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Integral representation for space-time excessive 
functions 

Klaus Janssen 

Abstract. 

We study space-time excessive functions with respect to a basic 
submarkovian semigroup IP'. It is shown that under some regularity 
assumptions many space-time excessive functions on a half-space have 
a Choquet-type integral represention by suitably choosen densities of 
the adjoint semigroup IP'*. If lP' is a convolution semigroup which 
is absolutely continuous with respect to the Haar measure, then all 
space-time excessive functions admit such an integral representation. 

§1. Introduction 

Let!:::. := I:~=l ~ denote the Laplace operator onE :=!R.n. We 

consider the heatoper~tor ! !:::. - gt on the half space Ex]O, oo[. It is 
well known that the positive solutions v of 

1 av 
-f:::.v--<0 
2 at -

on Ex]O, oo[ (called supercaloric functions) admit a Choquet-type inte
gral representation by minimal supercaloric functions (c.f. [15]). More
over, these minimal supercaloric functions are just the densities of the 
Gaussian semigroup lP' = (Pt)t>O which has the generator !!:::.. 

It is a remarkable fact that all this remains true also in the degener
ate case n = 0 (where E = {0} is just a one-point set); in this case the 
above integral representation is exactly the standard correspondence be
tween distribution functions von ]0, oo[ and measures p on [0, oo[ given 
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by 
v(s) = p([O, s( for s > 0, 

or, written in a fancier way, 

v(s) = J l]so,oo[{s)dp(so) for s > 0, 

where {l]so,oo[ : so ~ 0} is the set of normalized minimal supercaloric 
functions. 

In this paper we show that a similar result holds in great generality: 
We replace the above Gaussian semigroup by a general basic semigroup I? 
(i.e. there exists some measure J.t such that E:xPt is absolutely continuous 
with respect to J.t for all x and t). Under some regularity assumptions 
concerning the adjoint semigroup !?* the appropriately choosen densities 
of!?* turn out to be minimal space-time excessive functions, which then 
give a Choquet-type integral representation of a large class of space-time 
excessive functions. 

In the special setting of convolution semigroups which are absolutely 
continuous with respect to the Haar measure, all space-time excessive 
functions on a half-space are represented in this way. In particular, all 
excessive functions of the parabolic operator of order a ( c.f. (7]) on the 
upper halpf plane admit this Choquet-type integral representation. 

§2. Notations and Preliminaries 

In the following we fix the central potential theoretic notions which 
will be used througout. As basic references we use (5] or (3] and (6]. 
(E, £)will always denote a standard Borel measurable space, i.e. E may 
be identified with a Borel subset of a completely metrizable separable 
space equipped with it's Borel field£. 

We denote by p£ the convex cone of positive numerical £-measurable 
functions on E. 

Remember that a kernel P on (E, £) is a family (P(x, ·))xEE of 
measures on (E, £) such that for f in p£ the function 

P f(x) = f f(y)P(x, dy), x E E 

is in p£. 
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Then, for every measure JL on (E, £) the measure JLP satisfies 

J fd(JLP) = J PfdJL for f E pt:. 

We assume to be given a measurable semigroup lP' = (Pt)t>O of 
substochastic kernels on (E, £) (i.e. we have P8 Pt = Ps+t, Ptl ::; 1, and 
(x, t) -+ Ptf(x) is t: ® B(]O, oo[)- measurable for every fin pt:). 

Examples 2.1. i) The trivial example is given by the one-point set 
E = {0} and the semigroup Pt(O, ·) =co fort> 0. 
ii) The standard example is the Gaussian semigroup onE:= ~n which 
is given by the Lebesgue densites Pt(x, y) = Qt(X- y) with 

1 lxl2 
Qt(x) = --n exp( --), t > 0, x, y E ~n . 

.j2;i 2t 

iii) More general examples are given by semigroups associated with sec
ond order linear parabolic or elliptic differential operators on a domain of 
~n (c.f. [2]) or suitable pseudo-differential operators (c.f. [8]). In partic
ular, absolutely continouous convolution semigroups on ~n fit into this 
setting (c.f. [1]). 

In the general setting we denote by V = (V.x).>.?:O the associated 
resolvent defined by 

00 

V.xf(x) := J e->.t Ptf(x)dt, x E E, f E pt:, >. 2:: 0. 

0 

V := V0 is called the potential kernel of IP'. The resolvent V determines 
the semigroup lP' uniquely. 

Remember that a set N E t: is called a set of potential zero if 
VlN = 0. We say that some property holds V-a.e. if this property holds 
except on a set of potential zero. 

Remember that v E pt: is called an excessive function (with respect 
to the given semigroup IP') if supt>O Ptv = v, or equivalently, Ptv j v 
for t 1 0. For f in p£ the potential V f generated by f is an excessive 
function. 

We denote S := S(IP') := { v : v is excessive, v < oo V-a.e. }. 
A a-finite measure 11 on (E, £) is called an excessive measure if 17Pt j 
11 for t 1 0. Exc := Exc(IP') denotes the convex cone of all excessive 
measures. 
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The set of potential measures 

Pot := Pot(J!D) := {JL V : JL is a measure such that JL V is O"-finite } 

is a convex subcone of Exc. 
In this paper we study space-time excessive functions. Therefore we 

associate with the given semigroup JPl on E the space-time semigroup 
Ql = (Qt)t>O on Ex]O,oo[ defined by 

for t > 0. Ql is again a measurable semigroup of substochastic kernels. 
We denote by W = (W.~)>.>o the resolvent associated with Ql. 

Of course, there are variants of these space-time semigroups, some 
of them will appear later. 

Examples 2.2. i) In the trivial example E = {0} and Pt =co fort> 
0 it is easily seen that a positive function v belongs to S(Q) if and only 
if v is finite, increasing, and left continuous (or: lower semicontinuous) 
on ]0, oo[. A measure rJ belongs to Exc (Q) if and only if rJ has a finite, 
decreasing, and right continuous (or: lower semicontinouous) Lebesgue 
density v with respect to Lebesgue measure A.\ on ]0, oo[. 
ii) For the Gaussian semigroup the cone of space-time excessive functions 
is just the cone of supercaloric functions mentioned in the introduction. 
iii) In general, for f in p£ the function 

v(x, s) := Psf(x), x E E, s > 0 

is excessive with respect to Ql, since 

Qtv(x, s) = ljt,oo[(s)PtPs-tf(x) = ljt,oo[(s)v(x, s) j v(x, s) 

for t > 0, t ! 0. 

In this paper we are interested in Choquet-type integral represen
tations for space-time excessive functions, i.e for functions which are 
excessive with respect to Ql. 

Remark 2.1. The following general results on Choquet-type integral 
representations of excessive measures and functions are known: 
i) Under very general assumptions every excessive measure rJ has a 
unique representation as a mixture of minimal excessive measures, i.e. 

ry(A) = i v(A)dp(v) for A E £, 
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where p is a measure on the space F of suitably normalized minimal 
excessive measures. 
Here, 1/E Exc is called minimal if v = v1 + v2 for v1 , v2 E Exc can only 
hold if v1 and v2 are proportional to v ( c.f. [17]). 
ii) If the potential kernel V is proper, then the corresponding integral 
representation of every excessive function by minimal excessive functions 
holds if and only if V is basic, i.e. Ex V « J-L for all x for some a--finite 
measure J-L ( c.f. [3] and [10]). 

Consequently, a Choquet-type integral representation for all space
time excessive functions exists if and only if the potential kernel W 
is basic, i.e. for some a--finite measure m on Ex ]0, oo[ all the mea
sures Ex,s W are absoluteley continuous with respect to m. It is well 
known that under this assumption there exists a a--finite measure J-L on 
(E, £) such that ExPt « J-L for all x E E, t > 0, hence the following 
Assumption 3.1 is quite natural. 

§3. Choquet-type integral representation of space-time exces
sive functions 

To obtain the wanted integral representation we need the existence 
of a nice dual semigroup lP'*. 

Assumption 3.1. lP' and lP'* are substochastic measurable semi
groups on a standard Borel measurable space (E, £) which are in duality 
and absolutely continuous with respect to some a--finite measure J-L, i.e. 

ExPt « J-L, ExPt' « J-L for all x E E, t > 0 and 

J Ptf · gdJ-L = J f · Pt gdJ-L for all t > 0, f, g E p£. 

From [19] we know that we can choose very nice densities for the 
associated space-time potential kernels Wand W*: 

Theorem 3.1. There exists a unique B(]O, oo[) 0£0 £-measurable 
function p : ]0, oo[ x E x E --+ IR+ such that for s, t > 0, x, y E E and 
f E p£ the following is true: 
i) Ptf(x) = J f(z)pt(x, z)dJ-L(z) 

ii) Pt f(x) = J f(z)pt(z, x)dJ-L(z) 
iii) Ps+t(x, y) = J Ps(x, z)pt(z, y)dJ-L(z) 

Conclusion 3.1. i) For so 2:- 0 and xo E E the function 

Wx 0 ,s0 (x,s) := 1]so,oo[(S)Ps-s0 (x,xo), X E E,s > 0 
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belongs to S(Q), since the Chapman-Kolmogorov equation, Theorem 3.1.iii, 
gives 

ii) By Fubini 's theorem we conclude that for every a-finite measure p on 
E x [0, oo[ the function 

wP(x, s) := J l]so,oo[(s)Ps-s0 (x, xo)dp(xo, so), X E E, s > 0 

is space-time excessive. 
Moreover, if p is concentrated onE x {0}, then wP is "invariant up to 
the exit from Ex]O,oo[" for the space-time process, i.e. QtwP(x,s) 
wP ( x, s) for all 0 < t < s, x E E. 

For our main result we need an additional regularity hypothesis: 

Assumption 3.2. IP'* is a right semigroup on E, i.e. there exists 
an associated right Markov process (c.f. [14]). 

Remark 3.1. If V* is a proper kernel, then Assumption 3.2 is equiva
lent with the following potential theoretic properties of the convex cones 
S*,Exc*,Pot* with respect to IP'* (c.f. [16] for details): 
i) S* is inf-stable, 1 E S*,a(S*) = £, 
ii) E is *semisaturated, i.e. Pot* is hereditary in Exc* (i.e. for 7J E Exc* 
satisfying 7J ::; J.L V* E Exc* we have 7J = v V* for some measure v). 
If IP'* induces a strong harmonic space in the sense of [4], or if IP'* induces 
a balayage space in the sense of [2], then Assumption 3.2 is satisfied. 

In the following result we use the functions Wxo,so and wP introduced 
in Conclusion 3.1. 

Theorem 3.2. We assume Assumption 3.1 and Assumption 3.2. 
Then the following is true: 
i) Let v E S(Q) satisfy v ::::. wPo E S(Q) for some measure p0 on E x 
[O,oo[. 
Then there exists a unique measure p on E x [0, oo[ such that v = wP, 
i.e. 

v(x,s) = J Wx 0 ,s0 (x,s)dp(xo,so), x E E,s > 0. 

For all xo E E and so :;::: 0 the function Wx 0 ,s0 is a minimal element of 
S(Q). 
ii) Every v E S(Q) decomposes uniquely into v = wP + v', where p is 
a unique measure on E x [0, oo[ and v' :;::: w7 holds only for the zero 
measure 7. 



Integral representation for space-time excessive functions 173 

Proof i) Let m = JL 0 A.\. We denote by Q* the semigroup on 
Ex ]0, oo[ given by 

and we denote by W* the associated resolvent. Then W is in strong 
duality with W*with respect tom, and 

e :v____,vm 

is a bijection from S(Q) onto Exc (Q*). Obviously, Exc (Q*) = Exc (Q*) 
for the extended semigroup Q* onE x [0, oo[ given by 

x E E,s::;:: O,t > 0 

since m(E x {0}) = 0 and since all measures in Exc(Q*) are absolutely 
continuous w.r. tom (c.f. [3] for general details of this identification). 
Since IP'* admits an associated right Markow process, this remains true 
for Q*. Consequently, every Q* -excessive measure vm :::; wPo m = p0 W* 
is of the form vm = plV* for a suitable unique measure p. Inverting the 
mapping 8 shows that V = wP. 

Applying this to Wx 0 ,80 = wP for p := E"(xo,so) gives the minimality of 
Wx 0 .s0 for Xo E E, So ::=:: 0. 
ii) For general v E S(Q) the measure vm decomposes uniquely as vm = 
plV* + v'm, where v'm ::;:: TlV* holds only for T = 0 (i.e. v'm is the 
harmonic part of vm with respect to Q* according to [6]). Transporting 
this decomposition by the inverse of e gives the stated result. 0 

Remark 3.2. Simple examples show that in general it is not true 
that every space-time excessive funtion admits a representation as in 
Theorem 3.2.i. A setting where this is true is described below in Ap
plication 3.1. Motivated by § 3 in [15] one might conjecture that it is 
sufficient that E be thermically closed, i.e. f :::; Ptf for all t > 0 for 
every IP'-subharmonic f E p£. 
In the setting of uniformly elliptic differential operators in gradient 
form on a domain in ffi.n Murata gave sufficient conditions for the non
existence of a non-zero positive space-time harmonic function on Ex ]0, oo[ 
with boundary values 0 onE x {0} (c.f. Theorem 4.2 in [12]). 

Remember that u E S is called quasibounded iff u can be written 
as a countable sum of bounded elements of S. It is well known that 
in classical potential theory associated with Laplace's equation a poten
tial is quasibounded if and only if the associated Riesz measure does 
not charge polar sets. The same result is true for the potential theory 
associated with the heat equation according to [18]. 
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Corollary 3.1. LethE S(IP') be invariant, i.e. Pth = h < oo V -a. e. 
for all t > 0 . Then every h-quasibounded v E S(Q) admits a unique 
integral representation 

v(x,s) = J Wx 0 ,80 (x,s)dp(xo,so), x E E,s > 0. 

Here v E S(Q) is called h-quasibounded if v = .EnEN Vn for some se
quence (vn) C S(Q) such that Vn:::; Cnh for suitable constants Cn for all 
n inN. 

Proof. For p0 := (hJ-L) 0 Eo we have obviously h = wPo, hence the 
stated integral representation holds for every h-bounded Vn in S(Q). 
Summing these formulae for n inN gives the wanted result. 0 

Application 3.1. Let G be a locally compact abelian group with 
countable base of the topology, and let (J-Lt)t>O be a convolution semi
group of measures on G such that all measures J-Lt are absolutely contin
uous with respect to the Haar measure. Let (Pt)t>O be the associated 
semigroup of convolution kernels on G (c.f. [1]). The reflected measures 
given by 

J fdJ-L; = J f( -x)dJ-Lt(x), t > 0, f E p£ 

define a dual basic convolution semigroup. (Pt)t>O and (Pt)t>O are 
strong Feller kernels. Consequently, the Assumptions 3.1 and 3.2 are 
satisfied (in fact, the associated Markov processes are very nice Levy 
Processes). The densities of ( Pt )t>D according to Theorem 3.1 are of the 
form Pt(x, y) = qt(x- y) for t > 0, x, y E G for suitable densities qt of 
J-Lt with respect to the Haar measure on G. 

In this particular case we have the following 

Result. For every v E S(Q) there exists a unique measure p on 
E x [0, oo[ such that 

v(s, x) = J 1]so,oo[(s)qs-so (x- xo)dp(xo, so), x E G, s > 0 

Proof. Let v E S(Q). We use the notations of the proof of The-
orem 3.2. Then vm ist in Exc (Q*). Obviously, vm is also an ex
cessive measure with respect to the space-time convolution semigroup 
(J-L; 0 Et)t>O on the group G x R 
Let K* := J0

00 J-L; 0Etdt denote the associated potential kernel measure on 
G x R From Theorem 16.7 in [1] we know that vm decomposes uniquely 
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as vm = p * "-* + p1, where Pl is invariant with respect to (J-t; 0 Et)t>D· 
Since vm is supported byE x [0, oo[ we conclude p1 = 0, and pis a mea
sure supported byE x [0, oo[. Consequently, we have vm = P*"-* =wPm, 
and the stated integral representation v = wP follows. 0 

Examples 3.1. As examples of Application 3.1 we obtain an explicit 
integral representation of all space-time excessive functions in the fol
lowing cases: 
i) the Brownian semigroup with densities given in Example 2.l.ii. 
ii) the symmetric stable semigroup of order 1 (the Cauchy semigroup) 
with densities 

X E ~n, t > 0 

for a= r(ntl )/7r(n+l)/2. 

Similar results hold for more general a-stable semigroups ( c.f. [7] and 
[13]), except that there the densities are not elementary functions (only 
their Fourier transforms are explicitly given). 

Remark 3.3. We formulated our results for a basic semigroup. The 
standard example for such a semigroup is determined by some second 
order elliptic linear partial differential operator L on a domain E in 
~n, where the coefficients of L depend on the space variables in E and 
have to be reasonably nice and not to degenerate. More generally, one 
may consider coefficients which are also time dependent. This leads to 
transition families IP' = (Ps,t)s<t which are no longer time homogeneous. 
Nevertheless, our reasoning carries over to this more general setting 
due to the fact that in [19] the existence of nice densities of such non
homogeneous families IP' has been proven. 
Some examples of harmonic spaces associated with such time dependant 
differential operators appear in [9]. 

Remark 3.4. In [11] Murata proved for a large class of uniformly 
elliptic differential operators L in gradient form on a domain E in ~n 
that the Martin boundary for the associated heat operator is given by 
(Ex {0} )U(ax ]0, oo[), where a is the Martin boundary of E with respect 
to L. It should be true in our setting that the Martin-Poisson space as
sociated with the space-time semigroup Q is given by (E U a) x [0, oo[), 
where a denotes the set of suitably normalized minimallP'-harmonic func
tions (c.f. [3] for details). 
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Remark 3.5. It is easily verified, that the integral representation 
of Corollary 3.1 for v E S(Q) holds already, if v is only wP0 -quasi
bounded for some general wPo E S(Q). The proof is the same as that of 
Corollary 3.1. 
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