(x)^{-1}\right)\right)^{-2 / p(x)^{2}}\right\}^{p^{\sharp}(x)} d x \geq C_{2}
$$

In the next section, we treat the case when Ω might not be bounded, as in Cruz-Uribe, Fiorenza and Neugebauer [3].

§4. Maximal functions on general domains

In this section we treat the boundedness of maximal functions on general domains, which gives a generalization of the result by CruzUribe, Fiorenza and Neugebauer [3].

Let Ω be an open set in \mathbf{R}^{n}. Consider a positive continuous function $p(\cdot)$ on Ω such that
(p1) $1<p_{-}(\Omega)=\inf _{\Omega} p(x) \leq \sup _{\Omega} p(x)=p_{+}(\Omega)<\infty ;$
(p2) $|p(x)-p(y)| \leq \log (\varphi(|x-y|)) / \log (1 /|x-y|)$ whenever $|x-y|<$ $1 / 2, x \in \Omega$ and $y \in \Omega$
(p3) $|p(x)-p(y)| \leq C / \log (e+|x|)$ whenever $x \in \Omega, y \in \Omega$ and $|y| \geq|x|$.
If (p3) holds, then p has a finite limit p_{∞} at infinity and

$$
\left|p(x)-p_{\infty}\right| \leq \frac{C}{\log (e+|x|)} \quad \text { for all } x \in \Omega
$$

For a nonnegative measurable function f on Ω, set

$$
F(x)=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(y)} d y
$$

as before. If $\|f\|_{p(\cdot)} \leq 1$ and $F(x) \geq 1$, then we have by the proof of Lemma 2.4

$$
f_{B}=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y \leq C F(x)^{1 / p(x)} \varphi\left(F(x)^{-1}\right)^{n / p(x)^{2}}
$$

so that

$$
\begin{equation*}
\left\{f_{B}\left(\varphi\left(f_{B}^{-1}\right)\right)^{-n / p(x)^{2}}\right\}^{p(x)} \leq C F(x) \tag{4.1}
\end{equation*}
$$

Lemma 4.1. Let f be a nonnegative measurable function on Ω. If $F(x) \leq 1$ and $f(y) \geq 1$ or $f(y)=0$ for $y \in \Omega$, then

$$
\left(f_{B}\right)^{p(x)} \leq F(x)
$$

Proof. If $f(y) \geq 1$ or $f(y)=0$ for $y \in \Omega$, then

$$
f_{B}=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(y)} d y=F(x)
$$

Since $F(x) \leq 1, f_{B} \leq 1$, so that

$$
\left(f_{B}\right)^{p(x)} \leq f_{B} \leq F(x)
$$

as required.
By (4.1) and Lemma 4.1 we have the following result.
Corollary 4.2. Let f be a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$. If $f(y) \geq 1$ or $f(y)=0$ for $y \in \Omega$, then

$$
\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-n / p(x)^{2}}\right\}^{p(x)} \leq C M g(x)
$$

where $g(y)=f(y)^{p(y)}$.
For a function f on \mathbf{R}^{n}, we define the Hardy operator H by

$$
H f(x)=\frac{1}{|B(0,|x|)|} \int_{B(0,|x|)}|f(y)| d y
$$

for $x \in \mathbf{R}^{n} \backslash\{0\}$ and $H f(0)=0$.
Lemma 4.3. Let f be a nonnegative measurable function on Ω. If $f \leq 1$ on Ω, then

$$
\begin{equation*}
\left(f_{B}\right)^{p(x)} \leq C\left[F(x)+e(x)+\{H f(x)\}^{p(x)}\right] \tag{4.2}
\end{equation*}
$$

where $e(x)=(e+|x|)^{-n}$.

Proof. Note that $F(x) \leq 1$ since $f \leq 1$ on Ω. If $x \in \Omega \cap B(0,1)$, then

$$
f_{B} \leq 1
$$

which proves (4.2).
For every subset E of Ω, we set $p_{+}(E)=\sup _{E} p(x)$ and $p_{-}(E)=$ $\inf _{E} p(x)$. Fix $x \in \Omega \backslash B(0,1)$, and take a ball $B=B(x, r)$. We will consider two cases.

Case 1: $r \geq|x| / 2$. Since $p_{+}=p_{+}(\Omega)<\infty$, we have

$$
\begin{aligned}
\left(f_{B}\right)^{p(x)} \leq & 2^{p_{+}}\left(\frac{1}{|B|} \int_{B \cap B(0,|x|)} f(y) d y\right)^{p(x)} \\
& +2^{p_{+}}\left(\frac{1}{|B|} \int_{B \backslash B(0,|x|)} f(y) d y\right)^{p(x)}
\end{aligned}
$$

Then, since $r \geq|x| / 2$, we see that

$$
\frac{1}{|B|} \int_{B \cap B(0,|x|)} f(y) d y \leq C H f(x)
$$

We set $E=(B \backslash B(0,|x|)) \cap \Omega$ and

$$
D=\{y: f(y) \geq e(x)\}
$$

By Hölder's inequality, we have

$$
\frac{1}{|B|} \int_{E} f(y) d y \leq\left(\frac{1}{|B|} \int_{E \cap D} f(y)^{p_{-}(E)} d y\right)^{1 / p_{-}(E)}+e(x)
$$

By assumption (p3), if $y \in E$, then

$$
0 \leq p(y)-p_{-}(E) \leq p_{+}(E)-p_{-}(E) \leq \frac{C}{\log (e+|x|)}
$$

Therefore, if $y \in E \cap D$, then

$$
\begin{aligned}
f(y)^{p_{-}(E)} & =f(y)^{p(y)} f(y)^{p_{-}(E)-p(y)} \\
& \leq f(y)^{p(y)} e(x)^{-C / \log (e+|x|)} \leq C f(y)^{p(y)}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left(\frac{1}{|B|} \int_{E} f(y) d y\right)^{p(x)} \\
\leq & C\left(\frac{1}{|B|} \int_{E \cap D} f(y)^{p(y)} d y\right)^{p(x) / p_{-}(E)}+C e(x)^{p(x)} \\
\leq & C F(x)^{p(x) / p_{-}(E)}+C e(x)^{p(x)}
\end{aligned}
$$

Since $F(x) \leq 1$ by our assumption and $e(x) \leq 1$, we obtain

$$
\left(\frac{1}{|B|} \int_{E} f(y) d y\right)^{p(x)} \leq C F(x)+C e(x)
$$

which proves (4.2).
Case 2: $0<r \leq|x| / 2$. In this case, we see as before that

$$
0 \leq p(y)-p_{-}(B \cap \Omega) \leq p_{+}(B \cap \Omega)-p_{-}(B \cap \Omega) \leq \frac{C}{\log (e+|x|)}
$$

for $y \in B \cap \Omega$. Hence it follows as above that

$$
\begin{aligned}
& \left(\frac{1}{|B|} \int_{B} f(y) d y\right)^{p(x)} \\
\leq & C\left(\frac{1}{|B|} \int_{B} f(y)^{p(y)} d y\right)^{p(x) / p_{-}(B \cap \Omega)}+C e(x)^{p(x)} \\
\leq & C F(x)+C e(x)
\end{aligned}
$$

as required.
Lemma 4.4. Let f be a nonnegative measurable function on Ω such that $f \leq 1$ on Ω. Then

$$
\{H f(x)\}^{p(x)} \leq C H g(x)+C e(x)
$$

where $g(y)=f(y)^{p(y)}$.
Proof. Let f be a nonnegative measurable function on Ω such that $f \leq 1$ on Ω. Then, since $0 \leq f \leq 1$ on Ω, we see that

$$
H\left(f \chi_{B\left(0, r_{0}\right)}\right)(x) \leq C e(x) \quad \text { on } \Omega
$$

Hence we may assume that $f=0$ on $B\left(0, r_{0}\right)$.

For $\mu \geq 1$ and $r=|x|>r_{0}$, we have

$$
\frac{1}{|B(0, r)|} \int_{B(0, r)} f(y) d y \leq \mu\left(\frac{1}{|B(0, r)|} \int_{B(0, r)}(1 / \mu)^{p^{\prime}(y)} d y+G\right)
$$

where $G=H g(x)$ with $g(y)=f(y)^{p(y)}$. Then note from (p3) that

$$
-p^{\prime}(y) \leq-p^{\prime}(x)+\omega(|y|) \quad \text { for } y \in B(0, r)
$$

where $\omega(t)=C / \log (e+t)$. If $\log \mu \leq c_{1} \log r$ and $0<m<n$, then we can find $r_{1}>e$ such that

$$
\mu^{-p^{\prime}(y)} t^{m} \leq C \mu^{-p^{\prime}(x)+\omega(r)} r^{m}
$$

whenever $r_{1} \leq t=|y|<r=|x|$, which yields

$$
H f(x) \leq \mu\left(C \mu^{-p^{\prime}(x)+\omega(r)}+G\right)
$$

First assume $r^{-n}<G \leq 1$. Then we set $\mu=G^{-1 /\left\{p^{\prime}(x)-\omega(r)\right\}}$ and, noting that $\mu \leq C r^{n}$, we have

$$
H f(x) \leq C G^{1 / p(x)} G^{-\omega(r) /\left\{p^{\prime}(x)\left(p^{\prime}(x)-\omega(r)\right)\right\}} \leq C G^{1 / p(x)}
$$

Next, if $G \leq r^{-n}$, then we set $\mu=r^{n / p^{\prime}(x)}$ and obtain

$$
H f(x) \leq C e(x)^{1 / p(x)}+G^{1 / p(x)} \leq C e(x)^{1 / p(x)}
$$

If $|x| \leq r_{1}$, then

$$
H f(x) \leq 1 \leq C e(x)
$$

which completes the proof.
Combining Lemma 4.3 with Lemma 4.4, we obtain the following result.

Corollary 4.5. Let f be a nonnegative measurable function on Ω. If $f \leq 1$ on Ω, then

$$
\{M f(x)\}^{p(x)} \leq C\{M g(x)+e(x)+H g(x)\}
$$

where $e(x)=(e+|x|)^{-n}$ and $g(y)=f(y)^{p(y)}$.
By Hardy's inequality we can prove the following inequality (cf. Lemma 5.4).

Lemma 4.6. Let g be a nonnegative measurable function on \mathbf{R}^{n} such that $\|g\|_{p_{0}} \leq 1,1<p_{0}<\infty$. Then

$$
\int\{H g(x)\}^{p_{0}} d x \leq C
$$

Now, as in Cruz-Uribe, Fiorenza and Neugebauer [3], we can prove the following result.

Theorem 4.7. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\int_{\Omega}\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)} d x \leq C
$$

whenever f is a measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$.
Proof. For $p_{0}>1$, set $p_{0}(x)=p(x) / p_{0}$ and $g_{0}(y)=f(y)^{p_{0}(y)}$. Then we have by Corollaries 4.2 and 4.5

$$
\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-n / p_{0}(x)^{2}}\right\}^{p_{0}(x)} \leq C\left\{M g_{0}(x)+e(x)+H g_{0}(x)\right\}
$$

If $a>n p_{0}^{2}$, then

$$
\begin{aligned}
& \left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)} \\
\leq & C\left\{M g_{0}(x)+e(x)+H g_{0}(x)\right\}^{p_{0}} \\
\leq & C M g_{0}(x)^{p_{0}}+C e(x)^{p_{0}}+C\left\{H g_{0}(x)\right\}^{p_{0}}
\end{aligned}
$$

Since $p_{0}>1, M$ is bounded on $L^{p_{0}}(\Omega)$ and $e(x) \in L^{p_{0}}\left(\mathbf{R}^{n}\right)$, we find

$$
\int_{\Omega}\left\{M f(x)\left(\varphi\left(M f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)} d x \leq C+C \int_{\mathbf{R}^{n}}\left\{H g_{0}(x)\right\}^{p_{0}} d x
$$

Thus Lemma 4.6 yields the required inequality.

§5. Sobolev's inequality for general domains

In this section we extend Sobolev's inequality to general domains Ω. Consider a positive continuous function $p(\cdot)$ on Ω satisfying
$\left(\mathrm{p} 1^{\prime}\right) 1<p_{-}=p_{-}(\Omega) \leq p_{+}(\Omega)=p_{+}<n / \alpha ;$
(p2) $|p(x)-p(y)| \leq \log (\varphi(|x-y|)) / \log (1 /|x-y|)$ whenever $x \in \Omega$, $y \in \Omega$ and $|x-y|<1 / 2 ;$
(p3) $|p(x)-p(y)| \leq C / \log (e+|x|)$ whenever $x \in \Omega, y \in \Omega$ and $|y| \geq|x|$.
By (p 3) or ($\mathrm{p} 3^{\prime}$) we can find $R_{0}>1$ such that

$$
\begin{equation*}
p(x) \leq p_{\infty}+\frac{C}{\log (e+|x|)}<\frac{n}{\alpha} \tag{3}
\end{equation*}
$$

for $x \in \Omega \backslash B\left(0, R_{0} / 2\right)$.
Lemma 5.1. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\int_{\Omega}\left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} d x \leq C
$$

whenever f is a nonnegative measurable function on Ω such that $f=0$ outside $B\left(0, R_{0}\right)$ and $\|f\|_{p(\cdot)} \leq 1$.

Proof. Let f be a nonnegative measurable function on Ω such that $f=0$ on $\mathbf{R}^{n} \backslash B\left(0, R_{0}\right)$ and $\|f\|_{p(\cdot)} \leq 1$. In view of Theorem 3.5, we have

$$
\int_{B\left(0,2 R_{0}\right)}\left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} d x \leq C .
$$

If $x \in \mathbf{R}^{n} \backslash B\left(0,2 R_{0}\right)$, then

$$
\begin{aligned}
I_{\alpha} f(x) & \leq(|x| / 2)^{\alpha-n} \int_{B\left(0, R_{0}\right)} f(y) d y \\
& \leq(|x| / 2)^{\alpha-n} \int_{B\left(0, R_{0}\right)}\left\{1+f(y)^{p(y)}\right\} d y \leq C|x|^{\alpha-n}
\end{aligned}
$$

so that

$$
\int_{\Omega \backslash B\left(0,2 R_{0}\right)} I_{\alpha} f(x)^{q_{0}} d x \leq C
$$

whenever $q_{0}(\alpha-n)+n<0$. Now it follows that

$$
\int_{\Omega}\left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} d x \leq C
$$

as required.
Lemma 5.2. If f is a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $f=0$ on $B\left(0, R_{0}\right)$, then

$$
\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n / p(x)}
$$

for $x \in \Omega \backslash B\left(0, R_{0}\right)$ and $\delta \geq 1$.
Proof. For $x \in \Omega \backslash B\left(0, R_{0}\right)$ and $\mu>0$, since $\|f\|_{p(\cdot)} \leq 1$, we have

$$
\begin{aligned}
& \int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}|x-y|^{\alpha-n} f(y) d y \\
\leq & \mu\left(\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y\right. \\
& \left.+\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}} f(y)^{p(y)} d y\right) \\
\leq & \mu\left(\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y+1\right) .
\end{aligned}
$$

First consider the case $1 \leq \delta \leq 2|x|$. Let $E=\{y \in \Omega \backslash B(0,|x| / 2)$: $\left.|x-y|^{\alpha-n} / \mu>1\right\}$. If we set

$$
\beta_{1} \equiv \beta_{1}(x)=p^{\prime}(x)-\frac{C}{\log (e+|x|)}
$$

then it follows from (3) that

$$
p^{\prime}(y) \geq \beta_{1}>\frac{n}{n-\alpha} \quad \text { for } y \in \Omega \backslash B(0,|x| / 2)
$$

Hence we obtain

$$
\begin{aligned}
& \int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta) \cup E\}}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y \\
\leq & \int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta) \cup E\}}\left(|x-y|^{\alpha-n} / \mu\right)^{\beta_{1}} d y \\
\leq & \mu^{-\beta_{1}} \int_{\Omega \backslash B(x, \delta)}|x-y|^{(\alpha-n) \beta_{1}} d y \\
\leq & C \mu^{-\beta_{1}} \delta^{(\alpha-n) \beta_{1}+n} .
\end{aligned}
$$

Considering $\mu=\delta^{\alpha-n+n / \beta_{1}}$, we see that

$$
\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta) \cup E\}}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y \leq C,
$$

so that

$$
\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta) \cup E\}}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n+n / \beta_{1}}
$$

Similarly, if we set

$$
\beta_{2} \equiv \beta_{2}(x)=p^{\prime}(x)+\frac{C}{\log (e+|x|)},
$$

then it follows from (3) that

$$
p^{\prime}(y) \leq \beta_{2} \quad \text { for } y \in \Omega \backslash B(0,|x| / 2)
$$

Note here that

$$
\begin{aligned}
\int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y & \leq \int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{\beta_{2}} d y \\
& \leq \mu^{-\beta_{2}} \int_{\mathbf{R}^{n} \backslash B(x, \delta)}|x-y|^{(\alpha-n) \beta_{2}} d y \\
& \leq C \mu^{-\beta_{2}} \delta^{(\alpha-n) \beta_{2}+n}
\end{aligned}
$$

Since $\mu=\delta^{\alpha-n+n / \beta_{1}}$ and $\delta \geq 1$, we see that

$$
\int_{E \backslash B(x, \delta)}\left(|x-y|^{\alpha-n} / \mu\right)^{p^{\prime}(y)} d y \leq C \delta^{n\left(1-\beta_{2} / \beta_{1}\right)} \leq C,
$$

so that

$$
\int_{E \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n+n / \beta_{1}}
$$

Therefore

$$
\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n+n / \beta_{1}} .
$$

Since $1 \leq \delta \leq 2|x|$,

$$
\delta^{\alpha-n+n / \beta_{1}} \leq C \delta^{\alpha-n+n / p^{\prime}(x)}=C \delta^{\alpha-n / p(x)}
$$

so that

$$
\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n / p(x)}
$$

Next consider the case $\delta>2|x| \geq 2 R_{0}$. Then

$$
\int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \int_{\Omega \backslash B\left(X_{\delta}, \delta / 2\right)}\left|X_{\delta}-y\right|^{\alpha-n} f(y) d y
$$

where $X_{\delta}=(\delta / 4,0, \ldots, 0) \in \mathbf{R}^{n}$. Hence the above considerations yield

$$
\int_{\Omega \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-n / p(x)}
$$

Thus the proof is completed.
For a measurable function f on \mathbf{R}^{n}, we define the operator H_{α} by

$$
H_{\alpha} f(x)=|x|^{\alpha-n} \int_{B(0,|x|)}|f(y)| d y
$$

for $x \in \mathbf{R}^{n} \backslash\{0\}$ and $H_{\alpha} f(0)=0$.
Lemma 5.3. Let f be a nonnegative measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$. If $x \in \Omega$ and $M f(x) \leq 1$, then

$$
\left\{I_{\alpha} f(x)\right\}^{p^{\sharp}(x)} \leq C\{M f(x)\}^{p(x)}+C\left\{H_{\alpha} f(x)\right\}^{p^{\sharp}(x)}
$$

Proof. Let f be a nonnegative measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$. For $\delta \geq 1$ we have by Lemma 5.2

$$
\begin{aligned}
I_{\alpha} f(x)= & \int_{B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
& +\int_{\Omega \backslash\{B(0,|x| / 2) \cup B(x, \delta)\}}|x-y|^{\alpha-n} f(y) d y \\
& +\int_{B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y \\
\leq & C \delta^{\alpha} M f(x)+C \delta^{\alpha-n / p(x)}+C H_{\alpha} f(x)
\end{aligned}
$$

for $x \in \mathbf{R}^{n}$. If we set $\delta=\{M f(x)\}^{-p(x) / n}$, then it follows that

$$
I_{\alpha} f(x) \leq C\{M f(x)\}^{p(x) / p^{\sharp}(x)}+C H_{\alpha} f(x),
$$

which yields the required inequality.
Lemma 5.4. Let $1<p_{1}<n / \beta$ and $1 / q_{1}=1 / p_{1}-\beta / n$. Then

$$
\left\|H_{\beta} f\right\|_{q_{1}} \leq C\|f\|_{p_{1}} .
$$

This is a consequence of the usual Sobolev's inequality; see e.g. the book by Adams and Hedberg [1].

Lemma 5.5. If f is a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $f=0$ on $B\left(0, R_{0}\right)$, then

$$
\int_{\Omega}\left\{H_{\alpha} f(x)\right\}^{p^{\sharp}(x)} d x \leq C .
$$

Proof. Let f be a nonnegative measurable function on Ω such that $\|f\|_{p(\cdot)} \leq 1$ and $f=0$ on $B\left(0, R_{0}\right)$. Write

$$
f=f_{1}+f_{2}
$$

where $f_{1}=f \chi_{\{y: f(y) \geq 1\}}$ and $f_{2}=f \chi_{\{y: f(y)<1\}}$. Then we see that

$$
H_{\alpha} f_{1}(x) \leq|x|^{\alpha-n} \int_{B(0,|x|)} f_{1}(y)^{p(y)} d y \leq|x|^{\alpha-n}
$$

for $|x| \geq R_{0}$, so that

$$
\int_{\Omega}\left\{H_{\alpha} f_{1}(x)\right\}^{p^{\sharp}(x)} d x \leq C .
$$

Thus we may assume that $f=f_{2} \leq 1$ on Ω.
Let $1 / q_{\infty}=1 / p_{\infty}-\alpha / n$ and $1 / p^{\sharp}(x)=1 / p(x)-\alpha / n$. For $1<p_{1}<$ p_{-}, set $p_{1}(y)=p(y) / p_{1}$. Then for $r=|x| \geq R_{0}$ we have by Lemma 4.4

$$
\begin{aligned}
& \left(r^{\alpha-n} \int_{B(0, r)} f(y) d y\right)^{p^{\sharp}(x)} \\
\leq & C\left(r^{\alpha p_{\infty} / p_{1}-n} \int_{B(0, r)} f(y)^{p_{1}(y)} d y\right)^{p^{\sharp}(x) p_{1} / p(x)}+C r^{q_{\infty}\left(\alpha-n p_{1} / p_{\infty}\right)}
\end{aligned}
$$

If $\int_{B(0, r)} f(y)^{p_{1}(y)} d y \leq 1$, then the right hand side is dominated by

$$
C r^{q_{\infty}\left(\alpha-n p_{1} / p_{\infty}\right)}
$$

Next suppose $\int_{B(0, r)} f(y)^{p_{1}(y)} d y>1$. If $p^{\sharp}(x) p_{1} / p(r) \leq q_{\infty} p_{1} / p_{\infty}$, then

$$
\begin{aligned}
& \left(r^{\alpha p_{\infty} / p_{1}-n} \int_{B(0, r)} f(y)^{p_{1}(y)} d y\right)^{p^{\sharp}(x) p_{1} / p(r)} \\
\leq & C\left(r^{\alpha p_{\infty} / p_{1}-n} \int_{B(0, r)} f(y)^{p_{1}(y)} d y\right)^{q_{\infty} p_{1} / p_{\infty}}
\end{aligned}
$$

if $p^{\sharp}(x) p_{1} / p(r)>q_{\infty} p_{1} / p_{\infty}$, then, since $r^{-n} \int_{B(0, r)} f(y)^{p_{1}(y)} d y \leq C$, the above inequality is also true. Hence it follows that

$$
\begin{aligned}
& \left(r^{\alpha-n} \int_{B(0, r)} f(y) d y\right)^{p^{\sharp}(x)} \\
\leq & C\left(r^{\alpha p_{\infty} / p_{1}-n} \int_{B(0, r)} f(y)^{p_{1}(y)} d y\right)^{q_{\infty} p_{1} / p_{\infty}}+C r^{q_{\infty}\left(\alpha-n p_{1} / p_{\infty}\right)}
\end{aligned}
$$

Since $1 /\left(q_{\infty} p_{1} / p_{\infty}\right)=1 / p_{1}-\left(\alpha p_{\infty} / p_{1}\right) / n$, it follows from Lemma 5.4 that

$$
\int_{\Omega}\left\{H_{\alpha} f(x)\right\}^{p^{\sharp}(x)} d x \leq C,
$$

which yields the required inequality.
Our final goal is to establish Sobolev's inequality of Riesz potentials defined in general domains, which gives an extension of Capone, CruzUribe and Fiorenza [2, Theorem 1.6].

Theorem 5.6. Suppose $p_{+}(\Omega)<n / \alpha$. If $A(x)=a / p(x)^{2}$ with $a>n$, then

$$
\int_{\Omega}\left\{I_{\alpha} f(x)\left(\varphi\left(I_{\alpha} f(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} d x \leq C
$$

whenever f is a nonnegative measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$.

Proof. Let f be a nonnegative measurable function on Ω with $\|f\|_{p(\cdot)} \leq 1$. In view of Lemma 5.1, it suffices to treat the case when $f=0$ on $B\left(0, R_{0}\right)$. Set

$$
f=f_{1}+f_{2}
$$

where $f_{1}=f \chi_{\{y: f(y) \geq 1\}}$ and $f_{2}=f \chi_{\{y: f(y)<1\}}$. If $M f_{1}(x) \geq 1$, then Corollary 3.4 gives

$$
\begin{aligned}
& \left\{I_{\alpha} f_{1}(x)\left(\varphi\left(I_{\alpha} f_{1}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} \\
\leq & C\left\{M f_{1}(x)\left(\varphi\left(M f_{1}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)}
\end{aligned}
$$

and if $M f_{1}(x)<1$, then Lemma 5.3 gives

$$
\left\{I_{\alpha} f_{1}(x)\right\}^{p^{4}(x)} \leq C\left\{M f_{1}(x)\right\}^{p(x)}+C\left\{H_{\alpha} f_{1}(x)\right\}^{p^{\sharp}(x)},
$$

so that

$$
\begin{aligned}
& \left\{I_{\alpha} f_{1}(x)\left(\varphi\left(I_{\alpha} f_{1}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} \\
\leq & C\left\{M f_{1}(x)\left(\varphi\left(M f_{1}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)}+C\left\{H_{\alpha} f_{1}(x)\right\}^{p^{\sharp}(x)}
\end{aligned}
$$

Further we have by Lemma 5.3

$$
\left\{I_{\alpha} f_{2}(x)\right\}^{p^{\sharp}(x)} \leq C\left\{M f_{2}(x)\right\}^{p(x)}+C\left\{H_{\alpha} f_{2}(x)\right\}^{p^{\sharp}(x)}
$$

which proves

$$
\begin{aligned}
& \left\{I_{\alpha} f_{2}(x)\left(\varphi\left(I_{\alpha} f_{2}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p^{\sharp}(x)} \\
\leq & C\left\{M f_{2}(x)\left(\varphi\left(M f_{2}(x)^{-1}\right)\right)^{-A(x)}\right\}^{p(x)}+C\left\{H_{\alpha} f_{2}(x)\right\}^{p^{\sharp}(x)}
\end{aligned}
$$

Now Theorem 4.7 and Lemma 5.5 give the required inequality.
Remark 5.7. As in Remark 2.10, we consider p of the form:

$$
p(y)= \begin{cases}p_{\infty} & \text { when } y_{n} \leq 0 \\ p_{\infty}+\frac{1}{\log (e+|y|)} \frac{a \log \left(\log \left(1 / y_{n}\right)\right)}{\log \left(1 / y_{n}\right)} & \text { when } 0<y_{n} \leq r_{0} \\ p_{\infty}+\frac{1}{\log (e+|y|)} \frac{a \log \left(\log \left(1 / r_{0}\right)\right)}{\log \left(1 / r_{0}\right)} & \text { when } y_{n}>r_{0}\end{cases}
$$

where $y=\left(y^{\prime}, y_{n}\right), 1<p_{\infty}<n / \alpha, a>0$ and $0<r_{0}<1 / e$. Let $B(R, r)=B(e(R), r)$ for $0<r \leq r_{0}, R>1$ and $e(R)=(R, 0, \ldots, 0) \in$ \mathbf{R}^{n}. Then Theorem 5.6 (or Theorem 3.5) implies that in case $a^{\prime}>$ $a / \log (e+R)$, we have

$$
\begin{equation*}
\int_{B\left(R, r_{0}\right)}\left\{I_{\alpha} f(x)\left(\log \left(e+I_{\alpha} f(x)\right)\right)^{-a^{\prime} n / p_{\infty}^{2}}\right\}^{p^{\sharp}(x)} d x \leq C \tag{4}
\end{equation*}
$$

whenever f is a nonnegative measurable function on $B\left(R, r_{0}\right)$ with $\|f\|_{p(\cdot)}$ ≤ 1.

We show that this is sharp. For this purpose, consider

$$
f_{r}=\chi_{B_{-}(R, r)} \quad\left(B_{-}(R, r)=B(R, r) \backslash H\right)
$$

where $H=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n-1} \times \mathbf{R}: x_{n}>0\right\}$. Then note that

$$
\left\|f_{r}\right\|_{p(\cdot)}=C r^{n / p_{\infty}}
$$

Setting $g_{r}=f_{r} /\left\|f_{r}\right\|_{p(\cdot)}$, we find

$$
I_{\alpha} g_{r}(x) \geq C r^{\alpha-n / p_{\infty}}
$$

for $x \in B(R, r)$, so that

$$
\int_{B(R, r)}\left\{I_{\alpha} g_{r}(x)\left(\log \left(e+I_{\alpha} g_{r}(x)\right)\right)^{-a n /\left\{p_{\infty}^{2} \log (e+R)\right\}}\right\}^{p^{\sharp}(x)} d x \geq C
$$

This implies that (4) does not hold when $a^{\prime}<a / \log (e+R)$.

References

[1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer, 1996.
[2] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator on variable L^{p} spaces, Istituto per le Applicazioni del Calcolo "Mauro Picone", C.N.R., sezione di Napoli, rapporto tecnico 281/04, 2004.
[3] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223238, 29 (2004), 247-249.
[4] L. Diening, Maximal functions on generalized $L^{p(\cdot)}$ spaces, Math. Inequal. Appl., 7 (2004), 245-253.
[5] L. Diening, Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr., 268 (2004), 31-43.
[6] D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent II, Math. Nachr., 246-247 (2002), 53-67.
[7] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Apple., 263 (2001), 424-446.
[8] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, to appear in Math. Nachr.
[9] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, to appear in Ann. Acad. Sci. Fenn. Math.
[10] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator, Real Anal. Exchange, 30 (2004/2005), 87-104.
[11] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36 (1972), 505-510.
[12] V. Kokilashvili and S. G. Samko, On Sobolev theorem for Riesz type potentials in the Lebesgue space with variable exponent, Zeit. Anal. Anwend., 22 (2003), 899-910.
[13] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.
[14] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}\left(\mathbf{R}^{n}\right)$, Math. Inequal. Appl., 7(2) (2004), 255-266.
[15] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.
[16] M. Rư̌ičča, Electrorheological fluids : modeling and Mathematical theory, Lecture Notes in Math., 1748, Springer, 2000.
[17] S. G. Samko, Convolution and potential type operators in $L^{p(x)}\left(\mathbf{R}^{n}\right)$, Integral Transform. Spec. Func., 7 (1998), 261-284.

Yoshihiro Mizuta
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521
Japan
E-mail address: mizuta@mis.hiroshima-u.ac.jp
Tetsu Shimomura
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524
Japan
E-mail address: tshimo@hiroshima-u.ac.jp

[^0]: Received January 22, 2005.
 Revised April 12, 2005.
 2000 Mathematics Subject Classification. 42B25, 46E30, 31B15.
 Key words and phrases. Lebesgue spaces with variable exponent, maximal functions, Riesz potentials, Sobolev's inequality, Hardy's inequality.

