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Radial limits of harmonic functions 

Stephen J. Gardiner 

Abstract. 

A classical result of Alice Roth characterizes those functions on 
the unit circle that can arise from taking radial limits of entire func
tions. This paper describes recent progress on the characterization of 
radial limit functions of harmonic functions defined either in the unit 
ball or the whole of space. Some related open problems are posed. 

§1. Introduction 

Let 'II' dimote the unit circle. The starting point for this article is 
the following question: which functions f : 'II' --> <C can be expressed as 

(1.1) (0 ~ () < 27r) 

for some entire function g? Such a function f must, of course, be a Baire
one function, that is, the pointwise limit of a sequence from C('II'). One 
would expect, however, that only a restricted class of Baire-one functions 
on 'II' can arise in this manner. The answer to the above question is found 
in the following classical result of Alice Roth [15], [16] (or see Chapter 
IV, §5 of the book by Gaier [9]). 

Theorem A. Let f : 'II' --> <C. The following statements are equiva
lent: 

{a) there is an entire function g such that {1.1) holds; 
{b) f is Baire-one, and is constant on each component of some 

relatively open dense subset J of'JI'. 

Further, if {b) holds, then (a) holds with the additional property that the 
convergence in {1.1) is locally uniform on J. 
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To see that (a) implies (b) in this result, suppose that (a) holds, let 

(kEN), 

and let Jk denote the interior of Kk relative to 1l'. Then UkKk = 1l', 
so the set J = UkJk, which is relatively open in 1l', must also be dense 
in '][' by a Baire category argument. Since g is bounded on the set 
{ reiO : r > 0, ei 11 E Jk}, the radial limit function f must, by Mantel's 
theorem, be constant on each component arc of J k. Thus (b) follows 
(and, indeed, the convergence in (1.1) is locally uniform in J). The 
more difficult, and hence more interesting, part of the result is the con
verse. The proof of this involved adapting ideas from Runge's theorem 
on rational approximation to deal with approximation on non-compact 
sets, and foreshadowed much later celebrated work of Arakeljan [1], [2]. 

More recently, Boivin and Paramonov [6] obtained an analogue of 
Roth's result for radial limits of solutions of homogeneous elliptic partial 
differential equations of order two with constant complex coefficients 
in JR2 . In the particular case of harmonic functions the radial limit 
functions are characterized as those Baire-one functions on '][' that are 
first-degree polynomials of e on each component arc of some relatively 
open dense subset of 1l'. The arguments used do not apply in higher 
dimensions. 

In Section 2 below we will remain in the context of the plane and 
consider the nature of radial limit functions of harmonic functions that 
are defined in the unit disc. The corresponding problem in higher dimen
sions is still open. Then, in Section 3, we will move to higher dimensions 
and see a characterization of radial limit functions of entire harmonic 
functions. New features, and deeper arguments, apply in this setting. 

§2. Radial limits of harmonic functions in the disc 

We now consider the question: which functions f : '][' -+ lR can be 
expressed as 

(2.1) (o s:: e < 21r) 

for some harmonic function h on the unit disc ][])? To see what form the 
result should take we can follow the pattern of the argument outlined in 
Section 1. Let 

(kEN), 
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and J = UkJk, where Jk denotes the interior of Kk relative to 'JI'. It is 
not difficult to deduce from (2.1) that 

where Hf denotes the (generalised) solution to the Dirichlet problem 
on an open set U with boundary data g (the solution is given by a 
Poisson integral in the present context) and XA denotes the characteristic 
function of a set A. It follows from a converse of Fatou's theorem, due 
to Loomis [13] and valid for bounded boundary functions such as fXJ., 
that 

(2.2) as t-> 0+ 

when eiiJ E Jk. We will say that f is asymptotically mean-valued at eiiJ 
if (2.2) holds. One implication of the following result, taken from [11], 
has now been established. 

Theorem 1. Let f : 'li' -> JR. The following statements are equiva
lent: 

(a) there is a harmonic function h on lOJ such that (2.1) holds for all 
B; 

(b) f is Baire-one, and there is a relatively open dense subset J of 'li' 
on which f is locally bounded and asymptotically mean-valued. 

FUrther, if (b) holds, then (a) holds with the additional property that the 
mapping w f-----+ sup0 <r< 1 lh(rw)l is locally bounded on J. 

It remains to see why (b) implies (a). Suppose that condition (b) 
holds, let { Jj} be the component arcs of J and let {Uj} be the cor
responding sectors of lOJ. We write Jj as { eiiJ: IB- Bjl < aj }. A na1ve 
approach would now be to solve the Dirichlet problem in each sector Uj 
with boundary data f on Jj and f(ei(1Jj±a1 )) on the boundary radii. The 
asymptotic mean value property of f could then be used in conjunction 
with Fatou's theorem to deduce that the resulting Dirichlet solution had 
the desired radial limits at points of ]j. There would remain, of course, 
the problem of how to "stitch together" the various Dirichlet solutions 
from different sectors to obtain a function that is harmonic on all of 
the disc. However, before we even get that far with this approach, an 
additional obstacle is that f I Ji need not be integrable with respect to 
harmonic measure for the sector uj. 

These difficulties can be overcome by refining our approach. Firstly, 
we modify the region in which we solve the Dirichlet problem by the 
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removal of radial slits from the .sector Uj. More precisely, let 

Then it is possible to choose a sequence (pj,k)k?.l in (0, 1), with limit 
1, such that the function f (interpreted as 0 off 'II') is integrable with 
respect to harmonic measure for the set 

If we denote the resultant harmonic function on Vj by h1, then it can 
be deduced, as above, from the asymptotic mean value property that 

as r--->1-

Secondly, we must find some way of constructing a harmonic func
tion on ![)) that imitates the boundary behaviour of hj in Vj, for each 
j, and also has the right behaviour along radii ending in the closed set 
'II'\J. To do this, let Pj: J1 ---> (1- j-1 , 1) be a continuous function such 
that p1(ei9 ) ---> 1 as(}---> (}j ± aj and such that the set 

Ej = {rw: wE J1 and pj(w) ~ r < 1} 

does not intersect any of the radial slits {Sj,k(Pj,k): k 2: 1}. Then Ej is 
a relatively closed subset of![)) such that Ej C Vj. The set 

Eo = { rw : w E 'II'\ J and ~ ~ r < 1} 

is also closed relative to ![)) and is, in addition, nowhere dense. Since f 
is Baire-one, we can choose a continuous function ho on Eo such that 

ho(rw) ---> f(w) as r--->1- (wE 'II'\J). 

The disjoint union E = Uj?_OEj is a relatively closed subset of ![)). 
Further, if we define von E by setting it equal to hj on Ej (j 2: 0), then 
v has radial limit function f. The theorem will therefore be established 
if we can approximate v on E by a harmonic function on ![)) in such a way 
that the error of approximation tends to 0 at 'II'. Since v is continuous 
on E and harmonic on E 0 , Corollary 3.21 of [10] (based on work of 
Armitage and Goldstein [4]) tells us that this can be done provided J[))*\E 
is connected and locally connected, where ![))* denotes the Alexandroff 
(or one-point) compactification of![)). Our construction of E evidently 
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guarantees these connectivity hypotheses (see §3.2 of [10] for a discussion 
of local connectedness in this context), so the proof is complete. 

Since our motivation came originally from classical function theory, 
it is natural to pose the following question. 

Problem 1. Which functions f : 1!' ----+ C can be expressed as 

(o:s;e<27r) 

for some holomorphic function g on [})? 

Another obvious question concerns higher dimensions. Let § denote 
the unit sphere in IR.n. 

Problem 2. Which functions f : § ----+ JR. can be expressed as 

f(w) = lim h(rw) 
r---+1-

(wE§) 

for some harmonic function h on the open unit ball of IR.n? 

We will see in the next section that moving from the context of the 
plane to higher dimensions is not routine. 

§3. Radial limits of harmonic functions in space 

Now we develop the discussion of Section 1 in another direction by 
asking the question: which functions f : § ----+ JR. can be expressed as 

(3.1) f(w) = lim h(rw) (wE§) 
r->oo 

for some harmonic function h on IR.n? Let t5 denote the Laplace-Beltrami 
operator on §; thus the Laplacian on IR.n can be expressed in polar co
ordinates as 

82 n-18 1 
ll=-a2+---a +215. r r r r 

If I is a relatively open subset of § and the entire harmonic function h 
in (3.1) is bounded on the conical set {rw: r > 0, wE I}, then a simple 
dilation argument shows that t5f = 0 on I. This observation, together 
with a Baire category argument, shows that a function f of the form 
(3.1) must, in addition to being Baire-one, satisfy the Laplace-Beltrami 
equation t5f = 0 on a relatively open dense subset of§. In the case 
of two dimensions the latter equation reduces to a2 f 1 ae2 = o and so 
we arrive at the answer to the above question obtained by Boivin and 
Paramonov (see Section 1). However, this Baire category argument can 
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be applied also in relation to the J-fine topology on§, that is, the coarsest 
topology that makes all supersolutions ofthe Laplace-Beltrami equation 
continuous. This allows us to conclude that any function f of the form 
(3.1) must be a J-fine solution of the Laplace-Beltrami equation on a 
J-finely open J-finely dense subset of §. (We refer to Fuglede [8] for 
these notions from fine potential theory.) The important point here is 
that, when n 2: 3, there exist compact subsets of § that are nowhere 
dense in § and yet have non-empty J-fine interior. This shows that the 
answer to our question in higher dimensions will be more delicate. 

In order to proceed we need some additional notation and termi
nology. Given a compact subset J of § we write u E .C( J) if u is a 
function on a relatively open subset I of § such that J C I and Ju = 0 
on I. Further, given z E J, we denote by Nz(l) the collection of all 
.C(J)-representing measures for z, that is, probability measures J.L on J 
satisfying 

u(z) = i udJ.L for every u E .C( J). 

A bounded Borel function f on J will be called .C- affine on J if 

f(z) = J f dJ.L whenever z E J and J.L E Nz(J). 

Clearly the collection of £-affine functions on J contains .C(J). 
We are now in a position to formulate the answer to our question in 

the following result, which is taken from [12]. 

Theorem 2. Let f : § ----> JR. The following statements are equiva
lent: 

(a) there is a harmonic function h on IRn such that (3.1) holds; 
(b) there is a sequence of compacts Jk j § such that, for each k, the 

restriction f !Jk is bounded, Baire-one and £-affine on Jk. 

We will briefly outline below the main ideas of the proof and refer 
to [12] for full details. Although some things have to be verified, the 
implication (a) ==? (b) is not difficult. As usual, the main interest lies 
in the proof of the converse. A key ingredient here is the result stated 
below. It follows from an abstract result of Lukes et al. [14] that deals 
with approximation of bounded Baire-one functions in the context of 
simplicial function spaces. It can be applied in the present situation 
because of work of Bliedtner and Hansen [5] concerning simpliciality in 
potential theory. 

Theorem B. Let J be a compact subset of§ and let f : J ----> IR 
be a bounded Baire-one function. Iff is £-affine on J, then there is a 
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bounded sequence (um) in C(J) such that each function Um is £-affine 
on J and Um --+ f pointwise on J. 

Now let f : § --+ lR and suppose that condition (b) of Theorem 
2 holds. We fix k temporarily. By Theorem B there is a sequence 
(uk,m)m~l in C(Jk), and a positive constant Ck, such that 

• uk,m is £-affine on Jk for each m, 
• iuk,ml S Ck on Jk for each m, and 
• the sequence (uk,m)m~l converges to f pointwise on Jk. 

Further, by an approximation result of Debiard and Gaveau [7], we may 
assume that each function Uk,m satisfies t5uk,m = 0 on a neighbourhood 
of h,m, where h,m is some relatively open neighbourhood of Jk in §. 

(We may also assume that the sequence (h,m)m~l is decreasing.) Let 
Wk denote the open set defined by 

Wk = U {rz: z E h,m+l and ((m- 1)!)4 < r < ((m + 1)!)4 } 

m~l 

and let hk denote the solution to the Dirichlet problem on Wk with 
boundary data 9k where, for each m 2': 1, the function 9k is defined on 
the boundary subset 

by 

1 m ( x) 
9k(x) = m tt Uk,l llxll . 

Careful estimation of harmonic measure can be used to show that 

(3.2) hk(rz) --+ f(z) as r--+ oo 

We now consider general values of k and define E = UkEk, where 

{ 
{rz: z E J1 and r 2': 1} 

Ek= 
{rz: z E Jk, dist(z, Jk-d 2': ~and r 2': k} 

(k = 1) 

(k 2': 2). 

Clearly the set E is closed. We can obtain a harmonic function v on 
a neighbourhood of E by defining v = hk on an appropriate neigh
bourhood of Ek for each k. Further, it is readily seen that the set 
(!Rn U { oo}) \E is connected and locally connected, where oo denotes 
the point at infinity for !Rn. Under these circumstances we can appeal 
to another result from the theory of harmonic approximation (see [3], 
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or Corollary 5.10 of [10]) to conclude that there is an entire harmonic 
function h satisfying 

1 
lv(x)- h(x)l < W (x E E). 

Now let ~ E § and ko = min{k : z E Jk}. For all sufficiently large 
values of r we have rz E Eko and so 

if(z)- h(rz)i 

by (3.2), as required. 

1 
< if(z)- v(rz)i +-

r 
1 

if(z)- hko(rz)i +-
r 

----* 0 aST----*00 
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