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Brownian motion and harmonic measure in conic 
sections 

Tom Carroll 

Abstract. 

This is a survey of results on the exit time and the exit position 
of Brownian motion from cones and parabola-shaped regions in Eu
clidean space. The paper begins with a section on harmonic measure. 

§ 1. Harmonic measure 

1.1. The Dirichlet Problem and harmonic measure 

Harmonic measure has long been a central theme of Potential The
ory: that this is as true today as it was in the past is confirmed by the 
recent publication of the major book Harmonic measure by Garnett and 
Marshall [13]. 

The Dirichlet Problem is the boundary value problem for the Laplace 
equation: given a region D in R n and a bounded continuous function f 
on the boundary of D, one is to find a function u on the closure D of 
the region with the properties that 

(i) u is continuous on D, 
(ii) u is harmonic in D, that is ~u = 0 in D, 

(iii) ulav = f 
This boundary value problem arises in a number of physical contexts, 
for example that of determining the steady state temperature inside a 
region when the temperature on the boundary of the region is specified. 
This physical interpretation also sheds light on a defining characteristic 
of harmonic functions: they are the functions that satisfy the mean
value property, in that the average value of a harmonic function over 
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a sphere is its value at the centre of the sphere [9, Theorem 1.9] 1. If 
the average steady state temperature on the sphere was, say, greater 
than the temperature at its centre there would then be a net flow of 
heat from the hotter sphere to its cooler centre. The temperature at 
the centre would then increase and this would not, after all, be a steady 
state temperature distribution. 

The Dirichlet Problem as stated does not always have a solution: 
and even when it does it may not be unique, depending on how one treats 
points at infinity. Regions for which a solution exists, no matter what the 
specified boundary function may be, are called regular for the Dirichlet 
Problem. In the classical approach to characterizing such domains, a 
boundary point ( is said to be regular if there is a barrier at that point, 
this being a function that is super harmonic and positive in D near ( and 
that tends to zero on approach to the boundary at(. A domain is then 
proved to be regular if all of its boundary points are regular [15, Theorem 
2.10] [1, Chapter 6]. The approach taken in Hayman and Kennedy's 
book is to deal first with bounded regular domains, and to consider 
unbounded possibly irregular domains later when the extra machinery 
needed, in particular that of polar sets, is in place [15, Section 5.7.1]. 
This is a dichotomy that may profitably be kept in mind. 

A solution of the Dirichlet Problem corresponding to the continu
ous boundary function f is called a harmonic extension of f. Such a 
harmonic extension may be considered for more general boundary data 
(with a suitable reformulation of condition (i)) [15, Theorems 2.10 and 
2.17]. In particular, corresponding to a Borel measurable subset E of the 
boundary of D, the boundary data f = 1E (so that f takes the value 
1 on the part E of the boundary and 0 on the remaining boundary) 
has a harmonic extension into D. This solution is called the harmonic 
measure of E and is denoted by w(x, E; D). As a function of x, there
fore, it is harmonic. If x is held fixed and E varies, then w(x, E; D) is 
a measure on the boundary of D [15, Theorem 3.10]. The harmonic ex
tension of a general Borel measurable function cari then be constructed 
by integration with respect to harmonic measure on the boundary. In
tuitively, it helps to think of the harmonic measure of E as the solution 
of the Dirichlet Problem with boundary data f = 1E· From a technical 
point of view, it is best to construct harmonic measure as the measure 

1This is but one of many possible references where a precise statement of this 
theorem may be found. I have chosen not to give perfectly precise statements of 
results in this article, with the excuse that specialists will know these results and 
will not need to read this article, while the rest of us are now forewarned not to take 
statements too literally and to consult at a minimum the cited references. 
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w(x, E; D) on the boundary ofD for which 

{ f(() dw(x, (;D) lav 
returns the value at x of the harmonic extension of f into D for any 
continuous bounded function f on the boundary of D. 

The study of harmonic measure in planar domains is facilitated by 
conformal mapping, as harmonic measure is conformally invariant. By 
conformal invariance of harmonic measure we mean that, if f is analytic 
and one-to-one in the planar domain D, then 

w(z, E; D) = w (f(z), f(E); f(D)). 

To see why this holds true, we write h for the function w (·, f(E); f(D)). 
Then h o f satisfies 

b.(h o f)(z) = (b.h)(f(z)) lf'(zW, zED. 

Thus h o f is harmonic in D, since h is harmonic in f(D), and its 
boundary values are 1E. Hence (h o f)(z) = w(z, E; D). 

For example, to compute the harmonic measure w(z, E; D) for a 
simply connected planar domain D, one maps D conformally onto the 
unit disk U by a map f for which f(z) = 0. Then 

w(z, E; D)= w(O, F; U), F = f(E), 

the latter being the normalized angular measure of F on the unit circle. 
While this 'solves' the problem in principle, in practice relatively few 
explicit conformal mappings are known. 

As a simple example that is relevant to the subject matter of this pa
per, we will compute the rate of decay of harmonic measure in the infinite 
stripS= {z: llmzl < rr/2}. We set Ep = {z: IImzl = rr/2 and Rez > 
p} and set w(p) = w(O, Ep; S). 

ez -1 
f(z) = ez + 1 

is a conformal map of S onto the unit disk with f(O) = 0. For p > 0, the 
image Fp of Ep under f is the shorter arc of the unit circle lying between 
e-iOp = f(p- irr /2) and ei9p = f(p + irr /2). The harmonic measure of 
this arc at 0 is its normalized angular measure, which is Bp/rr. 

Since 

( + i~) = eP+i11"/2- 1 = e2P- 1 + 2ieP 
f p 2 eP+i11" /2 + 1 1 + e2P ' 
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p+ i~ 

-f 

p-i~ 

we see that 

( 2eP ) () P = arg [ e2P - 1 + 2ieP] = arctan - 2-- . 
e P -1 

Thus, in summary, 

1 ( 2eP ) w(p) = w(O, Ep; S) = w(O, Fp; U) =-arctan - 2-- , 
1r eP-1 

from which it follows that 

2 
w(p) = - e-P + 0 (e-3P) asp____, oo. 

7r 

1.2. Brownian motion and harmonic measure 

Brownian motion in R n is a mathematical model of the position of 
a particle that is subject to random buffeting with no preferred direction 
and whose intensity is independent of position. The possible paths of the 
particle are the continuous functions w: [0, oo) ____, Rn. Brownian motion 
may be viewed as a measure, known as Wiener measure, on this space of 
continuous paths. We write Bt(w) = w(t) for the position of the particle 
at time t if it follows the path w. Then each Bt is a random variable on 
path space. Wiener measure on path space is constructed so that (i) the 
net displacements in disjoint time intervals are independent and (ii) the 
net displacement Bt- Bs between time s and t (with s < t) is normally 
distributed with mean zero and covariance matrix t- s times the identity 
matrix. As is customary, we write Px to denote the probability (Wiener 
measure) of events (measurable sets of paths) that gives full measure 
to the paths with initial point x, and we write Ex for the expectation 
(integral) with respect to Px. 

For a region D, we write 

TD = inf{t > 0: Bt tf_ D}. 

This is the first exit time of Brownian motion from the region D, and 
plays a key role in this story. The exit time is a random variable, as its 
value depends on the particular path. The first exit position of Brownian 
motion from D is then B 7 D. 
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The connection between Brownian motion and harmonic measure, 
first elucidated by Kakutani, is simply this: harmonic measure at x in 
D is the exit distribution from D of Brownian motion with initial point 
x [9, Section 1.4]. That is, 

w(x, E; D) = Px(TD < oo, BTD E E), 

for each Borel measurable subset E of the boundary of D. In fact, for 
any domain D and any bounded function f on the boundary of D 

is harmonic. This becomes 'obvious' once we remember that harmonic 
functions are those with the mean-value property. To see why, let's 
consider a sphere Bx in D with centre x, and consider those paths that 
first hit the sphere at a point y on the sphere, before then going on 
to exit D. When we delete the initial sections between x and y, the 
new paths constitute a new Brownian motion starting from y, and this 
doesn't change the exit position. Therefore the paths from x that exit 
the sphere Bx at y contribute h(y) times the probability of first exiting 
the sphere at y, and 

where da is the distribution of the first hitting position on the sphere 
of Brownian motion with initial point at its centre. But a just has to 
be the uniform distribution on the sphere, which gives the mean-value 
property for h. 

The probabilistic characterization of the regularity of a boundary 
point for the Dirichlet Problem is more intuitive than that involving 
the barrier function. A boundary point ( of a region D is regular if 
Pc,(TD = 0) = 1 [20, Section 9.2]: there must be enough boundary near 
the boundary point ( so that a Brownian motion with initial point ( 
will immediately hit the boundary with probability one. If ( is a regular 
boundary point, it is then not too hard to see that a Brownian motion, 
whose initial point x is in D and is near (, will exit D near ( with 
high probability. Iff is continuous at (, it will follow that f(BTD) will 
be close to f(() with high probability. In effect, the function h will 
be continuous at (. This is the probabilistic solution of the Dirichlet 
problem [20, Section 9.2], [9, Section 1.6]. The case f = lE is the 
assertion that harmonic measure and hitting probabilities of Brownian 
motion are one and the same. 
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1.3. Distortion Theorems 

In his 1930 thesis, Ahlfors proved a distortion theorem for confor
mal mappings with which he settled the Denjoy conjecture and which 
has since proved to be useful and influential. We follow the eminently 
readable account in [2]. 

A domain D is said to be strip like if it is simply connected and 
contains a curve j3(t), 0 < t < 1, with Rej3(t) -+ -oo as t -+ 0 and 
Rej3(t) -+ oo as t -+ 1. Thus the curve determines two prime ends, 
that we call -oo and oo. The domain D is then mapped conformally 
onto the strip S by a map ell with Recll(j3(t)) -+ -oo as t -+ 0 and 
Re ell (/3 ( t)) -+ oo as t -+ 1. For each x, the intersection of the vertical line 
Re z = x with D consists of open line segments, one of which separates 
the two prime ends determined by the curve {3. This crosscut of D is 
traditionally labelled Bx and its length is written as B(x). Finally, we 
write 

u2(x) =sup Recll(z) and u1(x) = inf Recll(z). 
zEIJx zEIJx 

Ahlfors' Distortion Theorem If 1~2 ()~:) > 21r, then 

In geometric terms, this theorem is a lower bound on the area 
1r [u1 (x2) - u2(xl)] of the largest rectangle contained in the image under 
ell of that part of D between the crosscuts Bx 1 and Bx2 • The distortion 
theorem shows that if the strip like domain is narrow, the conformal map 
ell must stretch the distance, in the image strip, between the images of 
crosscuts in D. 
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There are essentially two situations in which Ahlfors' Distortion 
Theorem underestimates the rate of growth of the mapping q,. If, say, 
vertical slits are removed from D then the integral J:1

2 dxjO(x) will not 
detect them, yet one knows that the mapping q, will then grow much 
faster. For example, in the case of the strip S with as many slits re
moved as one may wish, the distortion theorem treats q, as if it was 
the identity map. The second situation in which q, grows faster than 

predicted by the Ahlfors Distortion Theorem is typified by taking the 
strip S and bending it into the shape of a snake or the crenellations on 
a castle, while leaving the lengths of the crosscuts unchanged. 

In 1942, Warschawski [24] proved an upper bound on the area 
1r [u2(x2) - u1 (xl)] of the smallest rectangle that contains the image un
der q, of that part of n between the crosscuts Bx1 and Bx2 • His theorems 
involve extra terms that measure the oscillation of the central line of the 
strip like domain and the oscillation of the width of the domain. We 
will state a special and slightly weaker case of his results that will be 
sufficient for out purposes. 

Distortion Theorem for certain symmetric domains Suppose 
that D is a strip like domain that takes the form 
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where e is a non negative function on the real line with 

!00 e'(x)2 
-oo ~dx < 00. 

Then, for z = x + iy ED and fixed x 0 , 

Re<I>(z) = 1r 1~ e~:) + 0(1) as x--> oo. 

1.4. Higher dimensional distortion theorems 

The distortion theorems of Ahlfors and Warschawski may be viewed 
as harmonic measure estimates. Suppose that we wish to estimate the 
harmonic measure of the crosscut ex, with respect to that part Dx of D 
to the left of ex, at some fixed point Zo. Having mapped D onto the strip 
S by the map <I>, we need the harmonic measure of the curve lx =<I>( ex) 
with respect to that part Sx of the strip to the left of lx, evaluated at 
the fixed point wo = <I>(zo). 

We infer the position of lx from the distortion theorems, in which we 
fix x1 and take X2 to be a varying x. Ahlfors lower bound on u 1 (x2 ) -

u2(xl) becomes, in effect, a lower bound on u1(x), and implies that lx 
must lie at least a certain distance to the right in the stripS. This gives 
an upper bound on the harmonic measure of lx, as harmonic measure of 
a vertical cross cut in S decreases as the cross cut is moved to the right. 
Warschawski's upper bound on u2(x) shows that lx cannot be too far 
to the right in the strip S, and therefore leads to a lower bound on the 
harmonic measure of lx. We can then estimate the harmonic measure, 
by using the example at the end of Section 1.1. One will ideally end up 
with an estimate involving 

exp [ -n 1~ e~:) J . 
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There are harmonic measure versions of these distortion theorems, par
ticularly upper bounds, that work in any finite dimension, and for non 
simply connected domains in the plane. Tsuji, building on work of Car
leman, proved just such an estimate from above involving a term analo
gous to that arising in the simply connected planar case. For the many 
developments in this area, the reader need go no further than the books 
by Tsuji [23] and Ohtsuka [19], forgetting neither Baernstein's account 
[2], nor Haliste's complete and careful exposition [14], nor Section 8.1.7 
in Hayman [16]. 

§2. Cones 

2.1. Burkholder's 1977 paper on exit times of Brownian 
motion 

In [7], Burkholder studies Brownian motion in Rn with starting 
point x E R n and an accompanying stopping time T. With 

B; = sup IBtATI, 
t 

he proves that if one of the random variables Jnr + lxl 2 , IBrl orB; is 
pth_power integrable, with p E (0, oo), then so are they all. To deduce 
that B; is pth_power integrable if IBrl is pth_power integrable, it is as
sumed that Ex log T < oo if the dimension is 2 and that P x ( T < oo) = 1 
in higher dimensions. The norms of these three random variables are 
then comparable, with constants that depend only on p and n. 

These results are applicable when T is the first exit time from a 
domain D in Rn, in which case he proves the additional result that r 112 

is pth_power integrable if and only if the function lxiP has a harmonic 
majorant in D (this being a function u that is harmonic in D, and for 
which lxiP ::; u(x) for all x in D). In Section 4 of the paper, Burkholder 
specializes to the case when D is the image of a conformal map F of the 
unit disk in two dimensions, and brings HP spaces into play. 

2.2. Integrability of exit time and exit place for a cone 
As a 'simple' application of his results, Burkholder works out every

thing for a right circular cone 

r a= {x ERn\ {0},0::; (}(x) <a} 

where (}(x) is the angle between x and (1, 0, ... , 0). Let us write To for 
the exit time from r Q' and go through the argument in two dimensions. 
If pa < 1r /2 the function 

u(x) = lxiP cos(p(})j cos(pa) 



34 T. Carroll 

is harmonic in r a:, and lxiP ::; u(x) there. In this case, lxiP has a 

harmonic majorant and T~/2 is in LP. In the case pa = 7r/2, 

u(x) = lxiP cos(pO) 

is a harmonic function in r 0:' vanishes on the boundary of r 0:' and 
satisfies 0 < u(x) ::; lxiP in r a:· From this Burkholder deduces that T~/2 

is not in LP. In fact, fixing any x in the cone, he chooses a sequence 
of bounded domains Rj, each containing x, with Rj C Ri+l and whose 

union is the whole cone. He writes Tj for the exit time from Rj. If T~12 

was pth_power integrable then so would BT,.. Moreover, for each j, 

Since u is harmonic and bounded in Rj+l, {u(BTj/\tHt~o is a martingale 
and so, by optional stopping, 

Hence, by dominated convergence, 

0 < u(x) = lim Exu(Br) =Ex [lim u(Br)] = Exu(Br,) = 0, 
J---+00 J J----+00 1 

1/2 . 
a contradiction. Thus To: f/_ LP if pa = 7T /2. Hence 

T~/2 E £P {::::==> a < ~. 

The same method works for higher dimensional cones, with the role of 
lxiP cos(pO) being played by lxiPh(O) where his a certain hypergeometric 
function. This function has a smallest positive zero Op,n with Op,n < 7T, 

and then 
T~l2 E LP {::::==> a < Op,n· 

2.3. Some further developments 

Burkholder's results, and the approach he took, gave rise to signifi
cant further research, for example that of Essen and Haliste [12]. Sakai 
[21] proved an interesting isoperimetric inequality in this area: if u is the 
least harmonic majorant of lxiP in a bounded domain D that contains 
0, then 

u(0) 11P ::; cr(D), 

for some finite c depending only on p and the dimension. Here r(D) is 
the volume radius of D, the radius of a ball in Rn with the same volume 
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as D. He furthermore proved several interesting results about the best 
constant c(p, n), bringing into play, as did Burkholder, exit times of 
Brownian motion, Hardy spaces and estimates of solutions of Poisson 
equations. 

Expressions for the distribution function of the exit time from a 
cone have been obtained by Spitzer [22] in the planar case, from which 

the integrability result T~/2 E LP if and only if a < 1r j (2p) follows, by 
DeBlassie [10] in higher dimensions, and also in Banuelos and Smits [5]. 

§3. Paraboloids 

3.1. Exit time 

Relatively recently, Banuelos, DeBlassie and Smits [4] set themselves 
the task of uncovering the tail distribution of the exit time of Brownian 
motion from another conic section, the parabola 

P = {z: Rez > 0 and llmzl < ~} 

in the plane. The exit time from any bounded domain is exponentially 
integrable, while that from a cone is only power integrable. The authors' 
goal was to find a domain for which the integrability of its exit time was 
intermediate between these two extremes. The parabola can be fitted 
inside a cone whose aperture is as small as one may wish, simply by 
putting the vertex of the cone far out on the negative real axis and 
the axis of the cone in the direction of the positive real axis. The exit 
time from the parabola is less than that from the larger cone, and the 
latter will be in LP for large p because the aperture of the cone is small. 
Consequently, the exit time Tp from the parabola is pth_power integrable 
for every finite p. On the other hand, Ex [exp(cTp )] cannot be finite 
for any positive c, since P contains disks of arbitrarily large radius. 
For a disk B of radius r and centre x contained in P, one has that 
Ex [exp(cTp)] 2: Ex [exp(cTB)], and the latter is infinite when c > ajr2 , 

for an absolute constant a. 
The estimate obtained by Banuelos, DeBlassie and Smits for the 

distribution function of the exit time is 

1 1 
A1 ::;liminfc113 logP( ) < limsupc113 log ::;A2 

t-+ac z Tp > t - t-+ac Pz(Tp > t) 

for some positive constants A1 and A2. This indicates that P2 (Ta > t) 
may be about the size of exp [-A t 113 ]. 

This estimate was extended to higher dimensions and to more gen
eral paraboloids by Wembo Li [17], but it was Lifshits and Shi [18] who 
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solved the problem completely. They showed that, for the exit time T a 
from the parabola-shaped region 

Pa = {(x, Y) E R X Rn- 1 : X> 0, IYI < Axa} 

(where A > 0 and 0 < o: < 1), 

a-1 1 
lim t <>+ 1 log =--:-----:

t--+oo Pz(Ta > t) 

exists, and they determined the finite, positive limit explicitly. In par
ticular, they proved that 

1 1 37r2 
lim C3log -=--:-----:-

t-->oo Pz(T1j2 > t) 8 

The distribution function of the exit time from a related very general 
class of unbounded domains is investigated in [11]. Using the results 
of Lifshits and Shi, van den Berg [6] studied the behaviour of the heat 
kernel in parabola-shaped regions. 

3.2. Exit place 
In [3], Banuelos and the author investigated the rate of decay of 

harmonic measure in the parabola-shaped regions P a in R n or, equiva
lently, the distribution function of the exit position of Brownian motion 
from such domains. Setting Ep to be that part of the boundary of Pa 
lying outside the ball of centre 0 and radius p, we wished to estimate 

for some fixed z0 , say z0 = (1, 0, ... , 0), as accurately as possible. 
This problem is easy to solve in the case of two dimensions using 

the techniques described earlier in this article. We map P a onto the 
strip S by a symmetric conformal mapping f with f(zo) = 0. The 
part Ep of the boundary of Pa starts from the cross cut at x = x(p), 
where p- p2a- 1 < x(p) < p. The length of the cross cut of Pa at xis 
B(x) = 2xa, which satisfies 

/
oo B'(x? 
~dx < oo. 

Thus the Distortion Theorem for Certain Symmetric Domains of Sec
tion 1.3 is applicable and yields that the image of the cross cut Bx(p) is 
within a bounded distance of 

7r ( )1 a 
2(1- o:) X p - . 
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Fr(p) 

Writing Fr for that part of the boundary of the strip S where the real 
part is greater than r, the image of Ep under f is Fr(p) where 

r(p) = 2(1 ~a) x(p)l-a + 0(1). 

At the end of Section 1.1, we worked out the rate of decay of harmonic 
measure in the strip, and found that 

Thus 

2 
w(O, Fr; S) = - e-r + o(1) as r-+ oo. 

7r 

w(p) = w(1, Ep;Pa) = w(O, Fr(p)i S) rv exp [- 2(1 ~a) x(p)l-a] . 

A consequence of this is the following sharp integrability result, 

which is analogous to that of Burkholder for cones. 
It does not seem to be so straightforward, however, to prove such 

precise results in higher dimensions. At the beginning of my talk at 
IWPT 2004, I asked the audience whether Pzo (IBrl > p) is larger (for 
large p) for the exit time T from 

(i) the parabola {(x, y) : x > 0 and IYI < y'x} in the plane 

or from 
(ii) the paraboloid { (x, Y) : x > 0 and IYI < y'x} in three dimensions. 

The answer to this question follows from the explicit asymptotics 
that we derive in [3]. Chris Burdzy was kind enough to explain to me 
how he answered the question without knowing the exact asymptotics. 
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Brownian motion { Bt} in the parabola-shaped region P a may be thought 
of as a one-dimensional Brownian motion { Bf} in the x1 -direction and 
an independent Bessel process {Xt} of order n- 1 in the orthogonal 
direction. He showed that, for fixed a and p, Pzo ( B;.~* > p), where 

decreases as the dimension increases. [This probability is the harmonic 
measure at z0 of the cross section ()P of Pa at x1 = p with respect to 
that part of Pa to the left of this cross section.] The probability that 
B;.~* > pis the probability that the one-dimensional Brownian motion 
Bf hits level p before the Bessel process Xs exceeds (B; )0 • The Bessel 
process of order n - 1 satisfies the stochastic differential equation 

n- 2 1 
dXt = dZt + -- X dt 

2 t 

while the Bessel process of order n corresponding to Pa, but one dimen
sion higher; satisfies 

n -1 1 
dyt = dZt + -- v dt, 

2 L t 

where we may take { Zt} to be the same one dimensional Brownian 
motion in each case and to be independent of {Bf }. Since Xo =Yo and 
since the drift coefficient (n -1)/2 for yt is always greater than that for 
Xt, which is (n- 2)/2, it follows from a general comparison result that, 
for any timet, yt :::: Xt a.s. Thus Ys- (B;)a will become non negative 
before Xs- (B;)a becomes non negative. 

In [3], it is shown that the rate of decay of harmonic measure in Pa 
satisfies, for each positive E, 

exp [- JX1 (1 + t:) pl-a] :S w(p) :S exp [- JX1 (1- t:) pl-a] 
1-a 1-a 

for all sufficiently large p, where >.1 is the smallest eigenvalue for the 
Dirichlet Laplacian in the unit ball in R n-l. The upper bound comes 
from the Carleman estimate, which belongs to the family of upper 
bounds for harmonic measure described in Section 1.4. Lower bounds 
for harmonic measure, in situations such as that under consideration 
here, are harder to obtain. In his lower bound on harmonic measure 
mentioned in Section 1.3, Warschawski needed to take into account the 
oscillation of the width and the oscillation of the central line of the do
main. The central lines of our parabola-shaped domains don't oscillate, 
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while the width is increasing but not too quickly in that f B'(x) 2 /B(x) dx 
is finite. It is natural to expect that the upper bound for harmonic mea
sure given by the Carleman method would be achieved in this case. The 
problem, however, was how to prove this. 

The harmonic measure w(x, Ep; P a) has symmetry that it inherits 
from the symmetry of the domain and that of its boundary values: at 
(x, Y) in Pa (where x E R, Y E Rn- 1), 

w((x, Y), Ep; Pa) = u(x, IYI) 

for some function u(x, y) that is defined on the upper half of the domain 
Pain the plane. Whereas the harmonic measure satisfies Laplace's equa
tion, the function u satisfies 

u 
~u + (n- 2)__1!_ = 0. 

y 

We would like to transform from the parabola to the strip, as this worked 
so well in two dimensions. However, unlike Laplace's equation, this 
Bessel type operator is not conformally invariant. Transformation to the 
strip results in what is, at first sight, a messy expression that involves 
both the mapping g from the strip to the parabola and its derivative. 
The asymptotics of the mapping g and of g' can be deduced relatively 
easily from Warschawski's work. However, the asymptotic estimates for 
the derivative are restricted to sub strips SP = { z: lim zl < p} where p < 
7r/2. To transform the partial differential equation ~u+(n-2)uy/Y = 0 
successfully from the parabola P a to the strip S we needed uniform esti
mates on the derivative of the conformal mapping. These were obtained 
as part of the results in [8] and lead directly to the following result: 

Suppose that g is a symmetric conformal mapping of the innnite 
stripS onto Pa, with g(x)---+ oo as x---+ oo. There is a function E(w) in 
the stripS withE( w) ---+ 0 as Re w ---+ oo, uniformly in the imaginary part 
ofw. Moreover, whenever u(x, y) satisnes the p.d.e. ~u+(n-2)uy/Y = 0 
in P;j; = {(x,y): 0 < y < xa} then v = u o g satisnes the p.d.e. 

v 
~v + (n + E(w)- 2)...!L = 0 

y 

in the upper half of the strip. 
The Bessel operator is, in some sense, asymptotically conformally 

invariant. In our situation, the function v arises from the harmonic 
measure of the exterior of a ball of radius p in P a in R n. We know the 
rate of growth of the mapping from the planar parabola-shaped domain 
onto the strip, from which we can deduce the boundary values for v. 
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With a little more careful analysis involving the maximum principle, 
the lower bound for harmonic measure follows. 

These bounds on harmonic measure lead directly to integrability 
results for the exit position, valid in each finite dimension: 

E1 [exp (biBTJ 1-")] 

is finite if b < ~/(1 - a) and is infinite if b > ~/(1 -a). Just 
as in Burkholder's work on cones, we proved that B;a has the same 
integrability properties. 
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