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Densities and harmonic measure 

Joaquim Ortega-Cerda 

Abstract. 

Several notions of densities related to zero sequences, interpolat­
ing sequences and sampling sequences of holomorphic functions are 
presented. Some ties with harmonic measure estimates are shown. 

§1. Introduction 

In this survey we will present several notions of densities and its 
relation to some classical problems in function theory. We show how 
some of these densities can be computed through precise estimates of 
the harmonic measure on conveniently crafted domains. This new inter­
pretation of the densities may be useful in the extension of the classical 
function theory in the disk to other domains or Riemann surfaces. 

The results that we present here are not new, and we will point to 
the sources along the exposition. There exists a nice book [16] with the 
state of the art on the problems of interpolation and sampling sequences. 
If one is interested in an (elementary) survey on motivation of these 
problems and its conection to signal analysis see for instance [3] and the 
references therein. 

§2. Different densities 

Given a sequence of points A in JR. or C we will define different quan­
tities V(A) that try to provide a mathematical definition to the intuitive 
concept of the density of the sequence. There are several possibilities 
as we will see, and each of these appeared in the literature to deal with 
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different problems of function theory. The heuristic principle behind all 
the results that we present is that the density of the zero sequence of an 
holomorphic function is controlled by the growth of such function. Of 
course this is what lies behind Nenvanlinna theory but to begin with we 
would like to recall a classical result, the Beurling-Malliavin theorem: 

2.1. The Beurling-Malliavin density 

The Paley-Wiener PW'T space consists of entire functions of expo­
nential type lower or equal than T (1/(z)l ::::; Ce'TI~zl) and f E L2 (IR). 

Let us first discuss uniqueness sets A c lR for PW'T, that is, sets 
for which f E PW'T and /(>.) = 0 V>. E A implies f = 0. Since every 
f E PW'T is entire, it is clear that every set A with a finite accumulation 
point is a uniqueness set; it is also transparent that a finite set cannot 
be a uniqueness set, so we assume from now on that A is an infinite 
sequence without acumulation points. It is intuitively clear that A must 
be dense in some sense, so that fiA = 0 implies f = 0. Now, iff E PWr 

and f(a) = 0, then the function g(z) = f(z) ~==~~ is again in PWr and 
g(f3) = 0; this means that we can move arbitrarily any finite number of 
points of A without changing the problem. Consequently, the control 
on the density of the sequences A should be asymptotic, depending just 
on how A behaves "at infinity". In a series of deep and very celebrated 
papers, Beurling and Malliavin (see for instance [6]) proved some re­
sults giving an almost complete description of uniqueness sets for PWr. 
They introduced a density 'DBM(A), called now the Beurling-Malliavin 
density, and proved the following 

Theorem 2.1. If a real sequence A satisfies VBM(A) > 2r then A 
is a uniqueness set for PWr. Conversely if A is a uniqueness set for 
PWr then VBM(A) ~ 2r. 

The definition of VBM(A) is complicated, but geometric in nature. 
It is called a density because the number VBM(A) depends on how many 
points does A have in big intervals. It is closely related to the classical 
density 

V (A) = lim nA(r), 
r---+0 2r 

where nA(r) indicates the number of points of A in [-r, r]. In particular, 
VBM(A) ~ V(A). The precise definition is the following: Let A be a 
sequence of real numbers contained in (0, +oo). We fix A > 0 and we 
let 

SA(A) = {t > 0; nA(T)- nA(t) >A for some T > t}. 
T -t 
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The set SA(A) is of the form Uk(ak, bk) and we define 

IISA(A)II = .2::: (bk- ak) 2 

k a~ 
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Finally the density VBM(A) is the infimum of all A such that IISA(A)II < 
oo. If the sequence A is real but not strictly positive we define A+ 
An(O,+oo), A_= -(An(-oo,O)) and 

VBM(A) = max(VBM(A+), VBM(A-)). 

The exact description of the uniqueness sets for PW7 remains how­
ever unsolved. 

2.2. The Beurling-Nyquist density 

If one is interested instead in a uniqueness problem with stability, 
then the problem becomes the following. Describe the sequences A C JR. 
such that 

(2.1) .2::: lf(.x.W ~ f lfl 2 ~ .2::: lf(A.)I 2 , 
A j'llf. A 

for all functions f E PW7 . For simplicity we will assume that A is 
separated, i.e. inf.>.o;iA' lA.- XI > 0. The separated sequences that satisfy 
(2.1) are called sampling sequences for the Paley-Wiener space and they 
are very important in signal analysis because these are the sequences that 
allow a stable discretization of band-limited and finite energy signals. 
Their description can almost be achieved with a density very much like 
in the case of uniqueness sequences with the Beurling-Malliavin theorem. 
The following result was proved by Beurling (see [1]): 

Theorem 2.2. If A is a uniformly separated real sequence and 
V£m(A) > T then A is a sampling sequence for PW7 • Conversely if 
A is a sampling sequence for PW7 then V£m(A) :::0: T. 

The lower Beurling-Nyquist density V£m(A) is defined as 

V - (A) 1. . #(An (x, r + x)) 
BN = 1m min . 

r-+oo xEITf. r 

The corresponding upper Beurling-Nyquist density V~N(A) is defined 
as 

V + (A) 1. #(An (x, r + x)) 
BN = 1m max , 

r-+oo xEITf. r 

which is related to the following interpolation problem. For which sep­
arated A C JR., the restriction PW7 ----+ £2 , f ----+ {! (A)} is onto? This 
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sequences are called interpolating sequences and they are relevant in 
one wants to codify a discrete signal over a continuous band-limited 
signal. The corresponding theorem by Beurling states 

Theorem 2.3. If A is a separated real sequence such that V~N(A) < 
r then A is an interpolating sequence for PW7 • Conversely if A is an 
interpolating sequence then 'D~N(A) :::; T. 

Again the critical case where V~M(A) = 'D8M(A) = r is not cov­
ered by the theorems. Sampling and interpolating sequences for the 
Paley-Wiener space have been recently described in [10] and [16] but 
the notions involved are more delicate. 

2.3. The Bergman space, Seip's density 

There are similar notions of sampling and interpolation for the 
Bergman space. The weighted Bergman space B 7 is defined as the holo­
morphic functions in the disk such that 

A sequence A C ][)) is separated in this context if inf.x#A' p(>.., >..') > 0, 
where p(z, w) = lz- wl/11- wzl is the pseudohyperbolic distance. 

The sampling sequences for the Bergman space are those sequences 
A such that 

and A is an interpolating sequence for the Bergman space whenever for 
any sequence of values { v.x} such that I: lv.x 12 (1 - 1>..1) 27+1 < +oo there 
is a function in B 7 such that f(>..) = v.x. Again there is a correspond­
ing notion of density that describes the uniformly separated sampling 
(or interpolating) sequences in the Bergman space. This density was 
introduced by Seip in [13] and it is defined as 

-n+(A) l" Lp(>.,z)<r 1- p(z, >..) 
v 8 = 1msupsup . , 

r-+1 zED log 1/ (1 - r) 

-n-(A) l" . f. f Lp(>.,z)<r 1- p(z, >..) 
v = 1m1n Ill . 

8 r-+1 zED log 1/(1- r) 

The corresponding theorem is 

Theorem 2.4. A separated sequence A is interpolating for B 7 if 
and only ifVt(A) < r and it is sampling if and only if'D8(A) > r. 
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2.4. Korenblum density 

We introduce now a new density that almost describes the zeros 
in the Bergman space in the same sense that the Beurling-Malliavin 
almost describes the zeros of the Paley-Wiener space. This density was 
introduced by Korenblum in [7]. 

Given a finite set E of points in 'Ir we define the Beurling-Carleson 
entropy of E as 

k(E) = L &)_(log ~lhl + 1), 
k 211" 7r 

where h are the arcs complementary to E in 'Jr. To each set E we 
associate to it the Korenblum flower F(E) as the union of Stolz regions 
with vertex onE, i.e. {z E ][]);d( 1 ~ 1 ,E):::; 1-lzl}. Finally let O"(A,E) 
be the Blashke sum of the points of A that are inside the Korenblum 
flower, i.e. 

O"(A, E)= L log1/l>-l. 
.\EAnF(E) 

The density 1JK(A) is defined as the infimum of all A > 0 such that 

sup(O"(A,E) -Ak(E)) < +oo. 
EC'll' 

The following theorem is a refinement of Seip [15] and [14] of a previous 
work by Korenblum [7] 

Theorem 2.5. If A is a sequence in the unit disk such that 1JK(A) > 
T then A is a uniqueness set for B 7 and conversely if A is a uniqueness 
set for B 7 then 1JK(A) ~ T. 

In this context it should be noted that the original paper by Ko­
renblum studied the zeros of functions in A -oo = U 7 >oB7 • The zeros, 
in view of Theorem 2.5 are the sequences such that 7JK(A) < oo. The 
necessity of the density condition in the work of Korenblum was proved 
with a delicate study of the distortion of certain conformal mappings. 
There is a more elementary proof due to Bruna and Massaneda [2] that 
uses some estimates of the harmonic measure and that allows them to 
work in higher dimensions. 

We will sketch this potential theoretic proof. Suppose that f E B 7 

with f(O) = 1 and Z(f) =A. Denote by u =log lfl, u is a subharmonic 
function in the disk with the growth u+ :::; Clog 1/(1 -lzl 2). Take any 
of the star shaped regions of Korenblum F(E). Then 

(2.2) 0 = u(O) = { u(()dw(O, ()- { g(O, (, F(E))t:.u((), 
laF(E) JF(E) 
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where g(O, (, F(E)) is the Green function of F(E) with pole at 0 and 
w(O, () the hamonic measure evaluated at the origin. With a careful 
estimate of the harmonic measure it follows that 

{ log 1
1 

l2 dw(O, () ::::; ck(E), 
laF(E) 1- Z 

and more easily g(O, y, F(E)) 2: c(1 - IYI) for IYI > 1/2. Thus the 
necessary condition of Korenblum follows from (2.2) because ll.u = 

CI:.AEA b).. 
This is part of a more general scheme, where the study of the zeros 

sequences of holomorphic functions is seen to be equivalent to the study 
of the Poisson equation ll.u = J..l, where J..l is a positive measure. We are 
interested in finding solutions u to the equation without any boundary 
restriction but with some growth estimates. The conection is clear since 
for any holomorphic function f, u = log If I is a subharmonic function 
and viceversa for any solution u of ll.u =LA b.>. there is an holomorphic 
function f such that u = log lfl and f vanishes on A. This connection 
has been exploited in many situations, see for instance [4]. 

2.5. Weighted densities 

The study of these densities suggests the following pattern: The 
functions in the Paley-Wiener space are charactrized by the growth eriS<zl 

and the functions in the Bergman-space by e 7 log l/(l-lzl 2
). In all cases 

the growth is of the type e¢(z) where ¢is a subharmonic function. This 
is very natural since log lfl is subharmonic whenever f is holomorphic, 
but the striking point is that the densities in both cases are related to 
ll.¢, in the case of the Paley-Wiener case this corresponds to T times the 
Lebesgue meaure on the real line and in the weighted Bergman space 
to T times the invariant measure on the disk. This is no coincidence, 
in general the density of the sampling, interpolating and zero sequences 
must be measured in the geometry of the manifold endowed with a metric 
related to the Laplacian of the weight. 

Consider for instance the following situation. Take ¢ a subharmonic 
function in C with some mild regularity (doubling Laplacian, i.e. there 
is a C > 0 such that for all disks D, J..L(2D) ::::; CJ..L(D) where J..l de­
notes the positive measure J..l = ll.¢. Let p(z) be the radius such that 
J..L(D(z, p(z))) = 1 (one has to think of p2 as a sort of regularized ll.¢). 
Let F¢ be the space of entire functions f such that fe-¢ E L00 (C). The 
problem of describing interpolating and sampling sequences is the nat­
ural one in this setting. To solve it one has to introduce some densities 
tied to the metric in C induced by p. 
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Definition 2.1. A sequence A is p-separated if there exists t5 > 0 
such that 

lA- A' I ?: t5 max(p(A), p(A')) A =/= A1• 

Definition 2.2. Assume that A is a p-separated sequence and recall 
that we denote JL = ~¢. 

The upper uniform density of A with respect to ~¢ is 

+ . #(An D(z, rp(z))) 
Vflq,(A) = hmsupsup ( ( ( ))) . 

r-.oo zEIC JL D z, rp z 

The lower uniform density of A with respect to ~¢ is 

_ ... #(AnD(z,rp(z))) 
V !lq,(A) = hmmf mf (D( ( ))) . 

r-+oo zEIC JL z, rp z 

The following theorem proved in [8] is 

Theorem 2.6. Let ¢ be a subharmonic function with a doubling 
Laplacian. 

(i) A sequence A is sampling for F¢ , if and only if A contains a 
p-separated subsequence A' such that Vt,.</>(A') > 1/27!". 

(ii) A sequence A is interpolating for F¢, if and only if A is p­
separated and v;t<I>(A) < 1/27r. 

§3. Riemann surfaces 

This section is more especulative. All these results concern the study 
of function spaces defined on the whole <C or in a disk with different 
growths. It is also possible to study the same problems in Riemann 
surfaces or in several complex variables. We will not deal with the mul­
tidimensional situation, although there has been some recent progress 
(see [9]), but we will rather concentrate on the Riemann surfaces. There 
are two (at least) possible approaches to define the right density that 
governs the interpolating or sampling sequences for holomorphic L 2 func­
tions in the surface. Both use some potential theory to define them. In 
the first one as developed in [12] they compute the density of a sequence 
using instead of disks, the sublevel sets of the Green function. With 
these densities they have obtained some sufficient conditions (although 
not necessary) for a sequence to be sampling or interpolating in the 
Riemann surface. When restricted to the disk one reobtains Seip's char­
acterization for the Bergman space. 

The second approach consists in using some harmonic measure es­
timates to provide an alternative definition of the densities. We will 
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present the result in the disk. By its invariant nature this new def­
inition can be transported to any Riemann surface. We are inspired 
by a following result [5] due to Garnett Gehring and Jones. We need 
some notation. For a z E IDl, let D(z, r) be the pseudohyperbolic disk 
D(z, r) = {wE IDl; p(z, w) < r }. As usual if A is a portion of the bound­
ary of an open set 0 and z E 0, then w(z, A, 0) denotes the harmonic 
measure of A from the point z. 

Theorem 3.1. A separated sequence A is an interpolating sequence 
for H 00 if and only if 

inf w(A,81Dl,IDl\ U D(A',c)) > 0 
>.EA .>.'#>. 

for some 0 < c < 1. 

To obtain a counterpart of this result, we define the following den­
sities. Set 

O(z, r) = O(A; z, r) = lDl \ u D(A, 1- r), 
1/2<p(>.,z)<r 

which is a finitely connected domain. We see that the uniform pseudo­
hyperbolic radius of the little disks tends to 0 as r --> 1. This decay is 
tuned with the growth of r in such a way that the numbers 

V/;(A) = liminf inf log ( BIDl10( )) 
r-->1-zEIIll WZ, , z,r 

and 

V~(A) = limsupsuplog (A BIDl10(A )) 
r-+1- >.EA W , , , r 

are positive when A is uniformly dense. In fact, we have the following 
precise characterization that is proved in [11] 

Theorem 3.2. For a separated sequence A in lDl we have 

'D8(A) = V/;(A) and Vt(A) = V~(A). 

This theorem is proved with a direct proof that the harmonic mea­
sure density is comparable to the "geometric" density. It will be inter­
esting to prove that whenever V~(A) < T then A is interpolating for Bn 
directly without using Seip's characterization of interpolating sequences. 
This will possibly allow the generalization of such notions to Riemann 
surfaces. 
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