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Continuity of weakly monotone Sobolev functions of 
variable exponent 

Toshihide Futamura and Yoshihiro Mizuta 

Abstract. 

Our aim in this paper is to deal with continuity properties for 
weakly monotone Sobolev functions of variable exponent. 

§1. Introduction 

This paper deals with continuity properties of weakly monotone 
Sobolev functions. We begin with the definition of weakly monotone 
functions. Let D be an open set in the n-dimensional Euclidean space 
Rn (n 2: 2). A function u in the Sobolev space W1~·;(D) is said to be 
weakly monotone in D (in the sense of Manfredi [12]), if for every rela­
tively compact subdomain G of D and for every pair of constants k :::; K 
such that 

(k- u)+ and 

we have 
k:::; u(x):::; K for a.e. x E G, 

where v+(x) = max{v(x),O}. If a weakly monotone Sobolev function is 
continuous, then it is monotone in the sense of Lebesgue [11]. For mono­
tone functions, see Koskela-Manfredi-Villamor [9], Manfredi-Villamor 
[13, 14], the second author [17], Villamor-Li [20] and Vuorinen [21, 22]. 

Following KovaCik and Rakosnik [10], we consider a positive contin­
uous function p(·) : D -+ (1, oo) and the Sobolev space W 1·P(·l(D) of 

Received December 1, 2004. 
Revised March 1, 2005. 
2000 Mathematics Subject Classification. 30C65, 31815, 46E35. 
Key words and phrases. weakly monotone Sobolev functions of variable 

exponent, 0-Holder continuous, capacity, tangential boundary limits. 
Partially supported by Shimane Prefecture, Matsue City, Grant-in-Aid 

for Scientific Research, Japan Society for the Promotion of Science, (A) (1) 
(No. 13304009) and (B) (2) (No. 15340046). 



128 T. Futamura andY. Mizuta 

all functions u whose first (weak) derivatives belong to £P(·l(D). In this 
paper we consider the function p( ·) satisfying 

alog(log(1/lx- yl)) b 
lp(x)- p(y)l::; log(1/lx- yl) + log(1/lx- yl) 

whenever lx - Yl < 1/2, for a ?: 0 and b ?: 0. 
Our first aim is to discuss the continuity for weakly monotone func­

tions u in the Sobolev space W 1·P(·l(D). For the properties of Sobolev 
spaces of variable exponent, we refer the reader to the papers by Diening 
[2], Edmunds-Rakosnik [3], KovaCik-Rakosnik [10] and R{lzicka [19]. 

We know that if p(x) ?: n for all x E D, then all weakly mono­
tone functions in W 1·P(·l(D) are continuous in D (see Manfredi [12] and 
Manfredi-Villamor [13]). We show that u is continuous at xo E D when 
p(·) is of the form 

p(x) = n _ alog(log(1/lx- xol)) 
log(1/lx- xol) 

(p(xo) = n) 

for x E B(x0 , r0 ), where 0 < ro < 1/2 and a ::; 1. 
Our second aim is to prove the existence of boundary limits of weakly 

monotone Sobolev functions on the unit ball B, when p(·) satisfies the 
inequality 

I { alog(e+log(1/p(x)))}l b 
p(x) - n + log( e/ p(x)) ::; log( ej p(x)) 

for a?: 0 and b?: 0, where p(x) = 1-lxl denotes the distance of x from 
the boundary 8B. Continuity of Sobolev functions has been obtained by 
Harjulehto-Hasto [7] and the authors [4]. Of course, our results extend 
the non-variable case studied in [17]. 

§2. Weakly monotone Sobolev functions 

Throughout this paper, let C denote various constants independent 
of the variables in question. 

We use the notation B(x, r) to denote the open ball centered at x of 
radius r. If u is a weakly monotone Sobolev function on D and q > n-1, 
then 

(1) iu(x)- u(x'W ::; Crq-n r i'Vu(zWdz 
}A(y,2r) 
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for almost every x, x' E B(y, r), whenever B(y, 2r) C D (see [12, Theo­
rem 1]) and A(y,2r) = B(y,2r) \B(y,r). If we define u*(x) by 

u*(x) = limsup IB( 1 )I r u(y)dy, 
r---+0 X, r j B(x,r) 

then we see that u* satisfies (1) for all x, x' E B(y, r). Note here that 
u* is a quasicontinuous representative of u and it is locally bounded on 
D. Hereafter, we identify u with u*. 

EXAMPLE 2 .1. Let 1 < q < oo and A : R n x R n ____, R n be a mapping 
satisfying the following assumptions for some measurable function a and 
constant j3 such that 0 < o:(x) ::; j3 < oo for a.e. x E R n: 

(i) the mapping x f---+ A(x,~) is measurable for all~ ERn, 
(ii) the mapping~ f---+ A(x,~) is continuous for a.e. x ERn, 

(iii) A(x, ~) · ~ 2: o:(x)l~lq for all~ ERn and a.e. x ERn, 
(iv) IA(x,OI :S: /3l~lq-l for all~ ERn and a.e. x ERn. 

Then a weak solution of the equation 

(2) - divA(x, \i'u(x)) = 0 

in an open set Dis weakly monotone (see [9, Lemma 2.7]). In the special 
case o:(x) 2: o: > 0, according to the well-known book by Heinonen­
Kilpeliiinen-Martio [8], a weak solution of (2) is monotone in the sense 
of Lebesgue. 

§3. Continuity of weakly monotone functions 

For an open set G in R n, define the £P( · l (G) norm by 

{ r /J(y)/p(y) } 
llfllv(·) = llfllv(·),G = inf >. > 0: Jc T dy :S: 1 

and denote by £PC l (G) the space of all measurable functions f on G 
with llfllv(·l < oo. We denote by W 1·P(·l(G) the space of all functions 
u E £P(·l(G) whose first (weak) derivatives belong to £P(·l(G). We define 
the conjugate exponent function p'(-) to satisfy 1/p(x) + 1/p'(x) = 1. 

Let B(x, r) be the open ball centered at x and radius r > 0, and let 
B = B(O, 1). Consider a positive continuous function p(·) on [0, 1] such 
that infrE[O,l] p(r) > 1 and 

l
p(r) _ {n _ alog(e + log(1/r)) }/ < b 

log(ejr) - log(ejr) 
(p(O) = n) 
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for a;:::: 0 and b;:::: 0. 
Our aim in this section is to prove that if a :::; 1, then functions in 

W 1·P(·) (B) are continuous at the origin, in spite of the fact that p_ (B) = 
infxEB p(x) < n. For this purpose, we prepare the following result. 

LEMMA 3.1. Let p(x) = p(lxl) for x E B. Let u be a weakly 
monotone Sobolev function in W 1•P(·)(B). If a< 1, then 

iu(x)- u(O)In:::; C(log(1/r))a-1 { l\lu(y)IP(Y)dy, 
JB(O,R) 

and if a= 1, then 

iu(x)- u(O)In:::; C(log(log(1/r)))-1 { l\lu(y)IP(Y)dy 
JB(O,R) 

whenever lxl < r < 1/4, where R = y'r when a< 1 and R = e-vflog(1/r) 
when a= 1. 

PROOF. Let u be a weakly monotone Sobolev function in W 1·P(·l(B). 
Set P1(r) = p(r)jq, where n- 1 < q < n. Then, as in (1), we apply 
Sobolev's theorem on the sphere 8(0, r) to establish 

iu(x)- u(OW:::; Crq-(n-1) { l\lu(yWdS(y) 
Js(o,r) 

for lxl < r. By Holder's inequality we have 

iu(x)- u(OW :::; Crq-(n-1) ( { dS(y)) 
1 /p~(r) 

Js(o,r) 

X ( { l\lu(y)iqp,(r)dS(y)) 
1
jp,(r) 

Js(o,r) 

< Crq-(n-1)/p,(r) ( { l\lu(y)ip(r)dS(y)) 1jp,(r)' 
Js(O,r) 

which yields 

iu(x)- u(O)Ip(r) :::; Cr(log(1/r))a { l\lu(y)IP(Y)dS(y) 
Js(o,r) 

for lxl < r. Since u is bounded on B(O, 1/2), we see that 

iu(x)- u(O)In:::; Cr(log(1/r))a { l\lu(y)IP(Y)dS(y). 
Js(O,r) 
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Hence, by dividing both sides by r(log(1/r))a and integrating them on 
the interval (r, R), we obtain 

lu(x)- u(O)In::; C(log(1/r))a-1 { i'Vu(y)IP(Yldy when a< 1 
JB(O,R) 

and 

lu(x)- u(O)In::; C(log(log(1/r)))-1 { i'Vu(y)IP(Yldy when a= 1 
JB(O,R) 

whenever lxl < r < 1/4. 0 

Lemma 3.1 yields the following result. 

THEOREM 3.2. Let u be a weakly monotone Sobolev function in 
W 1,p(·l(B). If a< 1, then u is continuous at the origin and it satisfies 

lim(log(1/lxl))(1-a)/nlu(x)- u(O)I = 0; 
X->0 

if a= 1, then 

lim(log(log(1/lxl))) 1/nlu(x)- u(O)I = 0. 
x->0 

REMARK 3.3. Consider the function 

Xn 
u(x) = r;;T 

for x = (x1, ... , Xn)· If we define u(O) = 0, then u is a weakly monotone 
quasicontinuous representative in Rn. Note that u is not continuous at 
0 and if a > 1, then L I'Vu(x)lp(x)dx < oo; 

if a ::; 1, then L i'Vu(x)lp(x)dx = oo. 

This shows that continuity result in Theorem 3.2 is good as to the size 
of a. 

REMARK 3.4. Let 'P be a nonnegative continuous function on the 
interval [0, ro] such that 

(i) cp(O) = 0 ; 
(ii) cp'(t) 2: 0 for 0 < t < ro ; 
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(iii) tp"(t)::; 0 for 0 < t < ro . 
Then note that 

(3) tp(s + t) ::; tp(s) + tp(t) 

for s, t 2': 0 and s + t ::; r0 . Consider 

( ) log(log(1/r)) 
'P r -

- log(1/r) ' 
1 

log(l/r) 

for 0 < r ::; r0 ; set tp(r) = tp(ro) for r > ro. Then we can find ro > 0 
such that tp satisfies (i) - (iii) on [0, r0 ], and hence (3) holds for all s 2': 0 
and t 2': 0. Hence if we set 

() alog(e+log(1/r)) b 
pr=n+ + , 

log(e/r) log(e/r) 

then we can find c > 0 and r0 > 0 such that 

lallog(log(1/ls- tl)) c 
lp(s)- p(t)l ::; log(1/ls- tl) + -lo-,g(,---1/.,.,.-ls---t~l) 

whenever Is- tl < ro. 

§4. 0-Holder continuity of continuous Sobolev functions 

Consider a positive continuous function p( ·) on the unit ball B such 
that P- (B) = infxEB p(x) > 1 and 

lp(x) _{Po+ alog(e+log(1/p(x))) }I< ::---:-b-:--;-:-­
log(e/ p(x)) - log(e/ p(x)) 

for all x E B, where 1 <Po < oo and p(x) = 1-lxl denotes the distance 
of x from the boundary 8B. Then note that 

p(x)- Po 
p' (X) - p~ = - -;---:_:_.:........:...-,-,--:c....:.._---,-

(p(x)- 1)(po- 1) 

p(x)- Po (p(x)- Po) 2 

-(Po- 1)2 + (p(x)- 1)(po- 1)2 ' 

where p~ = Po/(Po- 1). Hence we have the following result. 

LEMMA 4.1. There exist positive constants r0 and C such that 

IP' (x) - {p~ - w(p(x))} I ::; C / log(1/ p(x)) 
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for x E B, where w(t) = (aj(p0 -1)2 ) log(log(1/t))flog(1/t) for 0 < r:::; 
ro < 1/e; set w(t) = w(ro) for r > ro. 

We see from Sobolev's theorem that all functions u E W 1·P(·l(B) are 
continuous in B when p(x) > n in B. In what follows we discuss the 
0-HOlder continuity of u. Before doing so, we need the following result. 

LEMMA 4.2. Let Po= nand let u be a continuous Sobolev function 
in W1·P(·l(B) such that lli'Vuillvc·J :::; 1. If a> n- 1, then 

[ lx- Yl 1-ni'Vu(y)i:::; C(log(1/r))-A, 
JBnB(x,r) 

where A= (a-n+ 1)/n. 

PROOF. Let f(y) = i'Vu(y)i for y E B and f = 0 outside B. For 
0 < J.-t < 1, we have 

{ lx- Yll-n f(y)dy 
JB(x,r) 

< J.-t { { (ix- Yll-n /t.t)P'(y)dy + { f(y)P(Y)dy} 
k~~nB k~~ 

< J.-t {J.-t-n/(n-1) { lx- Yl(l-n)p'(y)dy + 1}. 
JB(x,r)nB 

Applying polar coordinates, we have 

{ lx- Yl(l-n)p'(y)dy 
JB(x,r)nB 

< C { lp(x) _ ti(l-n)(n'-wo(t))+n-ldt 
J{t:lt-p(x)l<r} 

C { lp(x) _ ti(n-l)wo(t)-ldt, 
J{t:lt-p(x)l<r} 

where wo(t) = w(t)- C/log(1/t). If r:::; p(x)/2 and lp(x)- ti < p(x)/2, 
then 

wo(t) 2: w(r) - C / log(1/r), 

so that 

{ lp(x) - ti(n-l)wo(t)-ldt:::; C(log(1/r))l-a/(n-1). 
J{t:lt-p(x)l<r} 



134 T. Futamura andY. Mizuta 

If r > p(x)/2, then ltl < 3lp(x)- tl when lp(x)- ti ~ p(x)/2. Hence, in 
this case, we obtain 

so that 

! lp(x)- t!(n-1)wo(t)-1dt 
{t:lt-p(x)l<r} 

< ! lp(x) - t!(n-1)wo(t)-1dt 
{ t: lt-p(x) I <p(x)/2} 

+ C! 1tl(n-1)wo(t)-1dt 
{t:ltl<3r} 

~ C(log(l/r))1-a/(n-1)' 

{ lx- Yl(l-n)v'(y)dy ~ C(log(l/r))1-a/(n-1J. 
JB(x,r)nB 

Consequently it follows that 

{ lx- Yl1-n f(y)dy ~ 1-L ( Cp,-n/(n-1l(log(l/r))1-a/(n-1) + 1). 
}B(x,r) 

Now, letting p,-n/(n-1l(log(l/r))1-a/(n-1) = 1, we establish 

{ lx- Yl 1-n f(y)dy ~ C(log(l/r))Cn-1-a)/n, 
}B(x,r) 

as required. D 

Now we are ready to show the 0-Hi:ilder continuity of Sobolev func­
tions in W 1·PC·l(B) . 

THEOREM 4.3. Let Po= nand u be a continuous Sobolev function 
in W 1·PC·l(B) such that III'Vulllvc·l ~ 1. Ifa > n-1, then 

lu(x)- u(y)l ~ C(log(l/lx- y!))-A 

whenever x, y E B and lx - Yl < 1/2. 

PROOF. Let x, y E B and r = lx - Yl ~ p(x). Then we see from 
Lemma 4.2 that 

lu(x)- u(y)l ~ c r lx- zl 1-ni'Vu(z)ldz ~ C(log(l/r))-A. 
}B(x,r) 



Weakly monotone Sobolev functions of variable exponent 135 

Ifr = lx-yl < 1/2, p(x) < randp(y) < r, then wetakexr = (1-r)x/lxl 
and Yr = (1- r)y/IYI to establish 

iu(x)- u(y)l < iu(x)- u(xr)l + iu(xr)- u(yr)l + iu(yr)- u(y)l 
< C(log(1/r))-A, 

which proves the assertion. 

REMARK 4.4. Let p(·) be as above, and consider the function 

u(x) = [log(e + log(1/lx- W)J 8 , 

0 

where ~ E BB and 0 < 5 < (n- 1)/n. We see readily that u(~) = oo 
and it is monotone in B. Further, if a::;: n- 1, then 

Li'V'u(x)IP(x)dx < oo, 

so that Theorem 4.3 does not hold for a ::;: n - 1. 

§5. Tangential boundary limits of weakly monotone Sobolev 
functions 

Let G be a bounded open set in R n. Consider a positive continuous 
function p(·) on Rn satisfying 

(p1) p_(G) = infcp(x) > 1 and P+(G) = sup0 p(x) < oo; 
alog(log(1/lx-yl)) b 

(p2) lp(x)- p(y)l::;: log(1/lx- yl) + log(1/lx- Yl) 
whenever lx - Yl < 1/ e, where a ~ 0 and b ~ 0. 

ForE c G, we define the relative p(·)-capacity by 

cp(·)(E; G)= inf Ia f(y)P(Y)dy, 

where the infimum is taken over all nonnegative functions f E LP( ·) (G) 
such that 

fcix- Yll-n J(y)dy ~ 1 for every x E E. 

From now on we collect fundamental properties for our capacity (see 
Meyers [15], Adams-Hedberg [1] and the authors [6]). 
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LEMMA 5.1. ForE c G, Cp(·)(E; G)= 0 if and only if there exists 

a nonnegative function f E £PC·l(G) such that 

i \x- y\1-n f(y)dy = oo for every x E E. 

For 0 < r < 1/2, set 

if p(x) < n, 
h r· X = (log(1/r))a-(n-l) { 

rn-p(x)(log(l/r))a 

( ' ) ilog(log(1/r)))-a 
if p(x) =nand a< n- 1, 
ifp(x) =nand a= n -1, 
if p(x) >nor p(x) = n, a> n- 1 

LEMMA 5.2. Suppose p(x0 ) ~nand a~ n -1. If B(x0 , r) C G and 
0 < r < 1/2, then 

Cp(-)(B(xo, r); G) ~ Ch(r; xo). 

LEMMA 5.3. Iff is a nonnegative measurable function on G with 
1\f\\p(·) < oo, then 

lim h(r; x)-1 r j(y)P(Y)dy = 0 
r___.O+ } B(x,r) 

holds for all x except in a set E C G with Cp(·)(E; G)= 0. 

Let p(·) be as in Section 4; that is, we assume that p(x) >nand 

(4) l
p(x) _ {n+ alog(e+log(1/p(x)))}l < b 

log(e/ p(x)) - log(e/ p(x)) 

for x E B, where a;:,: 0 and b > 0. Then P1 (x) ~ p(x) ~ p2(x) for x E B, 
where 

P1 (x) 
alog(e+log(1/p(x))) b 

n + - -.,....---,.---,--,..,... 
log(e/ p(x)) log(e/ p(x))' 

P2(x) 
alog(e + log(1/ p(x))) b 

n + log(e/ p(x)) + log(e/ p(x)) · 

For simplicity, set 

p(x) = pl(x) = P2(x) = n 
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outside B. Then we can find b' > b such that fori= 1, 2 

< 
alog(e + log(1/lx- Yl)) b 

log(e/lx- yl) + log(e/lx- yl) 

< 
alog(log(1/lx- Yl)) b' 

log(1/lx- yl) + log(1/lx- yl) 

whenever lx- Yl is small enough, say lx- Yl < r0 < 1/e. 
Since G has finite measure, we find a constant K > 0 such that 

(5) 

whenever E C G. Hence, in view of Lemma 5.2, we obtain 

(6) Cp(·)(B(xo, r); 2B) :S Ch(r; x0 ) 

for Xo E aB, where 2B = B(O, 2). 

COROLLARY 5.4. Iff is a nonnegative measurable function on 2B 
with IIJIIP(·) < oo, then 

lim h(r; x)-l r j(y)P(Y)dy = 0 
r--+O+ } B(x,r) 

holds for all X E aB except in a set E caB with cp(·)(E; 2B) = 0. 

If u is a weakly monotone function in W 1 ·P(·l(B), then, since p(x) > 
n for x E B by our assumption, we see that u is continuous in B and 
hence monotone in Bin the sense of Lebesgue. We now show the exis­
tence of tangential boundary limits of monotone Sobolev functions u in 
B when a :S n- 1. 

For ~ E aB, 'Y 2: 1 and c > 0, set 

T""Y(~, c) = {x E B: lx- ~I~' < cp(x)}. 

THEOREM 5.5. Let p(·) be a positive continuous function on 2B 
such that p(x) 2: n for x E 2B and 

I { alog(e+log(1/p(x)))}l b 
p(x) - n + log(e/ p(x)) :S log(e/ p(x)) 

for x E B, where a 2: 0 and b > 0. If u is a monotone function in 
W 1·P(·l(B) (in the sense of Lebesgue), then there exists a set E c aB 
such that 

(i) Cp(·)(E; 2B) = 0; 
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(ii) if~ E 8B \ E, then u(x) has a finite limit as x --+ ~ along the 
sets T'Y(~, c). 

If a > n - 1, then the above function u has a continuous extension 
on B = B U 8B in view of Theorem 4.3, and hence the exceptional set 
E can be taken as the empty set. 

To prove Theorem 5.5, we may assume that 

alog(e+log(e/p(x))) b 
p(x) = n + log(e/p(x)) - log(ejp(x)) 

for x E B. 
We need the following two results. The first one follows from in­

equality (1) (see e.g. [9] and [5]). 

LEMMA 5.6. Let u be a monotone Sobolev function in W 1·P(·)(B). 
If~ E 8B, x E Band n- 1 < q < n, then 

iu(x)- u(xW:::; C(log(2r/p(x)))q-1 f IV'u(yWp(y)q-ndy, 
JE(x) 

where x = (1 - r)~, r = I~ - xi and E(x) = UyExxB(y, p(y)/2) with 

xx = {tx + (1- t)x: o < t < 1}. 

LEMMA 5.7. Let u be a monotone Sobolev function in W 1•P(·)(B). 
Let~ E 8B and a 2': 0. Suppose 

(log(1/r))n- 1-a [ IV'u(y)IP(Y)dy ::=; 1. 
JBnB((,2r) 

If x E T'Y(~, c), x = (1 - r)~ and r = I~- xi, then 

iu(x)- u(x)ln ::=; C(log(1/r))n-1-a [ IV'u(y)IP(Y)dy. 
JBnB((,2r) 

PROOF. First note that 

p(y) 2': C(p(x) + lx- yl) for y E E(x). 
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Take q such that n - 1 < q < n; when a > 0, assume further that 
a> (n- q)fq. Set Pl(x) = p(x)jq. Then we have for p, > 0 

f IVu(yWp(y)q-ndy 
}E(x) 

< J-t { f (p(y)(q-n) fp,)P~(Yldy + f IVu(yWvt(yldy} 
}E(x) JE(x) 

p,{ { (p(y)(q-n)jp,)P~(y)dy+F}, 
}E(x) 

where F = JE(x) IV'u(y)IP(Yldy. Note from Lemma 4.1 that 

IP~ (y)- { nj(n- q)- w(p(y))}l :::; C / log(1/ p(y)) 

for y E E(x), where w(t) = (aq 2 j(n- q) 2) log(log(1/t))/ log(1/t). Hence 

nj(n- q)- w1(p(y)):::; p~(y):::; nj(n- q)- wz(p(y)), 

wherew1 (t) = w(t)+C/log(1/t) andw2 (t) = w(t)-C/log(1/t). Suppose 

(log(1/r))-l+aq/(n-q) F > 1. 

Since p~ (y) :::; nj(n- q), we have for 0 < p, < 1, 

{ (p(y)(q-n) jp,)P~(y)dy 
}E(x) 

< Cp,-n/(n-q) { (p(x) + lx _ Yi)(q-n)(n/(n-q)-w2(p(y))ldy 
}E(x) 

< cp,-n/(n-q) 12r (p(x) + t)-n(log(1/(p(x) + t)))-aq/(n-q)tn-ldt 

< C 1-l-n/(n-q) (log(1/r) )1-aq/(n-q) 

whenever x E T'Y(~, c). Considering 

J-l-n/(n-q)(log( 1/r))l-aq/(n-q) = F, 

we obtain 

f IVu(yWp(y)q-ndy 
}E(x) 

:::; C { (log(1/r))-l+aq/(n-q) F} -(n-q)/n F 

c{ (log(lfr))(n-q)/q-a f IVu(y)IP(Yldy} qfn. 
}E(x) 
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Consequently it follows from Lemma 5.6 that 

lu(x)- u(x)ln ~ C(log(1/r))n-1-a [ IV'u(y)IP(Y)dy 
JBnB(~,2r) 

whenever x E T"Y(e, c). 
Next consider the case when (log(1/r))-l+aqf(n-q) F ~ 1. Set p+ = 

SUPBnB(~,2r)P(Y) and and Pt = SUPBnB(~,2r)P1(Y) = p+ fq. For J.L > 1, 
we apply the above considerations to obtain 

{ (p(y)(q-n)/J.L)P~(y)dy 
JE(x) 

< cJ.L-(pt)' [ (p(x) + lx- yl)(q-n)(n/(n-q)-w2(p(y)))dy 
JE(x) 

< Cj.L-(Pi>'(log(1/r)) 1-aqf(n-q). 

If we take J.L satisfying J.L-(pi)' (log(1/r)) 1-aqf(n-q) = F, then we have 

{ IV'u(yWp(y)q-ndy 
JE(x) 

{ 1 }1/p+ 
< C (log(l/r))(n-q)fq-a IV'u(y)IP(Y)dy 1 • 

E(x) 

Since (log(1/r))w(r) is bounded above for small r > 0, Lemma 5.6 yields 

lu(x) - u(x)IP+ ~ C(log(1/r))n-1-a [ IV'u(y)IP(Y)dy 
JBnB(~,2r) 

whenever x E T"Y(e, c), which proves the required assertion. D 

PROOF OF THEOREM 5.5. Consider E = E1 U E2, where 

E1 = {e E aB : L 1e- Yl1 -niV'u(y)ldy = oo} 

and 

E2 = {e E aB: limsup(log(1/r))n-1-a [ IV'u(y)IP(Y)dy > 0}. 
r->0+ J B(~,r) 

We see from Lemma 5.1 and Corollary 5.4 that E = E 1 U E2 is of Cp(·)­
capacity zero. If e ¢ E 1, then we can find a line L along which u has a 
finite limit£. In view of inequality (1), we see that u has a radial limit f 
at e, that is, u(re) tends to f as r --+ 1 - 0. Now we insist from Lemma 
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5.7 that if~ E 8B \ E, then u(x) tends to f as x tends to~ along the 
sets T-y(~, c). 0 

REMARK 5.8. If a> n- 1, then we do not need the monotonicity 
in Theorem 5.5, because of Theorem 4.3. 

Finally we show the nontangentiallimit result for weakly monotone 
Sobolev functions. Recall that a quasicontinuous representative is locally 
bounded. 

THEOREM 5. 9. Let p( ·) be a positive continuous function on B such 
that 

I { alog(e + log(1/p(x))) }I b px-po+ < , 
( ) log(e/p(x)) - log(e/p(x)) 

where -oo < a < oo, b ~ 0 and n - 1 < Po ~ n. If u is a weakly 
monotone function in Wl,p(·l(B) (in the sense of Manfredi), then there 
exists a set E C 8B such that 

(i) Cp(·)(E; 2B) = 0 ; 
(ii) if~ E 8B \ E, then u(x) has a finite limit as x -4 ~ along the 

sets T1(~, c). 

To prove this, we need the following lemma instead of Lemma 5.7, 
which can be proved by use of (1) with q = P- = infzEB(x,p(x)/2)P(z). 

LEMMA 5.10. Let p and u be as in Theorem 5.9. lEy E B(x, r) with 
r = p(x)/4, then 

lu(x)- u(y)IP- ~ CrPo-n(log(1/r))-a (rn + r IV'u(z)lp(z)dz). 
· JB(x,2r) 
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