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Periodic and chaotic behavior in a class of 
second order difference equations 

Hassan Sedaghat 

Abstract. 

We discuss the occurrence and nature of periodic and chaotic be­
havior in a class of nonlinear second order difference equations and 
present criteria for the attractivity of the periodic solutions. 

§1. Introduction 

Consider the second order difference equation 

(1) 

where f n : ~ ~ ~ is a given sequence of functions and a, b, c are real 
constants satisfying the conditions 

(2) c # 0, b + c(a- c)= 0. 

Equations bearing some similarity to the autonomous version of (1) 
have been considered in the literature; see, e.g. [4, Sec.2.5]. These stud­
ies have concentrated on the global stability of equilibrium. Equation 
(1) also generalizes equations introduced in some of the heuristic busi­
ness cycle models in macroeconomics. For example, special cases of (1) 
includes Hicks' model (its 2nd order case) and Goodwin's model (its dis­
crete version) as well as Puu's discrete second order equation. A detailed 
comparative analysis of the mathematics behind these classical models 
appears in [7]. 

In this note we take a close look at Equation (1) and obtain criteria 
for the occurrence of attracting periodic solutions as well as conditions 
that imply the occurrence of chaotic behavior. We use the fact that 
under conditions (2), Equation (1) decomposes into a weakly coupled 
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system of first order difference equations. Such decompositions are in­
stances of semiconjugacy; see [7] and [8] for some background on this 
subject. 

§2. Main results 

Equation (1) may be restated as 

(3) Xn+1 - eXn =(a- e)Xn + bXn-1 + fn(Xn- eXn-1)· 

If a- e =1- 0 then we may factor out a- e and using (2) transform 
(3) into 

(4a) 

(4b) 

tn+1 =(a- e)tn + fn(tn) ~ 9n(tn) 

Xn+1 = tn+1 + CXn 

Note that if a = e then b = 0 by (2) so we may still obtain (4a) 
directly from Equation (1) with 9n = fn· 

Equations ( 4) define a triangular system of first order equations in 
the sense that the first equation is independent of the second. A general 
result on the structure of periodic solutions of (4) in terms of the periodic 
orbits of its two first order equations appears in [1] for the autonomous 
case, i.e. when fn = fo for all n. Here, since the system (4) is specific 
in its second equation, we derive the needed relationships directly with 
fn variable and also establish attractivity when lei < 1. 

For a given sequence of real numbers { tn}, the general solution of 
( 4b) is 

n 

(5) n +~ n-jt Xn = e Xo L__, e j, n ?_ 1. 
j=1 

The sum in (5) is of convolution type but here the sequence { tn} is 
rarely given explicitly. 

Lemma 1. Assume that lei =1- 1. 
(a) Let { tn} be a periodic sequence of real numbers with period p. If 

{To, ... ,Tv-d is one cycle of {tn} and 

(6) 
p-1 

. - 1 2:: p- j-1 . -~.--1-- c T(i+j)modp z-0,1, ... ,p-1 
- eP 

j=O 

then the solution {xn} of Eq.(4b) with x 0 = ~0 and h =To has period 
p and { ~o, ... , ~v-d is a cycle of { xn}· 

(b) If for a given sequence {tn} of real numbers Eq.(4b) has a solu­
tion { Xn} of period p then { tn} is periodic with period p. 
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Proof. (a) With Xo = ~o and t1 =To we get x1 = cxo+t1 = c~0 +T0 . 
Using (6) for ~0 gives 

(p-1 ) (p-2 ) c - '-1 1 - '-1 
X1 = -- ~ Cp J T· +To = -- ~ Cp J T·+l +To 

1 - cP ~ J 1 - cP ~ J 
j=O j=O 

=6 

Proceeding in an inductive fashion, we show in this way that Xi = ~i 

fori= 0, ... ,p- 1. Next, we show that Xp = x 0 . Using (5) we have 

Hence { Xn} is a solution of ( 4b) with period p, as claimed. 
(b) Suppose that for a given sequence { tn} of real numbers, the 

corresponding solution of ( 4b) is periodic with period p. Let h = x 1 - cx0 

and from (4b) obtain 

It follows that { tn} is periodic with period p. Q.E.D. 

Theorem 1. (periodic solutions and limit cycles) 
(a) Assume that JcJ =f= 1 and let {tn} be a periodic solution of the 

first order equation (4a) with prime period p. If {To, ... , Tp-d is one 
cycle of { tn} then (1) has a solution {xn} of prime period p with a cycle 
{~o, ... ,~p-d given by {6). 

(b) Assume that the functions fn are continuous. If JcJ < 1 and 
{tn} is an attracting periodic solution of (4a) then {xn} is an attracting 
periodic solution of (1). 

Proof. (a) In light of Lemma 1(a) we only need to show that pis 
the prime or minimal period for { Xn}. Let q be the prime period of { Xn} 
so that q :S p. Then by Lemma 1 (b) { tn} has period q ~ p since p is the 
prime period for {tn}· Therefore, q = p. 

(b) Let {To, ... , Tp-l} be an attracting cycle for ( 4a) with 

lim tpn+i = Ti-1 1 i = 1, 2, ... ,p 
n-HXJ 
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Let sn = 2.:,'j=1 cn-jtj. Then by rearranging terms in the summation 
we find that 

Spn = Cpn-ltl + cPn-2t2 · · · + Cpn-ptp 

Pn-p-lt pn-p-2t + pn-2pt + c p+l + c p+2 ° 0 0 c 2p 

+oo• 
+ cP-ltp(n-1)+1 + Cp-2tp(n-1)+2 ... + Cpn-pntp(n-l)+P 

= cP-1(cpn-pt1 + cpn-2ptp+l + · · · + tpn-p+l) 

+ cP-2(cPn-pt2 + cPn-2ptp+2 + · ·' + tpn-p+2) 

+oo• 
+ cPn-ptp + cpn- 2pt2p + 0 0 0 + tpn 

p n-1 

= Lcp-i L(cPt-k-ltpk+i· 

i=l k=O 

Now fori= 1, 2, ... ,p define 

n-1 n-1 n-1 

a~= L(cP)n-k-ltpk+i and ~~ = L(cPt-k-lTi-1 =Ti-lL cPk. 

k=O k=O k=O 

Notice that 

l
ai _ Ti-l I < lai _ i I + I i _ Ti-l I 

n 1 - cP - n In In 1 - cP 

n-1 I I n k 1 i Ti-l 
::; L lcPI - - ltpk+i- Ti-ll+ In- 1 _ cP 

k=O 

Clearly the second term on the right hand side approachs 0 as n --7 

oo. As for the first term, let m 2: 1 and define 

o = max {sup ltpk+i -Ti-ll} < oo, 
l:S:t:S:p k2:1 

o:n = SUp ltpk+i- Ti-ll 
k2:m 
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and observe that for m < n 

n-1 

L lcpln-k-lltpk+i -Ti-ll 
k=O 

m-1 n 

L lcpln-k-lltpk+i -Ti-ll + L lcpln-k-lltpk+i -Ti-ll 
k=O k=m 

m-1 n 

< lcpln-m o E lcplk + o:n E lcpln-k-1 
k=O k=m 

315 

By taking n and m sufficiently large, each of the last two terms 
above can be made arbitrarily small. Therefore, 

ll·m ,...i = Ti-l . 1 vn t = , ... ,p. 
n---+= 1- cP 

It follows that 

. . LP cP-iTi-1 _ cP- 1To + · · · + CTp-2 + Tp-l 
hm Xpn = hm Bpn = -1---

n---+= n---+= - cP 1 - cP 
i=l 

Therefore, Xpn ---> ~o as n---> oo with ~0 as in Lemma 1. From this 
and (4b) we obtain 

lim Xpn+l = lim (tpn+l + CXpn) =To+ c~o = (!. 
n-+CXJ n-+oo 

Inductively, we find that Xpn+i ---> ~i for i = 0, 1, ... ,p - 1. This 
implies that { Xn} is an attracting periodic solution of (1). Q.E.D. 

Examples. 1. Consider the difference equation 

(7a) Xn+l = CXn + Gn(Xn - CXn-dq 

(7b) 0 <lei, lql < 1, a2m = ao > 0, a2m+l = a1 > 0, m = 0, 1, ... 

In this case, 9n(t) = antq fort > 0 and straightforward calculations 
show that all positive solutions of the first order equation tn+l = ant~ 
converge to the 2-cycle 

t qf(l-q2) 1/{1-q2) 1/{1 q2) qf(l q2) 
2n---> a 0 a 1 =To, t2n+l ---> a 0 - a 1 - = T1 

Therefore, every solution of (7a) in the invariant region {(x, y) : x > 
cy} converges to the attracting cycle 

~ _ CTo +T1 
o- 1-c2, 

~ _ CT1 +TO 
1- 1-c2. 
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Note that in this example Ctn can be taken as a sequence with any 
period p with slightly more calculating effort. 

2. For the difference equation 

(8) Xn+1 = C2Xn-1 + et(Xn - CXn-1)q 

a>O, 0<[c[<1, q=2j/(2k+1)<1, k?_j?_1 

we have 9n(t) = g(t) = -ct + atq for all real t and straightforward 
calculations show that all nonzero solutions of the first order equation 
tn+1 = -ctn +at~ converge to its unique fixed point 

[ = (~) 1/(1-q) = (~) 2(~~h1+1 • 

1+c 1+c 

Hence the fixed point x = f/(1- c) of (8) is globally attracting. 
Now we consider conditions that imply chaotic behavior. For differ­

ence equations a chaotic solution is typically a non-periodic, oscillatory 
solution that is sensitive to initial values. See [2], [5], [6] and [7] for 
some background on this concept. For first order difference equations 
a more refined definition of chaotic solutions was given in [3]. We first 
give conditions for solutions of (1) to be uniformly bounded. 

Lemma 2. (boundedness) Let [c[ < 1. If {tn} is a bounded sequence 
with [tn[::; B for some B > 0, then the corresponding solution {xn} for 
Eq.(4b} is also bounded and there is a positive integer N such that 

(9) 
B 

[xn[ < [c[ + 1 _ [c[ for all n ?_ N. 

Proof. From (5) we obtain 

Q.E.D. 

Now if n is large enough, then [c[n[x0[ ::; [c[ from which (9) follows. 

In light of Lemma 2, the following result is easy to prove using 
Theorem 3.3.3 in [7]. 

Theorem 2. (chaotic behavior) Assume that [c[ < 1 and let fn = f 
for all n where f is continuous on an invariant closed interval [f1, v] on 
the line. If the first order equation (4a) is chaotic within [/1, v] then the 
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second order equation (1) is chaotic in the following invariant compact, 
convex set in the plane: 

A straightforward example for illustration is the autonomous equa­
tion 

(10) Xn+l = CXn + a(Xn- CXn_I)(1- Xn + CXn-1) 

where we have picked a= c E ( -1, 1) and f(t) = at(1- t) in (1). As a 
varies in the interval [0,4] the familiar behavior of f(t) on the interval 
[0,1] is translated via Theorems 1 and 2 into the analogous behavior for 
the solutions of (10) in the compact invariant region 

[ 1 1 ] 2 
{(x, y): ex:::; y:::; ex+ 1} n -lei- 1 -lei, lei+ 1 -lei 

in the plane. Similar observations apply to 

Xn+l = c2Xn-1 + (xn- CXn-l)(a- Xn + CXn-d, 0 < lei < 1 :::; a:::; 4. 

A less routine example is the one parameter family of autonomous 
rational equations 

(11) 

obtained from (1) by setting a = 3/2, c = 1/2, f(t) = 1/t- a and 
g(t) = t + f(t). For a > )2 it can be shown that all iterates of g 
will eventually enter and remain in the invariant interval [2- a, g(2 -
a)]. With increasing value of a a sequence of bifurcations of periodic 
orbits ensues that progresses through the Sharkovski ordering. This 
behavior can then be translated into the analogous behavior for (11) 
using Theorems 1 and 2. 

§3. Extensions and future directions 

The results of the previous section can be readily extended to the 
equation 

(12) 

where the sequences {an} and {bn} satisfy 

(13) c =f. 0, bn + c(an- c) = 0, for all n. 
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This would lead to essentially the same type of triangular system 
as ( 4) but with a slightly greater range of possibilities. Theorems and 
Lemmas 1 and 2 apply to Equation (12) essentially as they are presented 
above. A more distant generalization is to higher order equations of the 
following type: 

(14) 

where k is a fixed positive integer, {en} is a given sequence of real num­
bers and { fn} is a sequence of real valued functions all defined on a 
given interval I. Equation (14) is equivalent to the triangular system 

(15a) 

(15b) 

tn+l = fn(tn) 

Xn+l = tn+l + CnXn-k+l 

Equation (15b) produces different results from those seen in Theo­
rems 1 and 2 abcive, especially if en does not converge to a limit. 
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