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Maximal functions, Riesz potentials and Sobolev's 
inequality in generalized Lebesgue spaces 

Yoshihiro Mizuta and Tetsu Shimomura 

Abstract. 

Our aim in this paper is to deal with the boundedness of maxi­
mal functions in Lebesgue spaces with variable exponent. Our result 
extends the recent work of Diening [4], Cruz-Uribe, Fiorenza and 
Neugebauer [3] and the authors [8]. As an application of the bound­
edness of maximal functions, we show Sobolev's inequality for Riesz 
potentials with variable exponent. 

§1. Introduction 

Sobolev functions play a significant role in many fields of analysis. In 
recent years, the generalized Lebesgue spaces £PC) and the correspond­
ing Sobolev spaces wm,p(-) have attracted more and more attention, in 
connection with the study of elasticity, fluid mechanics and differential 

equations with p(·)-growth; see Ruzicka [16]. One of the most important 
results for Sobolev functions is so called Sobolev's embedding theorem, 
and the corresponding result has been extended to Sobolev spaces of 
variable exponent by many authors; see for example [2, 5, 7, 8, 12, 17]. 
Our main task in this study is to obtain boundedness properties for 
Riesz potentials. For this purpose, the boundedness of maximal func­
tions gives a crucial tool by a trick of Hedberg [11], which is originally 
based on the recent work by Diening [4]. 

Let 0 be an open set in Rn. We use the notation B(x,r) to denote 
the open ball centered at x of radius r. For a locally integrable function 
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f on 0, we consider the maximal function M f defined by 

M f(x) = s~p l~llnnB lf(y)idy, 

where the supremum is taken over all balls B = B(x, r) and IBI denotes 
the volume of B. Let p( ·) be a positive continuous function on 0 such 
that p(x) > 1 on 0. Following Orlicz [15] and KovaCik and Rakosnik 
[13], we define the £P(·l(O) norm by 

{ r I f(y) lp(y) } 
llfllv(·) = llfllv(·),n =in£ A> 0: Jn T dy ~ 1 

and denote by £P(·l(O) the space of all measurable functions f on 0 
with llfllv(·) < oo. 

In this paper we are concerned with p( ·) satisfying a condition of 
the form: 

lp(x) _ p(y)i ~ log(cp(lx- yl)) 
log(1/lx - yl) 

whenever x E 0, y E 0 and lx - Yi < 1/2, where <p is a positive nonin­
creasing function on (0, oo) of logarithmic type. Our typical example of 
<p is 

cp(r) = a(log(1/r))b(loglog(1/r)W 

for small r > 0, where a > 0, b > 0 and -oo < c < oo. In case 0 is not 
bounded, we further assume that 

c 
lp(x)- Pool ~ log(e + lxl) 

where 1 < Poo < oo. 

whenever X E 0, 

Our first aim in this paper is to find a function «P(t, x) on R X n 
such that 

£ «P(M f(x), x)dx ~ C whenever llfllv(·) ~ 1 

(in Theorems 2.7 and 4.7 below). If cp(r) = a(log(e + 1/r))b, then our 
result was proved by Diening [4] (when b = 0 and 0 is bounded), Cruz­
Uribe, Fiorenza and Neugebauer [3, Theorem 1.5] (when b = 0 and 0 is 
not bounded), and the authors [8, Theorem 2.4] (when b > 0 and 0 is 
bounded). 
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We consider the lliesz potential of order a for a locally integrable 
function f on n, which is defined by 

Iaf(x) =In lx- Yla-n f(y)dy. 

Here 0 < a < n. As an application of the boundedness of maximal 
functions, we give Sobolev's inequality for lliesz potentials with variable 
exponent. We in fact find a function w(t, x) on R X n such that 

In w(IoJ(x), x)dx ::; C whenever llfllv(·) ::; 1 

(see Theorems 3.5 and 5.6 below). In case 'P(r) = a(log(e + 1/r))b, 
our result was proved by Samko [17] (when b = 0 and n is bounded), 
Diening [5] (when b = 0 and p(·) is constant outside of a large ball), 
Capone, Cruz-Uribe and Fiorenza (2, Theorem 1.6] (when b = 0 and n 
is not bounded), and the authors (8, Theorem 3.4] (when b > 0 and 0 
is bounded). 

For related results, see also Adams-Hedberg [1], Diening [5], Edmunds­
Rakosnik [6], Harjulehto-Hasto-Pere(10], Kokilshvili-Samko [12], Kovacik-

Rakosnik [13], Nekvinda [14], Ruzicka (16] and the authors (9]. 

§2. Maximal functions 

Throughout this paper, let C denote various constants independent 
of the variables in question. 

Consider a positive nonincreasing function 'P on the interval (0, oo) 
of logarithmic type, which has the following properties: 

('P1) 'P(oo) = limt--+oo 'P(t) > 0; 
('P2) (log(1/t))-c0 'P(t) is nondecreasing on (0, r0 ) for some c:0 > 0 

and ro > 0. 

Remark 2.1. (i) By condition ('P2), we see that 

whenever r > 0, 

which implies the doubling condition on 'P· 
(ii) We see from ('P2) that for each 8 > 0, t6'P(t) is nondecreasing 

on some interval (0, T), T = T(8) > 0. 
(iii) Our typical example of 'P is of the form 

'P(t) = a(log(1/t))b(log(log(1/t)W 
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for small t > 0, where a > 0, b > 0 and c E R. 

In this section, let n be an open set in R n. Let p( ·) be a positive 
continuous function on n satisfying 

(p1) 1 < p_(O) = infnp(x) ~ sup0 p(x) = P+(O) < oo ; 
(p2) lp(x) -p(y)l ~ log(<p(lx-yl))/ log(1/lx-yl) whenever lx-yl < 

1/2, X E 0 and y E 0. 

Lemma2.2. IfO < r0 < 1 andlog<p(ro) >co, thenlog<p(r)/log(1/r) 
is nondecreasing on (0, ro). 

Proof Let 0 < r1 < r2 < ro < 1. By (<p2), we have 

log <p(ri) 

log(1/ri) 
< log(log(1/rl)) -log(log(1/r2)) log <p(r2) 

co + :-='-;'--C,....::..:-
log(1/rl) log(1/rl) 

log<p(r2) 1 { 1 (log(1/rl)) 
:-='-;'--C,...--7- + co og 
log(1/r2) log(1/rl) log(1/r2) 

log(r1/r2) } 
+ log(1/r2) log<p(r2) . 

Since log(1 + t) < t for t > 0, 

l ( log(1/rl)) log(r2/r1) 
og < / ' log(1/r2) - log(1 r2) 

so that 

as required. 

Let 1/p'(x) = 1 - 1/p(x). Then note that 

p(x) - p(y) 
p'(y)- p'(x) 

(p(x)- 1)(p(y)- 1) 

p(x) - p(y) (p(x) - p(y))2 

(p(x)- 1)2 + (p(x)- 1)2(p(y)- 1) · 

Hence, in view of (<p2), we have the following result. 

0 
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Lemma 2.3. There exists a positive constant C such that 

IP'(x)- p'(y)l:::; w(lx- yl) whenever X E f2 andy E !1, 

where 
1 log(Ccp(r)) 

w(r) = w(r; x, C) = (p(x)- 1)2 log(1/r) 

for 0 < r:::; ro and w(r) = w(ro) for r ~ ro. 

In what follows, we may assume that w(r) is nondecreasing as a 
function of r E (0, oo). Moreover, iff is a function on n, then we set 
f = 0 outside n. 

Lemma 2.4. Let f be a nonnegative measurable function on n with 
llfllp(·) :::; 1. Then 

{Mf(x)}p(x):::; C { Mg(x)(cp(Mg(x)-1))nfp(x) + 1} 
for all X E f2, where g(y) = f(y)P(Y). 

Proof For 0 < p :::; 1 and r > 0, we have by Lemma 2.3 

1 r f(y)dy 
IB(x,r)i JB(x,r) 

< J-t( 1 r (1/J.-t)p'(y)dy+ 1 r f(y)P(Y)dy) 
IB(x,r)l JB(x,r) IB(x,r)i JB(x,r) 

< J-t ((1/p)P'(x)+w(r) +F), 
where F = IB(x,r)l-1 JB(x,r) f(y)P(Yldy. When F is bounded, say F:::; 
R0 , by considering p = 1, we have 

fB ::;c. 

Hence it suffices to treat the case that F ~ Ro > r0\ in this case 
we may assume that 0 < r < ro since llfllp(·) :::; 1. By considering 
p = F-1/{p'(x)+w(r)} when F > 1, we find 

fB :::; 2F1fp(x) Fw(r)/{p'(x)(p'(x)+w(r))} :::; 2F1/p(x) Fw(r)/p'(x) 2 • 

If r :::; F-1 < r0 , then we see from Lemma 2.2 that 
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If F-1 < r < ro, then 

p1/p(x)+w(r)/p'(x)2 

:::;· Cr-nfp(x)-nw(r)/p'(x) 2 { f(y)P(Y)dy ( ) 
1/p(x)+w(r)/p'(x)2 

JB(x,r) 

Since r-nw(r)/p'(x)2 :::; C'P(r)nfp(x)2 and JB(x,r) f(y)P(Yldy :::; 1 by our 

assumption, we obtain 

p1/p(x)+w(r)/p'(x) 2 

< Cr-nfp(x)'P(r)nfp(x)2 { f(y)P(Y)dy ( ) 
1/p(x)+w(r)/p'(x)2 

}B(x,r) 

< Cr-nfp(x)'P(r)nfp(x)2 ( { f(y)P(Y)dy) 1/p(x) 

}B(x,r) 

< Cr-n/p(x)'P(F-1 )nfp(x)2 ( { f(y)P(Y)dy) 1/p(x) 

}B(x,r) 

< cp1/p(x)'P(F-1 )nfp(x)2. 

Now it follows that 

which completes the proof. D 

Lemma 2.5. For each S > 0, there exists To > e such that 
s8 'P(s- 1 )-1 is nondecreasing on (To, oo). 

Proof By ('P2), it follows that (logs)"'"'P(s- 1 )-1 is nondecreasing 
on (T1 , oo) for some T1 > e. Since 

the present lemma is obtained. D 

Lemma 2.6. If II flip(·):::; 1, then 

{ 
2 }p(x) 

Mf(x)('P(Mf(x)- 1 ))-nfp(x) :::; C(Mg(x) + 1) 

for X E !J. 
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Proof. For simplicity, set a = M f ( x) and b = M g( x). By Lemma 
2.4, we have 

with p = p(x) and c = njp2 . We may assume that a is large enough, 
that is, a > To > 1. Using Lemma 2.5, we find 

Note from (cp2) that 

Hence it follows that 

whenever a> To, which proves 

as required. 0 

Theorem 2.7. Let n be an open set in Rn such that IDI < 00. If 
A(x) = ajp(x) 2 with a> n, then 

r { }p(x) Jo Mf(x)(cp(Mf(x)- 1 ))-A(x) dx::::: C 

whenever f is a measurable function on n with II flip(·) ::::: 1. 

Proof. Let Po(x) = p(x)/Po for 1 <Po < p_(D). Then Lemma 2.6 
yields 

{ 
2 }po(x) 

Mf(x)(cp(MJ(x)- 1 ))-nfpo(x) ::::: C{Mgo(x) + 1} 

for X E n, where go(Y) = f(y)Po(Y). Choosing Po > 1 such that 
np6/p(x)2 < A(x), we establish 

{ }
p(x) 

Mf(x)(cp(Mf(x)- 1 ))-A(x) ::::: C{Mgo(x) + 1yo. 

Since g0 E £Po (D), we deduce the required inequality by the boundedness 
of maximal functions in £Po. 0 
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Remark 2.8. Set <I>(r, x) = { np(r-I )-A(x) y<x) for r ~ 0 and x E n. 
Then Theorem 2. 7 assures the existence of C > 0 such that 

In <I>(M f(x)jC, x)dx:::; 1 whenever 11/llvC·l :::; 1. 

As in Edmunds and Rakosnik [6], we define 

11/ll<t> = 11/ll<t>,n = inf{A > 0: In <I>(If(x)lf-\,x)dx :S 1}; 

then it follows that 

liM /II<~> ::::: Cll!llvc·l for f E £PC·l(n). 

If cp(r) = a(log(e+ 1/r))b, then Theorem 2.7 was proved by Diening 
[4] (when b = 0) and the authors [8, Theorem 2.4] (when b is general). 

Remark 2.9. For 0 < r < 1/2, let 

G = {X = (XI, X2) : 0 < XI < 1, -1 < X2 < 1} 

and 
G(r) = {x = (xi,x2): 0 <XI< r,r < x2 < 2r}. 

For p(O) =Po > 1, define 

( ) { Po -log(cp(x2))/log(1/x2) 
p XI,X2 = 

Po 
when 0 < x2 :::; ro, 
when x2:::; 0; 

set p(xi,x2) = p(xi,ro) when x2 > ro. Here we take ro > 0 so small 
that p(xi,ro) > 1. Consider 

fr(Y) = XG(r)(Y) 

with XE denoting the characteristic function of a set E, and set 9r = 
fr/llfrllv(·),G· Then we insist for 0 < r < ro : 

(i) 11/rllv(·),G :S Ctr2/Pocp(r)- 2/p~ ; 

(ii) Mgr(x) ~ C2r-2/Pocp(r) 2/P~ for 0 < Xt < r and -r < x2 < 0. 

By integration of (ii) we see that 

Ia { Mgr(x)(cp(Mgr(x)-I))- 2fp(x) 2 y(x) dx ~ C3 , 

which means that Theorem 2.7 does not hold for A(x) < 2/p(x)2. 
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Remark 2.10. For 0 < r < 1/2, let G and G(r) be as above. Define 

p(xi, x2) = { Po+ log(cp(x2))/ log(1/x2) 
Po 

andp(xi,x2) =p(xi,ro) when x2 > r0 . Setting 

when 0 < x2 :::; ro, 
when x2 :::; 0; 

G'(r) = {x = (xi,x2): 0 <XI< r, -r < x2 < 0}, 

we consider 
J;(y) = XG'(r)(Y) 

and set g~ = J:/IIJ:IIp(·),G· Then we insist for 0 < r < ro/2: 

(i) IIJ:IIp(·),a = r2!Po ; 

(ii) Mg~(x) 2: Cir- 2/Po for 0 <XI <rand r < x2 < 2r; 

(iii) fa { Mg~(x)cp(Mg~(x)-I )-2/p(xl 2 r(x) dx 2: C2, 

as above. 

§3. Sobolev's inequality 

Let p(·) be a continuous function on !1 satisfying (p1) and (p2). 
Further, suppose 

and set 
1 

p~(x) 

1 a 
----
p(x) n 

For 0 < a < n, we consider the Riesz potential Iaf of measurable 
functions j E £P(.) ( f!), Which is defined by 

Iaf(x) = J lx- Yla-n f(y)dy; 

recall that we set f = 0 outside !1. Set 

Sf= {x ERn: f(x) f= 0}. 

In this section, we assume 
IStl < oo, 

where lEI denotes then-dimensional measure of a measurable set E. 

Lemma 3.1. Let f be a nonnegative measurable function on !1 such 
that llfllp(-) :::; 1 and IStl :::; 1. Then 

{ lx- Yla-n f(y)dy:::; C8-n/p~(x)'P(8)nfp(x)2 
Jn\B(x,6) 
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forxE 0 andoE (0,1). 

Proof For J.L > 0, since llfllp(·) :::; 1, we have 

{ lx- Yla-n f(y)dy 
Jn\B(x,8) 

< J.L ( r (lx- Yla-n I J.L)P'(y)dy + r f(y)P(Y)dy) 
ls1 \B(x,8) ls1 \B(x,8) 

< J.L ( r (lx- Yla-n I J.L)P'(y)dy + 1) . 
ls1 \B(x,8) 

Consider the set 

Then we have 

r (lx- Yla-n I J.L)p'(y)dy:::; I Btl :::; 1 
ls,\{EUB(x,8)} 

by our assumption. Further, since p'(y) :::; p'(x) + w(lx- yl) by Lemma 
2.3, we have 

r (lx-yla-niJ.L)P'(y)dy 
JE\B(x,8) 

< r (lx- Yla-n I J.L)p'(x)+w(jx-yj)dy. 
jE\B(x,8) 

If J.L > 1, then we see that 

r (lx- Yla-n I J.L)p'(x)+w(jx-yj)dy 
jE\B(x,8) 

< J.L-p'(x)-w(8) { lx _ Yi(a-n)(p'(x)+w(lx-yl)ldy 
}Rn\B(x,8) 

< Cj.L-p'(x)-w(8) 0(a-n)(p'(x)+w(8))+n 

< C J.L-p'(x)-w(8) JP'(x)(a-njp(x)) cp( o)(n-a)/(p(x)-1) 2 

c J.L-p' (x)-w(8) 0-p'(x)n/pa(x) cp( o) (n-a)/(p(x)-1) 2 • 

Hence it follows that 

{ lx- Yla-n f(y)dy 
Jn\B(x,8) 

< Cj.L (1L-p'(x)-w(8)o-p'(x)n/pa(x)cp(o)(n-a)/(p(x)-1) 2 + 1). 
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Considering J.L = 8-nfpu(x)cp(8)nfp(x)2 when 8 is small, we see that 

{ ix- Yia-n f(y)dy ~ C8-nfpu(x)cp(8)nfp(x) 2 , 

Jn\B(x,o) 

as required. D 

Lemma 3.2. Let f be a nonnegative measurable function on n such 
that llfllp(·) ~ 1 and ISJI ~ 1. Then 

laf(x) ~ C [{Mf(x)}p(x)jp#(x){cp(Mf(x)-1)}afp(x) + 1] 
for X E 0. 

Proof For 0 < 8 < 1 we have by Lemma 3.1 

laf(x) { lx- Yia-n f(y)dy + { lx- Yia-n f(y)dy 
J B(x,o) Jn\B(x,o) 

< C8° M f(x) + c8-nfpu(xlcp(8)nfp(x)2 • 

Considering 8 = {Mf(x)}-p(x)/n{cp(Mf(x)- 1)}1fp(x) when Mf(x) is 
large enough, we see that 

as required. D 

Lemma 3.3. Let p > 1 and 1/p~ = 1/p - ajn. For (3 > a, 
set c = (3/p and d = 'Y/p2 , where fJh = a/n. If s > 0, t > 0 and 

sPU ~ C1 { tPcp(C1 )cpU + 1}, then 

where c2 is a positive constant independent of s and t. 

Proof. We may assume that t is large enough, that is, t > To > 1. 
Using Lemma 2.5, we find 

{ scp(s-1 )-d}Pu ~ CtPcp(C1 )cpu x cp(cPIPu cp(C1 )-c)-dpu' 

with d = 'Y/p2 • Note from (cp2) that 

cp(cP!Pucp(c1)-c)-1 ~ Ccp(C1)-1. 
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Hence it follows that 

whenever t > T0 , which proves 

as required. 0 

By Lemmas 3.2 and 3.3, we have the following result. 

Corollary 3.4. Let f be a nonnegative measurable function on f2 
such that ilflip(·) :S: 1 and ISJI :S: 1. If A(x) = ajp(x) 2 with a> n, then 

{ IaJ(x)( tp(Iaf(x)- 1 ))-A(x) y"(x) 

< C [ { M f(x)(tp(M f(x)- 1 ))-A(x) y(x) + 1] 

for X E fl. 

Thus Theorem 2. 7 and Corollary 3.4 yield the following Sobolev 
inequality for Riesz potentials. 

Theorem 3.5. Let f2 be an open set in Rn such that jf2j < oo. 
Suppose P+(fl) < nja. If A(x) = a/p(x) 2 with a> n, then 

whenever f is a nonnegative measurable function on f2 with ilflip(·),n :S: 
1. 

Remark 3.6. If tp(r) = a(log(e + 1/r))b, then Theorem 3.5 was 
proved by the authors [8, Theorem 3.4]. See also Capone, Cruz-Uribe 
and Fiorenza [2, Theorem 1.6], Diening [4] and the authors [9, Theorem 
3.3]. 

Remark 3. 7. In Remark 2.9, we see that 
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for 0 < Xi < r and -r < x2 < 0. Hence we have 

Remark 3.8. In Remark 2.10, we see that 

Iag~(x) ~ Cir-2/P~ 

for 0 <Xi <rand r < x 2 < 2r. Hence we have 

fa {Iag~(x)(<p(Iag~(x)-i))-2fp(x) 2 r~(x) dx ~ C2 • 

In the next section, we treat the case when n might not be bounded, 
as in Cruz-Uribe, Fiorenza and Neugebauer [3]. 

§4. Maximal functions· on general domains 

In this section we treat the boundedness of maximal functions on 
general domains, which gives a generalization of the result by Cruz­
Uribe, Fiorenza and Neugebauer [3]. 

Let n be an open set in R n. Consider a positive continuous function 
p(.) on n such that 

(p1) 1 < p_(n) = infnp(x):::; supnp(x) = P+(n) < oo; 
(p2) lp(x)-p(y)[:::; log(<p(lx-yl))/log(1/lx-yl) whenever lx-yl < 

1/2, X E f2 and y E !1; 
(p3) lp(x) - p(y)l :::; Cjlog(e + lxl) whenever x E !1, y E !1 and 

IYI ~ lxl. 
If (p3) holds, then p has a finite limit p 00 at infinity and 

c 
lp(x)- Pool :::; log(e + lxl) for all X E !1. 

For a nonnegative measurable function f on n, set 

F(x) = IB( 1 )I { . f(y)P(Yldy, 
x,r JB(x,r) 

(p3') 

as before. If llfllp(·) :::; 1 and F(x) ~ 1, then we have by the proof of 
Lemma 2.4 
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so that 

(4.1) { 
2 }p(x) fB(cp(!Bl))-nfp(x) ~ CF(x). 

Lemma 4.1. Let f be a nonnegative measurable function on !1. If 
F(x) ~ 1 and f(y) ;:::: 1 or f(y) = 0 for y E !1, then 

(/B)p(x) ~ F(x). 

Proof. If f(y) ;:::: 1 or f(y) = 0 for y E !1, then 

fB = IB( 1 )I { . f(y)dy ~ IB( 1 )I { f(y)P(Yldy = F(x). 
X, r 1 B(x,r) X, r 1 B(x,r) 

Since F(x) ~ 1, fB ~ 1, so that 

as required. D 

By (4.1) and Lemma 4.1 we have the following result. 

Corollary 4.2. Let f be a nonnegative measurable function on n 
such that llfllv(·l ~ 1. If f(y);:::: 1 or f(y) = 0 for yEn, then 

{ 
2 }p(x) Mf(x)(cp(Mf(x)- 1 ))-nfp(x) ~ CMg(x), 

where g(y) = f(y)P(Y). 

For a function f on R n, we define the Hardy operator H by 

H f(x) = IB(01I I) I { lf(y)idy 
' X 1 B(O,jxl) 

for x ERn\ {0} and Hf(O) = 0. 

Lemma 4.3. Let f be a nonnegative measurable function on !1. If 
f ~ 1 on n' then 

(4.2) (/B)p(x) ~ C [F(x) + e(x) + {Hf(x)}p(x)], 

where e(x) = (e + lxl)-n. 
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Proof Note that F(x) S 1 since f S 1 on 0. If x E 0 n B(O, 1), 
then 

which proves (4.2). 
For every subset E of n, we set P+(E) = supEp(x) and P-(E) = 

infE p(x). Fix x E n \ B(O, 1), and take a ball B = B(x, r). We will 
consider two cases. 

Case 1: r;::: lxl/2. Since P+ = P+(O) < oo, we have 

1 ( )
p(x) 

2P+ - f(y)dy 
IBI LnB(O,Ixl) 

1 ( )
p(x) 

+2P+ - f(y)dy 
IBI L\B(O,Ixl) 

Then, since r ;::: lxl/2, we see that 

....!.._ { f(y)dy < CHJ(x). 
IBI J BnB(O,Ixl) 

We set E = (B \ B(O, lxl)) n nand 

D = {y: f(y) ;::: e(x)}. 

By Holder's inequality, we have 

1 { ( 1 { )1/p-(E) 
jBj JE f(y)dy S jBj lEnD f(y)P-(E)dy + e(x). 

By assumption (p3), if y E E, then 

c 
0 S p(y)- P-(E) S P+(E)- P-(E) S log(e + lxl). 

Therefore, if y E E n D, then 

f(y)P-(E) j(y)P(Y) j(y)P-(E)-p(y) 

< J(y)P(Y)e(x)-Cfiog(e+lxl) S Cf(y)P(Y), 
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so that 

c~l k f(y)dy r(x) 
( 

1 1 )p(x)fp_(E) 
< C - f(y)P(Y)dy + Ce(x)p(x) 

IBI EnD 
< CF(x)p(x)!P- (E)+ Ce(x)p(x). 

Since F(x) :::; 1 by our assumption and e(x) :::; 1, we obtain 

( 
1 { )p(x) 

jBf }Ef(y)dy :::; CF(x) + Ce(x), 

which proves (4.2). 

Case 2: 0 < r :::; lxl/2. In this case, we see as before that 

c 
o:::; p(y) ~ P-(B n 0) :::; P+(B n 0) ~ p_(B n 0):::; log(e + lxl) 

for y E B n 0. Hence it follows as above that 

c~lh f(y)dy) p(x) 

( 
1 1 )p(x)fp-(Bn~) 

< C - f(y)P(Yldy + Ce(x)p(x) 
IBI B 

< CF(x) + Ce(x), 

as required. D 

Lemma 4.4. Let f be a nonnegative measurable function on 0 such 
that f:::; 1 on 0. Then 

{Hf(x)}p(x):::; CHg(x) + Ce(x), 

where g(y) = J(y)P(Yl. 

Proof Let f be a nonnegative measurable function on 0 such that 
f:::; 1 on 0. Then, since 0:::; f:::; 1 on 0, we see that 

H(JXB(O,ro))(x) :::; Ce(x) on 0. 

Hence we may assume that f = 0 on B(O, r 0 ). 
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For J1, ;::: 1 and r = lxl > ro, we have 

1 1 ( 1 1 p'(y) ) IB(O )I f(y)dy :::; J1, IB(O )I (1/ Jl,) dy + G ' 'r B(O,r) 'r B(O,r) 

where G = Hg(x) with g(y) = f(y)P(Y). Then note from (p3} that 

-p'(y) :::; -p'(x) + w(lyl) for y E B(O,r), 

where w(t) = C / log(e + t). If log J1, :::; cdog r and 0 < m < n, then we 
can find r1 > e such that 

Jl,-p'(y)tm :::; cjl,-p'(x)+w(r)rm 

whenever r1 :::; t = IYI < r = lxl, which yields 

First assume r-n < G :::; 1. Then we set J1, = c-1/{v'(x)-w(r)} and, 
noting that J1, :::; ern' we have 

H f(x) :::; cclfp(x)c-w(r)/{v'(x)(p'(x)-w(r))} :::; ccl/p(x). 

Next, if G:::; r-n, then we set J1, = rnfp'(x) and obtain 

H f(x) :::; Ce(x) 11v(x) + G11v(x) :::; Ce(x) 11v(x). 

If lxl :::; r1, then 
Hf(x):::; 1:::; Ce(x); 

which completes the proof. 0 

Combining Lemma 4.3 with Lemma 4.4, we obtain the following 
result. 

Corollary 4.5. Let f be a nonnegative measurable function on 0. 
If f :::; 1 on 0, then 

{M f(x)}p(x) :::; C {Mg(x) + e(x) + Hg(x)}, 

where e(x) = (e + lxl)-n and g(y) = f(y)P(Y). 

By Hardy's inequality we can prove the following inequality ( cf. 
Lemma 5.4). 
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Lemma 4.6. Let g be a nonnegative measurable function on R n 

such that llgiiPo ~ 1, 1 <Po < oo. Then 

f {Hg(x)}P0 dx ~C. 

Now, as in Cruz-Uribe, Fiorenza and Neugebauer [3], we can prove 
the following result. 

Theorem 4.7. If A(x) = ajp(x) 2 with a> n, then 

r { }p(x) Jn Mf(x)(<p(Mf(x)- 1 ))-A(x) dx ~ C 

whenever f is a measurable function on !1 with llfiiPU ~ 1. 

Proof For Po> 1, set Po(x) = p(x)/Po and go(Y) = f(y)Pn(Yl. Then 
we have by Corollaries 4.2 and 4.5 

{ 
2 }po(x) 

M f(x)(<p(M f(x)- 1 ))-nfpo(x) ~ C {Mgo(x) + e(x) + Hgo(x)}. 

If a> np6, then 

{ M f(x)( <p(M f(x)- 1 ))-A(x) y(x) 
< C {Mgo(x) + e(x) + Hg0 (x)}Po 

< CMgo(x)P" + Ce(x)Po + C{Hgo(x)}P". 

Since p0 > 1, M is bounded on LP0 (!1) and e(x) E LP0 (Rn), we find 

Thus Lemma 4.6 yields the required inequality. 

§5. Sobolev's inequality for general domains 

0 

In this section we extend Sobolev's inequality to general domains !1. 
Consider a positive continuous function p( ·) on !1 satisfying 

(p1') 1 < P- = P-(!1) ~ P+(!1) = P+ < n/a; 
(p2) lp(x)- p(y)l ~ log(<p(lx- yl))/ log(1/lx- yl) whenever X E !1, 

y E !1 and lx- Yl < 1/2; 
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(p3) ip(x)- p(y)i :::; C/log(e + lxl) whenever x E 0, y E 0 and 
IYI ~ lxl. 

By (p3) or (p3') we can find R0 > 1 such that 

C n 
p(x) :::; Poo + log(e + lxl) < ~ (3) 

for X E n \ B(O, Ro/2). 

Lemma 5.1. If A(x) = afp(x) 2 with a > n, then 

whenever f is a nonnegative measurable function on n such that f = 0 
outside B(O, Ro) and II flip(·) :::; 1. 

Proof Let f be a nonnegative measurable function on n such that 
f = 0 on Rn \ B(O, Ro) and II flip(·) :::; 1. In view of Theorem 3.5, we 
have 

{ { IO<f(x)('P(Ia.f(x)- 1 ))-A(x) Yu(x) dx:::; C. 
jB(0,2Ro) 

If x ERn\ B(O, 2Ro), then 

IO<f(x) < (lxl/2)0'.-n { f(y)dy 
jB(O,Ro) 

< (lxl/2)0'.-n { {1 + f(y)P(Y)}dy:::; ClxiO<-n, 
jB(O,Ro) 

so that 

{ IO'.f(x)q0 dx:::; C 
Jn\B(0,2Ro) 

whenever qo(a- n) + n < 0. Now it follows that 

{ pu(x) 
Jn { IO'.f(x)('P(IO<f(x)- 1 ))-A(x)} dx:::; C, 

as required. 0 

Lemma 5.2. Iff is a nonnegative measurable function on n such 
that llfllp(·) :::; 1 and f = 0 on B(O, Ro), then 

{ . lx- YIO<-n J(y)dy :::; CoO<-njp(x) 
ln\{B(O,Ixi/2)UB{x,o)} 
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for x E 0 \ B(O, Ro) and 8 ;:::: 1. 

Proof For x E 0\ B(O, Ro) and J.L > 0, since 11/llv(·) :::; 1, we have 

{ lx- Yla-n f(y)dy 
ln\ {B(O,Ixi/2)UB(x,J)} 

< J.L ( r (lx- Yla-n I J.L)P'(y)dy 
j !!\ { B(O, lxi/2)UB(x,J)} 

+ r f(y)P(Yldy) 
ln\{B(O,Ixi/2)UB(x,J)} 

< J.L({ (lx-yl"'-niJ.L)P'(yldy+1). 
J !!\ { B(O, lxl /2)UB(x ,J)} 

First consider the case 1 :::; 8 :::; 2lxl- Let E = {y E 0 \ B(O, lxll2) : 
lx- Yl"'-niJ.L > 1}. If we set 

/31 = j31(x) = p'(x)- log(e~ lxl)' 

then it follows from (3) that 

p'(y);:::: /31 > _n_ 
n-a 

for y E 0\ B(O, lxll2). 

Hence we obtain 

r (lx- Yla-n I J.L)p'(y)dy 
ln\{B(O,Ixi/2)UB(x,J)UE} 

< r (lx- Yla-n I J.L)f31dy 
J !!\ { B(O, lxi/2)UB(x,J)UE} 

< J.L-!31 { lx- Yl(a-n)f31dy 
Jn\B(x,J) 

< cj.L-f318(a-n)f31+n. 

Considering J.L = 8a-n+n/ !31 , we see that 

{ (lx- Yl"'-niJ.L)p'(y)dy:::; C, 
J !!\ { B(O, lxl /2)UB(x,J)UE} 

so that 

{ lx- Yla-n f(y)dy:::; C8a-n+n/!3!. 
ln\ { B(O, lxl /2)UB(x ,J)uE} 
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Similarly, if we set 

!32 = f32(x) = p'(x) + log(e~ lxl)' 

then it follows from (3) that 

p'(y) ~ !32 for y E fl \ B(O, lxl/2). 
Note here that 

{ (ix- Yi"-n/JL)P'(y)dy 
JE\B(x,o) 

< r (lx- Yla-n I JL),82dy 
JE\B(x,o) 

< /L-.82 { lx- Yi(a-n),82dy 
}Rn\B(x,o) 

< c/L-,828(a-n),82+n. 

Since /L = 8<>-n+n/,81 and 8 ;:::-: 1, we see that 

so that 
{ lx- Yia-n f(y)dy ~ C8a-n+n/.8l. 

jE\B(x,O) 

Therefore 

{ lx- Yia-n f(y)dy ~ C8a-n+n/.8l. 
ln\{B{O,Ixi/2)UB{x,o)} 

Since 1 ~ 8 ~ 2lxl, 
8a-n+n/,8l < C8a-n+n/p'(x) = C8a-njp(x) 

- ' 
so that 

{ lx- Yia-n f(y)dy ~ C8a-nfp(x). 
ln\{B{O,Ixi/2)UB{x,o)} 

Next consider the case 8 > 2lxl ;:::-: 2Ro. Then 

r lx- Yl"~n f(y)dy ~ c r IXo - Yla-n f(y)dy, 
Jn\B(x,o) Jn\B(Xo.o/2) 

where Xo = (8/4, 0, ... , 0) ERn. Hence the above considerations yield 

{ lx - Yia-n f(y )dy ~ C8a-nfp(x). 
ln\B(x,o) 
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Thus the proof is completed. D 

For a measurable function f on R n, we define the operator H a by 

Haf(x) = lxla-n { if(y)idy 
}B(O,Ixl) 

for x ERn\ {0} and Haf(O) = 0. 

Lemma 5.3. Let f be a nonnegative measurable function on n with 
II flip(·) ::::; 1. If X En and M f(x) ::::; 1, then 

{Iaf(x)}P'(x) ::::; C{M f(x)}p(x) + C{Haf(x)}P'(x). 

Proof Let f be a nonnegative measurable function on n with 
llfllp(·) ::::; 1. ForO ::::0: 1 we have by Lemma 5.2 

Iaf(x) = { lx- Yia-n f(y)dy 
}B(x,J) 

+ { lx- Yia-n f(y)dy 
ln\{B(O,Ixi/2)UB(x,<5)} 

+ { ix- Yia-n f(y)dy 
}B(O,Ixl/2) 

< Goa M f(x) + Coa-nfp(x) + CHaf(x) 

for x ERn. If we set 0 = {Mf(x)}-p(x)fn, then it follows that 

Iaf(x) ::::; C{M f(x)}p(x)fp'(x) + CHaf(x), 

which yields the required inequality. 

Lemma 5.4. Let 1 < Pl < n//3 and 1/ql = 1/Pl- /3/n. Then 

D 

This is a consequence of the usual Sobolev's inequality; see e.g. the 
book by Adams and Hedberg [1]. 

Lemma 5.5. Iff is a nonnegative measurable function on f2 such 
that II flip(·) ::::; 1 and f = 0 on B(O, Ro), then 

i {Haf(x)}P'(x)dx::::; C. 
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Proof Let f be a nonnegative measurable function on D such that 
II flip(·) ~ 1 and f = 0 on B(O, Ro). Write 

f=!I+h 

where !I = fX{y:f(y)?.l} and h = fX{y:f(y)<l}· Then we see that 

Ha!I(x) ~ lxla-n r !I(y)P(Yldy ~ lxla-n 
}B(O,Ixl) 

for lxl 2: Ro, so that 

L {Hafi(x)}Pa(x)dx ~C. 

Thus we may assume that f = h ~ 1 on D. 
Let 1/q00 = 1/Poo- ajn and 1/p~(x) = 1/p(x)- ajn. For 1 < P1 < 

p_, set Pl(Y) = p(y)/Pl· Then for r = lxl 2: Rowe have by Lemma 4.4 

( ra-n r f(y)dy)p;(x) 

JB(O,r) 

< c raPocfP,-n r f(y)PdYldy + Crqoc(a-np,fpoc). ( ) 
p;(x)pl/p(x) 

JB(O,r) 

If JB(O,r) f(y)P,(Yldy ~ 1, then the right hand side is dominated by 

Crq=(a-npl/poc). 

Next suppose JB(O,r) f(y)PdYldy > 1. If p~(x)pi/p(r) ~ q00 pi/prx:)) then 

rapoc/PI-n r f(y)p,(y)dy ( ) 
p;(x)pl/p(r) 

JB(O,r) 

< C rapoc/PI-n r f(y)P,(y)dy ( ) 
qocPI/Poc 

JB(O,r) 

if p~(x)pi/p(r) > q00pi/p00 , then, since r-n JB(O,r) f(y)PdYldy ~ C, the 
above inequality is also true. Hence it follows that 

Ta-n r j(y)dy ( )
p;(x) 

JB(O,r) 
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Since 1/(q00pi/p00 ) = 1/P1- (ap00 jpl)jn, it follows from Lemma 5.4 
that i {Haf(x)}Pa(x)dx:::; C, 

which yields the required inequality. D 

Our final goal is to establish Sobolev's inequality of Riesz potentials 
defined in general domains, which gives an extension of Capone, Cruz­
Uribe and Fiorenza [2, Theorem 1.6]. 

Theorem 5.6. Suppose P+(D) < nja. If A(x) = ajp(x) 2 with 
a> n, then 

whenever f is a nonnegative measurable function on n with II flip(-) :::; 1. 

Proof Let f be a nonnegative measurable function on n with 
llfiiP(·) :::; 1. In view of Lemma 5.1, it suffices to treat the case when 
f = 0 on B(O, Ro). Set 

f=h+h 
where h = fX{y:f(y)?_1} and h = fX{y:f(y)< 1}· If M h (x) ~ 1, then 
Corollary 3.4 gives 

{ Iaf1 (x)( cp(Ia f1 (x) - 1 )) -A(x)} pa(x) 

< C { M h (x)(cp(M h (x)-1 ))-A(x) y(x), 

and if Mfi(x) < 1, then Lemma 5.3 gives 

{Iah(x)}Pa(x):::; C{Mh(x)}p(x) + C{Hah(x)}Pa(x), 

so that 

{ lah (x)( cp(Iah (x)- 1 ))-A(x) ra(x) 

< C { Mfi(x)(cp(Mfi(x)- 1))-A(x)y(x) + C{Hah(x)}Pa(x). 

Further we have by Lemma 5.3 
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which proves 

{ Iah(x)( r.p(Iah(x)- 1 ))-A(x) ra(x) 

< C { M h(x)(r.p(M h(x)- 1 ))-A(x) r(x) + C{HaJz(x)}Pa(x). 

Now Theorem 4. 7 and Lemma 5.5 give the required inequality. 0 

Remark 5. 7. As in Remark 2.10, we consider p of the form: 

Poe when Yn :S: 0, 

1 alog(log(1/yn)) 
p(y) = Poo + log(e + lyl) log(1/Yn) 

when 0 < Yn :S: ro, 

1 alog(log(1/ro)) 
Poo + log(e + IYI) log(1/ro) 

when Yn > ro, 

where y = (y', Yn), 1 < Poo < nja, a > 0 and 0 < ro < 1/e. Let 
B(R, r) = B(e(R), r) for 0 < r ::; r 0 , R > 1 and e(R) = (R, 0, ... , 0) E 
Rn. Then Theorem 5.6 (or Theorem 3.5) implies that in case a' > 
a/ log(e + R), we have 

1 { , / 2 }p'(x) 
Iaf(x)(log(e + Iaf(x)))-a n P= dx::; C 

B(R,ro) 
(4) 

whenever f is a nonnegative measurable function on B(R, ro) with II flip(·) 
:S:l. 

We show that this is sharp. For this purpose, consider 

fr = XB_ (R,r) (B_(R,r) = B(R,r) \H), 

where H = {x = (x', Xn) E Rn- 1 x R: Xn > 0}. Then note that 

llfrllp(·) = crnfpoc. 

Setting 9r = fr/llfrllp(·)' we find 

for x E B(R, r), so that 

1 { 2 }p1(x) 
Iagr(x)(log(e + Iagr(x)))-anj{p= log(e+R)} dx ;::=:C. 

B(R,r) 
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This implies that (4) does not hold when a'< a/log(e + R). 
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