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Maximal functions, Riesz potentials and Sobolev’s
inequality in generalized Lebesgue spaces

Yoshihiro Mizuta and Tetsu Shimomura

Abstract.

Our aim in this paper is to deal with the boundedness of maxi-
mal functions in Lebesgue spaces with variable exponent. Our result
extends the recent work of Diening [4], Cruz-Uribe, Fiorenza and
Neugebauer [3] and the authors [8]. As an application of the bound-
edness of maximal functions, we show Sobolev’s inequality for Riesz
potentials with variable exponent.

§1. Introduction

Sobolev functions play a significant role in many fields of analysis. In
recent years, the generalized Lebesgue spaces LP() and the correspond-
ing Sobolev spaces W™ P() have attracted more and more attention, in
connection with the study of elasticity, fluid mechanics and differential

equations with p(-)-growth; see Ruzicka [16]. One of the most important
results for Sobolev functions is so called Sobolev’s embedding theorem,
and the corresponding result has been extended to Sobolev spaces of
variable exponent by many authors; see for example [2, 5, 7, 8, 12, 17].
Our main task in this study is to obtain boundedness properties for
Riesz potentials. For this purpose, the boundedness of maximal func-
tions gives a crucial tool by a trick of Hedberg [11], which is originally
based on the recent work by Diening [4].

Let Q be an open set in R". We use the notation B(z,r) to denote
the open ball centered at x of radius r. For a locally integrable function
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f on Q, we consider the maximal function M f defined by
1
M) =suwp = [ 1)
B |Bl Jans

where the supremum is taken over all balls B = B(z,r) and |B| denotes
the volume of B. Let p(-) be a positive continuous function on 2 such
that p(z) > 1 on Q. Following Orlicz [15] and Kovécik and Rakosnik
[13], we define the LP()(Q2) norm by
p(y)
dy < l}

and denote by LP()(Q) the space of all measurable functions f on
with || f]|p() < oo.

In this paper we are concerned with p(-) satisfying a condition of
the form :

fw)
A

Ifllp¢) = Ifllp(y. = inf {A >0: /Q

log(v(lz —yl))
log(1/]z — yl)

whenever x € 2, y € Q and |z — y| < 1/2, where ¢ is a positive nonin-
creasing function on (0, 00) of logarithmic type. Our typical example of

@ is

Ip(z) — p(y)| <

o(r) = a(log(1/r))" (loglog(1/r)))°*

for small 7 > 0, where a > 0, b > 0 and —00 < ¢ < 00. In case (2 is not
bounded, we further assume that

(%) — Pool| < whenever x € Q,

log(e + |z|)
where 1 < py < 00. :

Our first aim in this paper is to find a function ®(¢,z) on R x Q
such that

/ (M f(x),x)dr < C  whenever || fll,) <1
Q

(in Theorems 2.7 and 4.7 below). If ¢(r) = a(log(e + 1/7))®, then our
result was proved by Diening [4] (when b = 0 and § is bounded), Cruz-
Uribe, Fiorenza and Neugebauer [3, Theorem 1.5] (when b = 0 and Q is
not bounded), and the authors [8, Theorem 2.4] (when b > 0 and Q is
bounded).
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We consider the Riesz potential of order « for a locally integrable
function f on 2, which is defined by

If(z) = /Q & — 4" F (y)dy.

Here 0 < a < n. As an application of the boundedness of maximal
functions, we give Sobolev’s inequality for Riesz potentials with variable
exponent. We in fact find a function ¥(¢,z) on R x 2 such that

/ V(Iof(x),z)de < C  whenever ||f]|,) <1
Q

(see Theorems 3.5 and 5.6 below). In case ¢(r) = a(log(e + 1/7))?,
our result was proved by Samko [17] (when b = 0 and Q is bounded),
Diening [5] (when b = 0 and p(-) is constant outside of a large ball),
Capone, Cruz-Uribe and Fiorenza [2, Theorem 1.6] (when b = 0 and Q
is not bounded), and the authors [8, Theorem 3.4] (when b > 0 and Q
is bounded).

For related results, see also Adams-Hedberg [1], Diening [5], Edmunds-
Rékosnik [6], Harjulehto-Hasto-Pere[10], Kokilshvili-Samko [12], Kovacik-
Rékosnik [13], Nekvinda [14], Ruzicka [16] and the authors [9].

§2. Maximal functions

Throughout this paper, let C denote various constants independent
of the variables in question.
Consider a positive nonincreasing function ¢ on the interval (0, co)
of logarithmic type, which has the following properties:
(1) p(00) = lims—oc p(t) > 0;
(p2) (log(1/t))~%°p(t) is nondecreasing on (0,7y) for some g¢ > 0
and ro > 0.

Remark 2.1. (i) By condition (¢2), we see that

C7lo(r) < p(r?) < Cp(r) whenever 7 > 0,

which implies the doubling condition on .

(ii) We see from (p2) that for each § > 0, t*¢(t) is nondecreasing
on some interval (0,7), T = T(8) > 0.

(iii) Our typical example of ¢ is of the form

¢(t) = a(log(1/1))" (log(log(1/1)))°
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for small ¢t > 0, where a > 0, b > 0 and c € R.

- In this section, let 2 be an open set in R". Let p(+) be a positive
continuous function on 2 satisfying
(p1) 1 <p_() = infq p(z) < supq p(z) = p+(Q) < 00 ;
(02) Ip(z)—p(y)| < log(p(|z—yl))/log(1/|z—y|) whenever [z —y| <
1/2, x € Q and y € Q.

Lemma 2.2. If0 < ro < 1 andlog ¢(ro) > €o, thenlogy(r)/log(1/r)
is nondecreasing on (0,79).

Proof. Let 0 <r; <ry <719 < 1. By (¢2), we have

logp(r) __ log(log(1/r1)) —log(log(1/r2)) , log(ra)
log(1/ry) — 0 log(1/71) log(1/m)

_ logp(ra) 1 log(1/r1)
= Tog(1/ra) | log(i/r1) { og <log<1/r2>)
log(ry/r2)
T Tog(i/ra) 10”(”)}'

Since log(1 +t) <t for ¢t > 0,
log (108;(1/7’1)) < log(ra/m1)

log(1/r2) ) = log(1/r2)’
so that
logp(r1)  logp(ra)
log(1/r1)  log(1/r2)
lOg(ll/ﬁ) (lﬁ)gg(g/:;))> (0 —log p(r2)) <0,
as required. -

Let 1/p'(z) = 1 — 1/p(z). Then note that

N _ p(z) —p(y)
PO =P = o - Dew) -
p(z) — p(y) (p(z) — p(y))?

e@ -2 T Bl = D2py) 1)

Hence, in view of (¢2), we have the following result.
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Lemma 2.3. There exists a positive constant C such that
Ip'(z) — ' (y)] < w(z —yl) whenever € Q and y € Q,

where

- ~ 1 log(Cp(r))
A T RV TV

for 0 <r <7y and w(r) = w(re) forr > ro.

In what follows, we may assume that w(r) is nondecreasing as a
function of r € (0,00). Moreover, if f is a function on 2, then we set
f = 0 outside .

Lemma 2.4. Let f be a nonnegative measurable function on Q with
Ifllp(y < 1. Then

MI@P® < C{Mg(a)(p(Mg(@) )" +1)
for all x € Q, where g(y) = f(y)PW).

Proof. For 0 < 4 <1 and r > 0, we have by Lemma 2.3

1
= — d
8 = B Jown O

1 / / 1
pl| ——— /)P Wdy + ——— f(y)PW dy
(iB(w)l —— B0 ST
u((/py @0 4 F),

where F = |B(x,r)| ™} fB(I . f(y)*®dy. When F is bounded, say F <
Ry, by considering p = 1, we have

fe<cC.

IN

Hence it suffices to treat the case that F© > Rg > ry 1; in this case
we may assume that 0 < r < rg since ||f|,.) < 1. By considering

p = F~1Y/ {7 @+0(} when F > 1, we find

fg < 9 pi/p(@) pu(r)/{p' () (P’ (z)+w(r))} < o pl/p(@) pw(r)/p'(z)*
If r < F~! < 1y, then we see from Lemma 2.2 that

fB < CFYP@) (o(F=1))1/P@)* < CF1/P@) ((F=1))n/p(@)?



260 - Y. Mizuta and T. Shimomura

If F~! < r < 19, then

Fl/p(@)+w(r)/p' (2)?
1/p(x)+w(r)/p ()
< Op—n/p@)=nw(r) /o (2)* / Fly)PYdy
- B(z,r)

Since r—w(M/P'(@* < C(p('/‘)”/”(m)Z and fB(I’T) f(y)PWdy < 1 by our
assumption, we obtain

F1/p(@)+w(r)/p'(z)?
) 1/p(x)+w(r)/p (x)?

< C,,,,—n/zﬂ(m)(‘0(7.)11/17(:13)2 (/B( )f(y)p(y)dy

IN

1/p(z)
Cr—n/p(z)SO(,,n)n/p(as)2 (/ f(y)”(y)dy)
B(z,r)

1/p(z)
< CT—H/P(w)(p(F—l)n/P(I)2 (/B f(y)p(y)dy>

< COFYp@ (p-1yn/p@)?

(z,r)

Now it follows that
fg < CFl/p(m)cp(F'l)"/”(z)z,
which completes the proof. O

Lemma 2.5. For each 6 > 0, there exists Ty > e such that
s%p(s71)~! is nondecreasing on (Tp, o).

Proof. By (¢2), it follows that (logs)*°¢(s~!)~! is nondecreasing
on (11, 00) for some T; > e. Since

$*p(s71) 7 = s°(log s) % x (log 5) (s ™)1,
the present lemma is obtained. O

Lemma 2.6. If || f||p.) < 1, then

(M) e015@) )V < 0 (g(a) +1)

for x € Q.
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Proof. For simplicity, set a = M f(z) and b = Mg(z). By Lemma
2.4, we have
a? < C (bp(b™H)P +1)

with p = p(z) and ¢ = n/p?. We may assume that a is large enough,
that is, a > Tp > 1. Using Lemma 2.5, we find

{ap(@™) 7}’ < Chp(b™")P x p(Cb™/Pp(b™1) =)~
Note from (p2) that
P(CbPp(671)7) 7 < Cp(b™) 7.

Hence it follows that

as required. O

Theorem 2.7. Let Q be an open set in R™ such that || < oo. If
A(z) = a/p(x)? with a > n, then

/Q{Mf(:c)(tp(Mf(x)—l))—A(z)}p(‘”) dz < C

whenever f is a measurable function on Q with || f||5) < 1.

Proof. Let po(z) = p(x)/po for 1 < pg < p_(). Then Lemma 2.6
yields

{MF(@) 1)) w0} < 0 (Mgo(a) +1)

for x € Q, where go(y) = f(y)?®. Choosing py > 1 such that
npa/p(z)? < A(x), we establish

(M@ @) )4 < (Mgo(a) + 11

Since go € LP9(£2), we deduce the required inequality by the boundedness
of maximal functions in LPo. O
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Remark 2.8. Set ®(r,z) = {rcp(r‘l)“A(’”)}p(I) for r >0 and z € .
Then Theorem 2.7 assures the existence of C' > 0 such that

/ O(Mf(x)/C,x)dr <1 whenever || f||,) < 1.
Q
As in Edmunds and Rékosnik [6], we define

1£le = I flo.0 = nt{A > 0 /Q (| f(2)|/A )dz < 1};

then it follows that

IMfllo < Clfllp) — for f € LPO(Q).

If ¢(r) = a(log(e+1/7))®, then Theorem 2.7 was proved by Diening
[4] (when b = 0) and the authors [8, Theorem 2.4] (when b is general).

Remark 2.9. For 0 < r < 1/2, let
G={z=(x1,22):0< 11 <1, -1 <za <1}

and
Gr)={z= (z1,22) : 0 < 21 < 1,7 < T3 < 2r}.

For p(0) = pg > 1, define

(1, 72) = po — log(p(x2))/log(1/x2) when 0 < z2 <1y,
’ Po when z2 < 0;

set p(z1,x2) = p(x1,70) when zz > rp. Here we take ro > 0 so small
that p(z1,r0) > 1. Consider

() = xem)(y)

with xg denoting the characteristic function of a set E, and set g, =
fr/ | frllpe),c- Then we insist for 0 <7 <rg :

@ frllpere < Clrz/p‘J‘P(T)-z/pg ;
(ii) Mg, (z) > Car=2/Pop(r)2/Ps for 0 < z; < 7 and —r < 3 < 0.
By integration of (ii) we see that

(

[ {Mar@ oot @) Y o> o,

which means that Theorem 2.7 does not hold for A(x) < 2/p(z)2.
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Remark 2.10. For 0 < r < 1/2, let G and G(r) be as above. Define

p(z1,22) = {

and p(z1, z2) = p(x1,70) when zs > 1. Setting

po + log(p(z2))/ log(1/xs) when 0 < z2 < g,
Do when z3 < 0;

G'(r)={z=(z1,22) : 0< 1 <7,—7 < T2 < O},
we consider
£ @) =xe ()

and set g, = f. /|| flllp().c- Then we insist for 0 < r < ry/2:

@ I f Iy, =P ;

(ii) Mg.(z) > Cir=2/P for 0 < x; <rand r < zz < 2r;

2 p(z)
(i) J {Mor(@)p(Mgy(2)™)2#"} dn > 0,

as above.

83. Sobolev’s inequality

Let p(-) be a continuous function on Q satisfying (pl) and (p2).
Further, suppose
p+ =p+(2) <n/a

and set
1 1 «

pi(z)  ple) n
For 0 < a < n, we consider the Riesz potential I,f of measurable
functions f € LP()(Q), which is defined by

i@ = [ |-y " fw)dy
recall that we set f = 0 outside 2. Set
Sy ={zeR": f(z) # 0}.

In this section, we assume
|Sf| < 00,

where |E| denotes the n-dimensional measure of a measurable set E.

Lemma 3.1. Let f be a nonnegative measurable function on Q such
that || fllpcy < 1 and |Sy| < 1. Then

/ |z — y|* " f(y)dy < C6~ /P @ ()P’
O\B(z,6)
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forz € Q and § € (0,1).

Proof. For u > 0, since || f||5.) < 1, we have

/ |z —y|* ™" f(y)dy
Q\ B(z,d)

p / (e —y|* ™/ ©dy + / fly)PWdy
S¢\B(z,0) Ss\B(z,5)

7 (/ (lz —y|*™"/w)? Wy + 1) :
Ss\B(z,8)

Consider the set

IA

IA

E={yeSs:lz—y|* " 2p}naQ.
Then we have

/ (lz — y|o /)P Wdy < |8y < 1
S;\{EUB(z,8)}

by our assurhption. Further, since p’(y) < p’(x) + w(|xz — y|) by Lemma
2.3, we have '

/ (Iz = y|*=" /) Wy
E\B(z,8)

= / (Jo = y|* " /)P relz=sDgy,
~ JE\B(2,)
If 4 > 1, then we see that

/ (|Jz - y|a—n/u)p'(w)+w(lw—yl)dy
E\B(z,5)

< P @-w) / |z — y|(e-m @ +wllz—uD) gy
R"™\B(z,d) )

< C’u—p’(w)—W(J)(;(a—n)(P'(w)+w(5))+n

< Cvu—p’(:c)—w(é)(517’(z)(Ot—n/p(av))go((g)(n—Ot)/(P(ﬂv)—l)2

Cp? (®)=w @) 5=p @)n/p'(@) () (n=0)/(p(x)=1)?

Hence it follows that

/ |z —y|*"" f(y)dy
O\ B(z,5)

< Cu (u—p'(z)—w(6)5—p’(x)n/p“(x)¢(5)(n—a)/(p(z)—1)2 n 1) .
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Considering pu = 5_"/”“(””)@(5)"/7’(7”)2 when 4 is small, we see that
/ | — y|°=" f(y)dy < C§—/P @) ()n/p@)”,
Q\B(z,9)

as required. O

Lemma 3.2. Let f be a nonnegative measurable function on  such
that || fllpc) <1 and |Sy| < 1. Then

Lof(z) < C [{Mp@)P@P" @ {p(M [ ()7 +1]
forx € Q.
Proof. For 0 < é < 1 we have by Lemma 3.1
i@ = [ e [

< C*Mf(z) + C6~/P @) p(5)n/P)?

|z —y|*7" f(y)dy
8)

1

Considering § = {M f(z)} P&/ {p(M f(x)~1)}/?(®) when M f(z) is
large enough, we see that

I.f(zx) <C [{Mf(x)}P(r)/p”(m){‘p(Mf(I)—l)}a/p(x) + 1} ,
as required. 0O

Lemma 3.3. Letp > 1 and 1/p* = 1/p —a/n. For 8 > a,
set ¢ = B/p and d = v/p?, where B/y = a/n. Ifs > 0, t > 0 and

5P < {ti"cp(t_l)q”ﬁ + 1}, then
t
{sp(sT)™4} < Ca{tPp(t™ )% + 1},
where Cy is a positive constant independent of s and t.

Proof. We may assume that ¢ is large enough, that is, t > Tp > 1.
Using Lemma 2.5, we find

#
{sp(sH)™" < Ot ™) x p(t PP p(t71) )%,

with d = v/p%. Note from (¢2) that

Pt PP (171 ) < Cp(t™) L,
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Hence it follows that
{sp(s™) ) < Cirp(=)e D = Ol
whenever t > Ty, which proves
{sgo(s_l)_d}pﬂ <C {t”cp(t_l)“dp +1},
as required. O
By Lemmas 3.2 and 3.3, we have the following result.

Corollary 3.4. Let f be a nonnegative measurable function on Q
such that || ) < 1 and |S¢| < 1. If A(z) = a/p(z)? with a > n, then

p*(z)

{Iaf(x)(cp(faf(il?)_l))_A(I)}
< c [{M S @)@} 1]

for x € Q.

Thus Theorem 2.7 and Corollary 3.4 yield the following Sobolev
inequality for Riesz potentials.

Theorem 3.5. Let Q be an open set in R™ such that |} < oco.
Suppose p1(Q) < n/a. If A(z) = a/p(x)? with a > n, then

p'(x)

/Q{Iaf(ﬂf)(<p(Iaf(x)*1))—A(z)} e <

whenever f is a nonnegative measurable function on Q with || f||p.).0 <
1.

Remark 8.6. If o(r) = a(log(e + 1/7))®, then Theorem 3.5 was
proved by the authors [8, Theorem 3.4]. See also Capone, Cruz-Uribe
and Fiorenza [2, Theorem 1.6, Diening [4] and the authors [9, Theorem
3.3]. ’

Remark 3.7. In Remark 2.9, we see that

Iogr(z) > Cyr=2/P' @) o(r)2/78
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for 0 < z; < rand —r < 22 < 0. Hence we have

p*(z)

| (s @(etag @) 2 ) o >

Remark 3.8. In Remark 2.10, we see that
I,g.(x) > C’lr_2/7"g

for 0 < z1 < r and r < 29 < 2r. Hence we have

/G {I‘lg;(x)(‘P(Iag;(a:)_l))—2/p(z)2}

In the next section, we treat the case when {2 might not be bounded,
as in Cruz-Uribe, Fiorenza and Neugebauer [3].

p(x)
dx > Cs.

§4. Maximal functions on general domains

In this section we treat the boundedness of maximal functions on
general domains, which gives a generalization of the result by Cruz-
Uribe, Fiorenza and Neugebauer [3].

Let Q be an open set in R™. Consider a positive continuous function
p(+) on Q such that

(p1) 1 < p-(Q) = infqp(z) < supg p(z) = p4+(2) < oo;

(v2) |p(z)—p()| < log(w(lz—y)))/ log(1/|c—yl) whenever |z—y| <

1/2, z € Qand y €
(p3) |p(x) — p(y)| < C/logle + |z]) whenever z € Q, y € Q and

ly| > |zl
If (p3) holds, then p has a finite limit p,c at infinity and
|p(z) — |<——C—— forall z € Q (p3")
PRI ool = Togle + Jal) ' P

For a nonnegative measurable function f on €, set

_ 0
P = G fyr, T

as before. If || f|l,) < 1 and F(z) > 1, then we have by the proof of
Lemma 2.4
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so that

p(x)
<

(41) {fale(sz") 7@} < CP(@).

Lemma 4.1. Let f be a nonnegative measurable function on Q. If
F(z) <1and f(y) =1 or f(y) =0 fory € Q, then
(f)P® < F(a).

Proof. If f(y) > 1 or f(y) =0 for y € Q, then

1 1
Bl A dy < mor——— PW) gy = F(z).
B Joer? O S BEn] Jo, T W= F@

fB=
Since F(z) <1, fg <1, so that
(F8)") < f5 < F(3),
as required. O

By (4.1) and Lemma 4.1 we have the following result.

Corollary 4.2. Let f be a nonnegative measurable function on
such that || f|lpy < 1. If f(y) > 1 or f(y) =0 for y € Q, then

(M@ eesE) ) ) < oMg(a),

where g(y) = f(y)PW.

For a function f on R", we define the Hardy operator H by

1
| B(O, |z|)| JB(0,|2))

for x € R™\ {0} and Hf(0) = 0.

Hf(z) = |7 (y)ldy

Lemma 4.3. Let f be a nonnegative measurable function on Q. If
f <1 onQQ, then

(4.2) ()" < C [F(@) + (@) + {HF(2)}")],

where e(z) = (e + |z|)~™.
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Proof. Note that F(z) < 1since f < 1on Q. If z € QN B(0,1),
then

fBSlv

which proves (4.2).

For every subset E of Q, we set pi(EF) = supgp(z) and p_(E) =
infg p(z). Fix x € Q\ B(0,1), and take a ball B = B(z,r). We will
consider two cases.

Case 1: r > |z|/2. Since py = p+(R2) < oo, we have

p(x)
P(Z) 2p+ 1 d
(f2) = <|B| /BﬂB(O,|z|) 1) y)

+2P+ L / f(y)dy "
| B| B\B(0,|z|) .

Then, since r > |z|/2, we see that

1
1Bl JBnB0.ix) fdy < CHf(z)
We set E = (B \ B(0,|z|)) N Q and
D={y: f(y) = e(z)}.

By Holder’s inequality, we have

1/p_(E)
5 /E f)dy < (,-;—, /E an(y)ﬂ’*Ewy) T e(a).

By assumption (p3), if y € E, then

0 < p(y) — p-(E) < p+(E) —p-(E) < EEGCTITI)

Therefore, if y € EN D, then

f(y)p—(E) — f(y)p(y)f(y)p-(E)—p(y)
< fy)PWe(z)~C/losletlz) < O f(y)PW),
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so that

(|—]13—| /E f (y)dy)pm

1

¢ [ swroay
|Bl JenD

< CF(z)P@/p-(B) Ce(z)P@.

+ Ce(z)P®)

IA

)p(r)/P (B)

Since F(z) < 1 by our assumption and e(z) < 1, we obtain

(é /E f(y)dy)p(z) < CF(z) + Ce(z),

which proves (4.2).

Case 2: 0 < r < |z|/2. In this case, we see as before that

0<py) ~p-(BNQ) <p(BNQ) —p_(BNO) < He%m

for y € BN Q. Hence it follows as above that

(/. f(y)dy)p(x)

1 p(y)
¢ (i1 [ srway
CF(z) 4 Ce(z),

p(z)/p-(BNQ)
) + Ce(z)P®

|

AN

as required. O

Lemma 4.4. Let f be a nonnegative measurable function on Q such
that f <1 on Q. Then

{Hf(2)}P® < CHy(z) + Ce(a),
where g(y) = f(y)P@.

Proof. Let f be a nonnegative measurable function on ) such that
f <1on Q. Then, since 0 < f <1 on (2, we see that

H(fxB(0.ro))(x) < Ce(x) on Q.

Hence we may assume that f =0 on B(0,79).
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For > 1 and r = |z| > ro, we have

1
|B(0,7)| B(0,r)

where G = Hg(z) with g(y) = f(y)?¥). Then note from (p3) that

1 7
d - p'(y)
flydy < “(lB(O,r)I B(O’T)(l/u) dy+G>,

-p'(y) < -p'(@) +w(yl)  fory € B(O,r),

where w(t) = C/log(e +t). If logu < c1logr and 0 < m < n, then we
can find r; > e such that

P Wm0y @) () m
whenever 1 <t = |y| < r = |z|, which yields
Hf(z) < pu (Cu—p’(z)ﬂz(r) +G).

First assume r™" < G < 1. Then we set u = eAtiORG) and,
noting that p < Cr™, we have

Hf(z) < CG/P@) G=wm)/{p (@)@ (2)-w(r))} < ogl/r@),
Next, if G < r~™, then we set u = r™/? () and obtain
Hf(zx) < Ce(x)l/P(z) + GY/r) < Ce(z)'/P®),

If |x| < rq, then
Hf(x) <1< Ce(z),

which completes the proof. |

Combining Lemma 4.3 with Lemma 4.4, we obtain the following
result.

Corollary 4.5. Let f be a nonnegative measurable function on Q.
If f <1 on Q, then

(MF(@)}") < C{Mg(x) +e(z) + Hg(x)},
where e(x) = (e + |af) ™" and g(y) = f(y)®.

By Hardy’s inequality we can prove the following inequality (cf.
Lemma 5.4).
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Lemma 4.6. Let g be a nonnegative measurable function on R"
such that ||g|lp, <1, 1 < po < oo. Then

/{Hg(a:)}p"dx <C.

Now, as in Cruz-Uribe, Fiorenza and Neugebauer [3], we can prove
the following result.

Theorem 4.7. If A(z) = a/p(x)? with a > n, then
p(x)

[ {pr@eons@ )@} do <o
Q .

whenever f is a measurable function on Q with || f| ) < 1.
Proof. For py > 1, set po(x) = p(z)/po and go(y) = f(y)P°®¥). Then
we have by Corollaries 4.2 and 4.5
—1\\—n/po(z)? po(x)
{Mf@em1@™) } S C{Mgo(@) + e(@) + Hoo(2)} -
If a > npE, then
p(z)

{Mf@) (e f@2)1) 4@ ]

C{Mgo(z) + e(z) + Hgo(x)}*
CMgo(x)P° 4 Ce(z)P° + C{Hgo(z)}*.

INIA

Since pg > 1, M is bounded on LP°(Q) and e(z) € LP°(R™), we find

p(z)

/Q {Mf(:c)(go(Mf(x)—l))—A(z)} dr <C + C/R" {Hgo(x)}°dz.

Thus Lemma 4.6 yields the required inequality. O

§5. Sobolev’s inequality for general domains

In this section we extend Sobolev’s inequality to general domains Q.
Consider a positive continuous function p(-) on 2 satisfying
(p1) 1 <p_ =p_(Q) <p+(Q) =p+ </
(p2) |p(x) - p(y)| < log(e(|x — yl))/log(1/|x — y|) whenever z € Q,
ye€Qand |z —y| <1/2;
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(p3) |p(z) — p(y)| < C/log(e + |x|) whenever z € Q, y € Q and
lyl > |-
By (p3) or (p3’) we can find Ry > 1 such that

n

p(I) < P < a (3)

N C
log(e + |z|)
for x € Q\ B(0,Ry/2). -

Lemma 5.1. If A(z) = a/p(z)? with a > n, then

p*(z)

| {r@ @)@} e <o

whenever f is a nonnegative measurable function on Q such that f =0
outside B(0, Ro) and || f||p) < 1.

Proof. Let f be a nonnegative measurable function on 2 such that
f =0o0n R"\ B(0,Ry) and ||f||p) < 1. In view of Theorem 3.5, we
have

[ Ars@etare o) < e
B(0,2Ro)

If x € R"\ B(0,2Ry), then

Lf@) < (al/2" / Fwy

s

IA

T /B oy L 1Py < Ol

so that

/ Iaf(x)qodx <C
Q\B(0,2R0)
whenever go(a —n) +n < 0. Now it follows that
‘@)
[ {fas@ett@ ) 4@} M a < c
Q

as required. O

Lemma 5.2. If f is a nonnegative measurable function on Q such
that || f||py <1 and f =0 on B(0, Ry), then

/ |z — y|*" f(y)dy < C5*~/P(®)
O\{B(0,|z|/2)UB(z.8)}
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for z € Q\ B(0, Ry) and § > 1.

Proof. For z € \ B(0, Rg) and p > 0, since || f||.) < 1, we have

_/’ o — " " F(y)dy
Q\{B(0,|z|/2)UB(x,6)}

< u(/ Iz — g~ /)y Dy
Q\{B(0,|z|/2)UB(x,6)}
+ / fly)PWdy
O\{B(0,]z|/2)UB(x,0)}

< u / Iz — ylo ™ /)P Py + 1]
Q\{B(0,|z|/2)UB(x,8)}

First consider the case 1 < § < 2|z|. Let E = {y € Q\ B(0,|z|/2) :
e —y|® "™/ > 1}. If we set

C

B = Bi(x) =p'(z) - ogle 1z))’

then it follows from (3) that
n
P26 >——> foryeQ\B(,z/2)
Hence we obtain

/ (l2 = 31" /)" Py
Q\{B(0,]2|/2)UB(z,6)UE}

IA

j/ (1% — 4~ /) dy
Q\{B(0,z|/2)UB(z,§)UE}

ph / |z — y|( @™ dy
Q\B(z,4)

< C’u—ﬁl §la—n)Bitn.

IN

Considering p = §*~"*+%/81 we see that

/ (Jz —y[*~" /)P ®dy < C,
O\{B(0,|z|/2)UB(z,6)UE}

so that

/ |z — y|* " f(y)dy < C§g>~ /A,
O\{B(0.|z|/2)UB(z,8)UE}
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Similarly, if we set

C

B2 = Ba(z) =p'(z) + Ma

then it follows from (3) that
Py) <P foryeQ\B(0,|zl/2).
Note here that

/ (lz —yl* /)P Wdy < / (lz — y|*™"/w)dy
E\B(z,6) E\B(z,5)

< u’ﬁ2/ |z — y|"P2dy
R"™\B(z,5)

< Cﬂ—ﬂzd(a—n)ﬁz-‘rn‘
Since p = §*~"*t/B1 and § > 1, we see that
[ ey Wy < carioss < c,
E\B(z,6)
so that
/ |z —y|*""f(y)dy < Cs* /0
E\B(z,5)
Therefore

/ |z — y|* " f(y)dy < Cg>—mHn/Br
Q\{B(0,2]/2)UB(z,8)}

Since 1 < 4 < 2|z|,
ga—ntn/Br < ose—ntn/p () cso—n/pl@)
so that

/ |z — y|* " fy)dy < Co>n/P@),
O\(B(0,|21/2)UB(x.5)} ‘

Next consider the case § > 2|z| > 2Ry. Then

/ |z —y|* " fy)dy < C/ 1 Xs —y|*" f(y)dy,
O\ B(z,d8) M\B(Xs5,6/2)
where X5 = (§/4,0,...,0) € R™. Hence the above considerations yield

[ iy < comnie)
O\B(z,8)
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Thus the proof is completed. O

For a measurable function f on R", we define the operator H, by

Haf@) = ol [ J(w)ldy

B(0,]z|)

for x € R™\ {0} and H,f(0) = 0.

Lemma 5.3. Let f be a nonnegative measurable function on 0 with
I fllpey < 1. If v € Q and M f(x) < 1, then

{af (@)} < C(M (@)} + O{Haf ()},

Proof. Let f be a nonnegative measurable function on £ with
| fllp¢y < 1. For § > 1 we have by Lemma 5.2

Lfz) = /B T Wy

+ / |z — y|*7" f(y)dy
O\{B(0,]z|/2)UB(z,6)}

L N e ()
B(0.|z]/2)
< C6*Mf(z) + C64~ P 4 CH, f(x)
for z € R™. If we set § = {M f(z)}~P(*)/" then it follows that
L. f(2) < C{M f(@)}P/P'®) 1 CH, f(2),
which yields the required inequality. O
Lemma 5.4. Let 1 <p; <n/B and 1/qg1 =1/p1 — B/n. Then

HHﬂfH(h < CHf”Pl

This is a consequence of the usual Sobolev’s inequality; see e.g. the
book by Adams and Hedberg [1].

Lemma 5.5. If f is a nonnegative measurable function on Q such
that || fllp(y <1 and f =0 on B(0, Ry), then

/ {Hof(z)}P"®dz < C.
Q
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Proof. Let f be a nonnegative measurable function on 2 such that
[ fllpy <1 and f =0 on B(0,Rg). Write

f=h+f,
where fi = fXx{y:5(y)>1) and fo = fX{y:f(y)<1}- Then we see that

Hafi(z) < |a]*™ / fi )P W dy < [z
B(0,|z])

for |z| > Ry, so that

/ {Hofi(z)}"®dz < C.
Q
Thus we may assume that f = fo <1 on Q.

Let 1/qoo = 1/poc —a/n and 1/p*(x) = 1/p(x) —a/n . For 1 < p; <
p_, set p1(y) = p(y)/p1. Then for r = |z| > Ry we have by Lemma 4.4

p* ()
a—n d
(r /B W y>

< C Tapoc/m-n/ f(y)pl(y)dy
B(0,r)

P! (z)p1/p(x)
> + CT.ro(a—npl/;Doc)'

I [50r f()P*Wdy < 1, then the right hand side is dominated by

Crd= (a‘npl/Poc)'

Next suppose fB(o,r) f(y)PrWdy > 1. If p*(2)p1 /p(r) < gooP1/Poc, then

(Tapoc /pi—n / f(y)Pl(y)dy
B(0.,r)

Qoo P1/Poo
< C Tapoc/m—n/ f(y)Pl(y)dy :
B(0,r)

if p*(x)p1/p(r) > gooP1/Poo, then, since r~" fB(o,r) fy)PWdy < C, the
above inequality is also true. Hence it follows that

P (x)
a—n d
<r / o y>

@ocP1/Poe
< | por= /m—n/ Fly)PrWdy 4+ Oy (a=np1/Poc)
- B(0,r)

)p“(r)pl/p(r)



278 Y. Mizuta and T. Shimomura

Since 1/(¢oop1/Ps) = 1/p1 — (@Poo/p1)/n, it follows from Lemma 5.4
that

/ {Hof (@)} @z < C,
Q
which yields the required inequality. O

Our final goal is to establish Sobolev’s inequality of Riesz potentials
defined in general domains, which gives an extension of Capone, Cruz-
Uribe and Fiorenza [2, Theorem 1.6].

Theorem 5.6. Suppose p1(Q) < n/a. If A(z) = a/p(x)? with
a >n, then

[ {lar@etas@ )=o) " w <o

whenever f is a nonnegative measurable function on Q with || f||5.) < 1.

Proof. . Let f be a nonnegative measurable function on Q with
| fllpy < 1. In view of Lemma 5.1, it suffices to treat the case when
f=0o0n B(0, Ry). Set

f = fl + f27

where f1 = fx(y.r(p)>1) and f2 = fX{y:r@)<1y- I Mfi(z) > 1, then
Corollary 3.4 gives

(L fi@ (T fi @) )40}
< c{MA@ @A@Y,
and if M fi(z) < 1, then Lemma 5.3 gives
{Lafi(@)}""®) < C{M @)} + C{Ha fo(2)}"),
so that
{1 b @)l )40}
< O{MAEEOLAE ™) AV 1 Ol A @),

Further we have by Lemma 5.3

{Laf2(@)} ) < CM fo(@) ™) + C{Ha fo()}" ),
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which proves

p'(x)

(L@ (L folz) ™) 4@}
—1yy—A(z) | P@® *(z)
< C{MAE) M)A+ C{Ha fa(@)} .
Now Theorem 4.7 and Lemma 5.5 give the required inequality. O

Remark 5.7. As in Remark 2.10, we consider p of the form:

Poo when y, <0,

1 alog(log(1/yn))
py) =4 P~ " logle + 1y log(1/vm)

N 1 alog(log(1/rg))
* " log(e+|yl)  log(l/ro)

where y = (¥, yn), 1 < P < n/a, a > 0and 0 < rg < 1/e. Let
B(R,r) = B(e(R),r) for 0 < 7 <1, R > 1 and e(R) = (R,0,...,0) €
R"™. Then Theorem 5.6 (or Theorem 3.5) implies that in case a’ >
a/log(e + R), we have

when 0 < y, < 1o,

p when y, > ro,

/ {Iaf(:c)(log(e+Io‘f(ﬂlb‘)))—a'n/pio }p @ dr <C (4)
B(R,ro)

whenever f is a nonnegative measurable function on B(R, ro) with || f| (.
<1.
We show that this is sharp. For this purpose, consider

fr= XB_(R,r) (B-(R,r) = B(R,7)\ H),
where H = {z = (2/,x,) € R""! x R: z,, > 0}. Then note that
£+ l(y = Crm/P=.
Setting g, = f,/| frllp(.)> we find
Ingr(z) > Cro—n/Pee

for x € B(R,r), so that

()
[ {lag@oste+ Tuge(@))=or/ % onterm1 g > .
B(R,r)
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This implies that (4) does not hold when o’ < a/log(e + R).
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