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Uniqueness of polymorphism for a discrete, 
selection-migration model with genetic dominance 

James F. Selgrade1 and James H. Roberds 

Abstract. 

The migration into a natural population of a controlled popu­
lation, e.g., a transgenic population, is studied using a one island 
selection-migration model. A 2-dimensional system of nonlinear dif­
ference equations describes changes in allele frequency and population 
size between generations. Biologically reasonable conditions are ob­
tained which guarantee the existence and uniqueness of a polymorphic 
equilibrium in the cases of complete dominance and no dominance in 
fitness. This model may provide some useful information about the 
migration of transgenes into a natural population. 

§1. Introduction 

Migration and natural selection are two evolutionary processes that 
are important determinants of genetic composition and demographic 
properties of populations [3]. Effects produced by the interaction of 
these factors can significantly influence genetic variability in populations 
as well as affect mean population fitness. Here we study the impact 
of these two agencies within the framework of a one-island migration 
model. In this context, genes and individuals are viewed as migrat­
ing from a large donor population into an island or receiving popula­
tion in which density-dependent selection takes place. Based upon this 
model, we describe the changes in allele frequency and population size 
that occur over generations in an island population in terms of a sys­
tem of two-dimensional difference equations. With certain assumptions 
this system is applicable to the investigation of the fate of a transgene 
that has migrated into a nontargeted natural population. Considered 
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in this light, a population composed of individuals genetically modified 
through transgenics is understood to be the donor population, and a 
natural population is viewed as the island or recipient population. In 
this paper we demonstrate that a unique polymorphic equilibrium exists 
for this system when density-dependent fitness is regarded to be under 
the control of a single genetic locus with alleles expressed according to 
either a complete dominance or a no dominance mode [1]. 

The one-island model studied here could potentially be used to ex­
plore incorporation of trans genes into natural tree populations. In forest 
biology, there is much concern about ecological consequences that might 
result from such gene transfer. As a case in point, genetic engineering is 
being seriously considered as a method for improving wood properties 
of loblolly pine (Pinus taeda), a timber tree grown extensively in the 
southeastern United States and several South American countries (see 
Sedjo [7]). This biotechnology has the potential to produce trees with 
greater quantities of useful fiber and fiber that can more efficiently be 
processed into wood pulp. But in the southern United States, loblolly 
pine commercial stands composed of trees carrying certain transgenes 
could pose an ecological hazard to nearby natural pine forests because 
of the possibility of transgene transfer (see Williams [13]). Uncertainties 
abound about effects that will accrue from the spread of transgenes in 
natural forest environments and this heightens unease about the risks 
that could accompany use of this technology. As a result, there is interest 
in studying the possible fate of transgenes that have entered non targeted 
populations. 

§2. Model background 

Density-dependent selection may be studied by considering a diploid 
population with two alleles, A and a, at a single autosomal locus. Here, 
a population of density x consists of individuals with one of three geno­
types, AA, Aa, or aa. Let p denote the frequency of the A allele, where 
0 :::; p :::; 1, and hence 1 - p is the frequency of the a allele. The effects 
of natural selection determine an average per capita replacement rate or 
fitness fij for the ij-genotype, where i, j = A, a, which measures fertil­
ity and viability of that genotype. Allele fitnesses fA and fa are linear 
combinations of genotype fitnesses weighted by allele frequency and are 
defined by !A = p fAA + ( 1 - p) fA a and fa = p fA a + ( 1 - p) fa a. The 
population mean fitness f is given by f = PfA + (1- p)fa· For this 
study we assume density-dependent selection, i.e., genotypic fitnesses 
fij ( x) depend on population density x and are independent of the allele 
frequency p. 
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When population density is small, each genotype does well but geno­
type fitness decreases as population density increases because of the 
detrimental effects of crowding. Such functions fiJ are referred to as 
pioneer fitness functions [8]. Exponential (see Ricker [4]), rational (see 
Hassell and Comins [2]), and linear (see Selgrade and Roberds [9, 10]) 
functions have been used as pioneer fitnesses in modeling populations. 
More specifically, we assume that each fiJ(O) > 1 and that fiJ(x) \, 0 
as x ---+ oo. This guarantees that for each fixed p E [0, 1], there is a 
population density x > 0 such that the population equilibrates, i.e., 
f (p, x) = 1. Henceforth, for i, j = A, a we assume: 

(Al) fiJ(x) < 0 for all x > 0, fiJ(O) > 1 and fiJ(x)---+ 0 as 

X ---+ 00. 

To study the migration of a population of constant allele frequency 
into another population, we appeal to a one-island model discussed by 
Roberds and Selgrade, see [5] and [11]. Such a model might represent the 
migration into a natural population of a controlled population, e.g., a 
transgenic population. Let x and p denote the island population density 
and allele frequency, respectively. Following selection in each generation, 
assume gametes are contributed to the island population by immigration 
from a population with allele frequency the constant q with 0 ::; q ::; 
1. Random mating occurs following migration so that the number of 
additional zygotes in the next generation produced as a consequence of 
immigration is denoted by y. In [5] and [11], we derived the following 
system of difference equations that describes changes in allele frequency 
and population size between generations: 

PnXn fA +qy 

(1) Pn+l = J + 
Xn Y 

Xn+l = Xn J + Y · 

Here Pn+l and Xn+l represent allele frequency and population size in 
the next generation. 

It is convenient both mathematically and biologically to introduce 
a per capita migration rate for x > 0 given by 

_y 
h(x)=-, 

X 

which measures the per capita migration per generation relative to the 
island population size x. It is biologically reasonable to assume that 
h( x) is a nonincreasing function of population size, i.e., h' ( x) ::; 0. There 
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are two standard examples of migration in this form. The simplest case 
occurs when the same amount of migration takes place each generation so 
that y is constant and h'(x) = -yjx2 < 0. The second type occurs when 
the amount of migration increases linearly with x in each generation as 
discussed in Selgrade and Roberds [11], i.e., y = mx where m is a 
constant. For this study, we consider migration of the former type, i.e., 
we assume that y is constant. 

(2) 

After replacing y by xh(x) in (1), the transition equations become 

Pn fA+ qh 
Pn+l = J + h 

Xn+l = Xn (!+h). 

In (2), f + h denotes the per capita transition function for the island 
population. For x > 0, systems (1) and (2) are equivalent so, henceforth, 
we study (2). 

§3. Properties of equilibria 

The phase space for system (2) is the slot in the (p,x)-plane desig­
nated by 

S =:: { (p, X) : 0 :::; p :::; 1, 0 < X} . 

When y = 0 (i.e., h = 0), the boundary lines of S, {p = 0} and {p = 1}, 
represent allele fixation and, therefore, are invariant. If y > 0 (i.e., 
h > 0) and 0 < q < 1, points on the vertical boundaries of S are 
mapped into the interior of S. 

An equilibrium E is an allele frequency p, 0 :::; p :::; 1, and a pop­
ulation density x > 0 which remain constant across generations, i.e., 
Pn = p and Xn = x for all n. Such an E is said to be a polymorphism if 
0 < p < 1. From (2), an equilibrium E = (p, x) satisfies the system: 

(3) 
p=pfA+qh 

1 = f +h. 

Since the frequency of the allele a is.1- p and is constant at equilibrium, 
the equation 1- Pn+I = 1-Pn implies that the following equation must 
also be satisfied at equilibrium 

(4) 1- P = (1- p) fa+ (1- q) h. 
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Hence, a polymorphism is a point of intersection of the three isocline 
curves: 

C := { (p, X) : j (p, X) + h( X) = 1} 

(5) CA = {(p, x) : p [fA(p, x)- 1] + q h(x) = 0} and 

Ca = {(p, x) : (1- p) [fa(P, x)- 1] + (1- q) h(x) = 0}. 

Any pair of equations in (5) will determine E. 
Since genotype fitnesses are decreasing then 8fA/8x < 0, 8fa/8x < 

0 and 8f fox< 0. With h'(x) < 0, it follows from the implicit function 
theorem that the curves defined in (5) may be considered as the graphs 
of x as functions of p, which will be denoted by x(p); XA(p) and xa(p), 
respectively. Using the implicit function theorem and the fact that U = 
2 (!A - fa), we compute that 

(6a) 

(6b) 

(6c) 

dx 
dp 

dxA 1-fA-P~ 
dp = p~+qh' , 

dxa !a-1-(1-p)~ 
dp =(1-p)~+(1-q)h'. 

From (A1) and the fact that h(x) "'-,. 0 as x ~ oo, it follows that 
for each value of p E [0, 1], there is an x so that f(p, x) + h(x) = 1 
and so the function x(p) exists for all p and the curve C separates S 
into two subsets. Similar arguments show that the functions XA(P) and 
X a (p) exist for 0 < p < 1. In addition, it follows that as p ~ 0 the 
function XA(P) approaches infinity and that asp~ 1 the function xa(p) 
approaches infinity, see [5]. By rewriting the equation that defines C as 

p [!A(P, x)- 1] + q h(x) + (1- p) [fa(P, x)- 1] + (1- q) h(x) = 0, 

it follows that the graph of the function x(p) is exactly between the 
graphs of XA(P) and Xa(p). In fact, Roberds and Selgrade [5) showed 
that these isoclines must cross at least once and so there is at least one 
polymorphism. 
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Theorem 3.1. Existence of a polymorphism [5]. Fix 0 < q < 1. 
Assume that each genotype fitness Iii satisfies {A1} and that h(x) = yjx 
where y is a constant. Then (2) has at least one polymorphic equilibrium 
E=(p,x),i.e., 0<p<1 andx>O. 

§4. Dominance assumptions 

Here we introduce two classical notions of dominance from genetics 
that describe genotypic effects on fitness, e.g., see [1] or [6]. First we 
assume that the presence of the allele A confers maximal fitness on a 
genotype and consider the case where genotypic fitnesses exhibit com­
plete dominance (CD). Thus, for all x > 0, we assume that 

(CD) fAA(x) = fAa(x) > faa(x). 

With complete dominance, the allele and mean fitnesses become 

fA= fAA 

(7) fa= P fAA+ (1- P) faa 

f = P (2- P) fAA+ (1- P) 2 faa· 

For the second case, we assume that the heterozygote fitness is the av­
erage of the homozygote fitnesses, i.e., for all x > 0 

(ND) fAa(x) = (JAA(x) + faa(x))/2. 

In this case the fitnesses are said to be additive or to exhibit no domi­
nance (ND). Allele and mean fitnesses then become 

(8) 

fA= P (fAA- faa)/2 +(fAA+ faa)/2 

fa= (1- P) (faa- fAA)/2 +(fAA+ faa)/2 

f = P fAA +(1 - P) faa · 

It follows that fA- fa= (1-p) (fAA- faa) if (CD) holds and fA- fa= 
0.5 (fAA- faa) if (ND) holds. 

§5. Uniqueness of polymorphism 

From Theorem 3.1, (2) always has at least one polymorphism. 
In the case of complete dominance (CD), we show here that this poly­
morphism is unique. Also, we obtain conditions for uniqueness if (ND) 
holds. To do this we study the geometry of the isoclines (5). 
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The curve C in S is the graph the function x(p). So for each fixed p E 
[0, 1], the x-coordinate of a point on Cis determined by the intersection 
of the two functions of x, i.e., f(p,x) and 1- yjx. Since fii(O) > 1 
and /ii(x) "-,. 0 as x -too fori= A, a, fAA(x) crosses 1- yjx at some 
XA > y and faa(x) crosses 1- yjx at some Xa > y, see Figure 1. If 
XA = Xa then for all p E [0, 1] it follows from (7) or (8) that 

and C is the horizontal line {(p, x) : x = XA = Xa}· If XA -:/= Xa then 
define m = min{xa,XA} and M = max{xa,XA}· Clearly for all x E 

[m, M], one of the genotype fitnesses is larger than the other fitness 
(Figure 1) and, for each p, f(p, x) is a decreasing function of x which 
lies in between the curves fAA ( x) and fa a ( x). Hence f (p, x) crosses 
1- yjx uniquely at x-value given by x(p) E [m, M]. If m = Xa (which 
is the case for (CD)) then fAA(x)- faa(x) > 0 for all x E [m,M] and 
(6a) implies that x(p) is an increasing function of p. If m = XA then 
fAA(x)- faa(x) < 0 for all X E (m,M] and (6a) implies that x(p) is an 
decreasing function of p. We have established the following result: 

Proposition 5.1. Assume (A1) and (CD) or (ND) for all x > 0. Then 
one of the following three cases applies: 
(i) c is the graph of the increasing function x(p) from x(O) = Xa to 
x(1) = XA and fAA(x)- faa(x) > 0 for all X E (m,M] = [xa,XA]· 
(ii) c is the graph of the decreasing function x(p) from x(O) = Xa to 
x(1) = XA and fAA(x)- faa(x) < 0 for all X E (m,M] = [xA,Xa]· 
(iii) C is the horizontal line {(p,x) : x = XA = Xa} and fAA(x)­
faa(x) = 0 for all x E [m, M]. 

If E = (p, x) is a polymorphism then multiplying the second equa­
tion in (3) by p and subtracting from the first equation in (3) gives 

{ 
p(1- p) 2 (JAA(x)- faa(x)) 

h(x) (p-q) = 
0.5 p (1- p) UAA(x)- faa(x)) 

if (CD) holds 

if (ND) holds 

(9a) 

(9b) 

Hence, the terms UAA(x)- faa(x)) and (p- q) have the same sign. If 
case (iii) of Prop. 5.1 holds then x = XA = Xa· From (9), It follows that 
p = q and so the polymorphism E = (q, XA) is unique. If (CD) holds 
then case (i) of Prop. 5.1 applies and x(p) is an increasing function of 
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fAA 

1 ----- --------------- -----------------

1- yjx 

y X a X 

Fig. 1. Graphs of !AA(x), !aa(x) and 1-yjx when Xa < XA· 

p. Using (7), the numerator of (6b) is 

Of A 
1 - fA - p Op = 1 - fAA (X) . 

which is positive along CA. Hence, XA(P) is a decreasing function of p 
and may intersect x(p) at most once. With Theorem 3.1 and (9a), we 
have the result: 

Theorem 5.2. Uniqueness of polymorphism for (CD). Assume 
that each genotype fitness fii satisfies (A 1) and (CD) for all x > 0. If 
0 < q < 1 then there exist a unique polymorphic equilibrium E = (p, x) 
where x > 0 and q < p < 1 . 

The situation is more difficult when (ND) holds because XA(P) and 
Xa(P) may not be monotone functions. This problem is avoided by 
assuming that both homozygote fitnesses fii ( x) decrease faster than 
h(x) = yjx for i = A, a. Many biologically reasonable fitnesses be­
have this way. Linear fitnesses may not but are not typically used in 
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discrete models because population sizes may become negative. The 
precise assumption we make for i = A, a is: 

(A2) ffi(x) < h'(x) = -yjx2 for all x E [m, M]. 

We proceed by considering cases (i) and (ii) of Prop. 5.1 where (ND) 
holds. 

ForE = (p,x) in case (i), we have x~ ~ x ~ XA and fAA(x)­
faa(x) > 0 for all x E [xa, XA]· From (9b) it follows that p > q. We use 
the equations for C and CA in (5) to find two functions for pin terms of 
x whose intersections determine E = (p, x). Then we show that these 
curves intersect only once if q 2: 0.5. 

Multiply the equation for C by p and combine the result with the 
equation for C A to eliminate the quadratic term in p. The resulting 
equation may be solved for p in terms of x giving 

(10) _ 2qh(x) = F( ) 
P- () ()- x. 1 + h X -fAA X 

Let the right side of (10) define the function F(x) for x E [xa, XA] where 
the denominator is not zero. Because of (A2), the denominator is in­
creasing on [xa, XA] and positive at any equilibrium xvalue. Hence, F(x) 
is defined on a subinterval of [xa, XA] containing all the x-coordinates of 
equilibria. Also C determines p in terms of x by solving f (p, x) = 1-h( x) 
to define the function p = G(x) as 

(11) _ 1- h(x)- faa(x) = G( ) 
P- () () - X. fAA X -faa X 

The points (p, x) of intersection of the F and G curves are the equilibria 
for 0 < p < 1 and x E [xa, XA]· Setting F(x} = G(x) yields the condition 

(12) O< 2qh(x) = 1-h(x)-faa(x) <1. 
1 + h(x)- fAA(x) fAA(x)- faa(x) 

For E = (p; x) the first ratio in (12) implies that 

o < 2 q h(x) < 1 + h(x) - fAA (x) 

or 

(13) (2 q - 1) h(x) < 1 - fAA (x) . 

Hence, if q;:::: 0.5 then 0 < 1- fAA(x). Clearly 

(14) F'(x) = 2qh'(x) (1- fAA(x)] + 2qh(x) f.4A(x), 
(1 + h(x)- fAA(x)] 2 
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so F'(x) < 0 if q?: 0.5. Since /AA(x)- !aa(x) > 0 then the second ratio 
in (12) gives 

(15) 0 < 1- h(x)- !aa(x) < !AA(x)- !aa(x), 

which implies that 

(16) 

Computing 

(17) G'(x) 

1 - h(x) - J AA (x) < o . 

-h'(x)[!AA(x)- !aa(x)]- !A.A(x)[1- h(x)- !aa(x)] 
[!AA(x)- !aa(x)]2 

+ f~a(x)[1- h(x)- !AA(x)] 
[/ AA(x) - faa(x)J2 

and using (15) and (16), we see that G'(x) > 0. Hence, if q ?: 0.5, for 
each x where the F and G curves intersect we must have 

(18) F'(x) < 0 and G'(x) > 0. 

Since F and G are continuous on the subinterval of [xa, XA] containing 
all x, an application of the intermediate value theorem implies that (18) 
may hold at only one x. Hence, the polymorphism E = (p, x) is unique. 

Finally, forE in case (ii) of Prop. 5.1, we have XA :::; x:::; Xa and 
/AA(x)- !aa(x) < 0 for all x E [xA, Xa]· From (9b) it follows that p < q. 
We use the equations for C and Ca in (5) to find two functions for pin 
terms of x whose intersections determine E = (p, x). Then we show that 
these curves intersect only once if q:::; 0.5. 

Multiply the equation for C by 1-p and combine the result with the 
equation for Ca to eliminate the term with factor p(1 - p). The resulting 
equation may be solved for 1 - p in terms of x giving 

(19) 1 _ P = 2 (1- q) h(x) . 
1 + h(x) - !aa(x) 

Since 0 < 1- p < 1, from (19) we see that forE= (p, x) 

0 < 2 (1- q) h(x) < 1 + h(x) - !aa(x) 

which implies that 

(20) (1- 2q) h(x) < 1- !aa(x). 
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Hence, if q :::; 0.5 then 0 < 1 - faa(x). Solve (19) for p in terms of x to 
obtain the function 

(21) H(x)=1- 2(1-q)h(x). 
1 + h(x)- faa(x) 

As with F(x) using (A2), we see that the denominator in (21) is increas­
ing on [xA,Xa] and positive at any equilibrium x value. Hence, H(x) is 
defined on a subinterval of [xA, xa] containing all the x-coordinates of 
equilibria. Compute 

(22) H'(x) = -2 (1- q) [h'(x) (1- faa(x)) + h(x) f~a(x)] 
[1 + h(x)- faa(x)J2 

and notice that H'(x) > 0 if q:::; 0.5. Recall C determines G(x) defined 
in (11) and the points (p, x) of intersection of the H and G curves are 
the equilibria for 0 < p < 1 and x E [xA, Xa]· Since fAA(x)- faa(x) < 0 
and 0 < G(x) < 1, from (11) we conclude that 

fAA(x)- faa(x) < 1- h(x)- faa(x) < 0 

and so 

o < 1 - h(x) - fAA (x) . 

With these inequalities, it is clear that each term in the numerator in 
(17) is negative and hence G' (x) < 0. Hence, if q :::; 0.5, for each x where 
the G and H curves intersect we must have 

(23) G'(x) < 0 and H'(x) > 0, 

which may occur at most once on a closed interval. 
Thus we have established the following result where the three cases 

correspond to those in Proposition 5.1. 

Theorem 5.3. Uniqueness of polymorphism for (ND). Assume 
(A1}, (A2} and no dominance (ND} for all x > 0. Suppose that E = 
(p, x) is a polymorphism, i.e., 0 < p < 1. Then one of the following 
three statements holds: 
(i} Xa < x < XA and q < p. In addition, if q ~ 0.5 then E is unique. 
(ii} XA < x < Xa and p < q. In addition, if q:::; 0.5 then E is unique. 
(iii} Xa =X= XA and E = (q, XA)· 
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§6. Conclusion 

Selgrade and Roberds [12] present an example of transgenic immi­
gration with exponential fitnesses satisfying (CD). If q = 0.9, the unique 
polymorphism E = (0.906, 1.80) appears globally attracting. In fact, if 
the A allele is absent in the island population, numerical results indicate 
that within five generations of immigration the island population evolves 
so that p is at least 0.9. 

In general, the stability of the unique polymorphism is not known. 
In [5] where immigration depends on the population size x, examples 
of saddle point equilibria are presented for (CD). We conjecture similar 
behavior for the case of constant immigration studied here and this will 
be a topic of future investigation. Also, whether or not the bound on 
q in Theorem 5.3 is necessary for equilibrium uniqueness needs to be 
determined. 
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