Advanced Studies in Pure Mathematics 53, 2009 Advances in Discrete Dynamical Systems pp. 189–201

A note on asymptotic stability condition for delay difference equations

Piyapong Niamsup

Abstract.

In this paper, we obtain the necessary and sufficient condition for the asymptotic stability of the linear delay difference equation

$$x_{n+1} - x_{n-1} + p \sum_{j=1}^{N} x_{n-k+(j-1)l} = 0$$

where n = 0, 1, 2, ..., p is a real number ,and k, l, and N are positive integers such that k > (N - 1)l.

§1. Introduction

In [5], the asymptotic stability condition for the linear delay difference equation

(1)
$$x_{n+1} - x_n + p \sum_{j=1}^N x_{n-k+(j-1)l} = 0$$

where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, p is a real number and k, l, and N are positive integers with k > (N-1)l, is given as follows.

Theorem A. Let k, l, and N be positive integers with k > (N-1)l. Then the zero solution of (1.1) is asymptotically stable if and only if

(2)
$$0$$

where M = 2k + 1 - (N - 1)l.

2000 Mathematics Subject Classification. Primary 39A11.

Key words and phrases. Asymptotically stable, delay difference equations, characteristic equations.

Received August 24, 2007.

Revised October 12, 2007.

P. Niamsup

Theorem A. generalizes asymptotic stability conditions given in [1 p.87, 2-3, 5, 6 p.65]. Theorem A. is proved using the fact that the zero solution of a linear difference equation is asymptotically stable if and only if all the roots of its characteristic equation lie inside the unit disk. In [4], we give necessary and sufficient conditions for the asymptotic stability of the following linear difference equation

$$x_{n+1} - a^2 x_{n-1} + b x_{n-k} = 0.$$

Motivated by these results, we are interested in the asymptotic stability of the linear delay difference equation of higher order which is similar to (1.1) as follows:

(3)
$$x_{n+1} - x_{n-1} + p \sum_{j=1}^{N} x_{n-k+(j-1)l} = 0$$

where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, p is a real number, and k, l, and N are positive integers with k > (N - 1)l. These linear difference equations may be used as discrete models of population dynamics of Baleen whales, [2]. Our main theorem is the following.

Theorem 1.1. Let k, l, and N be positive integers with k odd, l even and k > (N-1)l. Then the zero solution of (1.3) is asymptotically stable if and only if

(4)
$$0$$

where M = 2k - (N - 1)l.

Remark 1.1. For p > 0 and k is even, we have F(-1) = pN > 0 and $\lim_{z \to -\infty} F(z) = -\infty$; hence F has a root which lies outside the unit disk and the zero solution of (1.4) is not asymptotically stable.

$\S 2.$ Proof of Theorem

The characteristic equation of (1.1) is given by

(5)
$$F(z) = z^{k+1} - z^{k-1} + p\left(z^{(N-1)l} + \dots + z^{l} + 1\right) = 0.$$

For p = 0, F(z) has simple roots at 1 and -1 and root at 0 of multiplicity k - 1. We first consider the location of the roots of (2.1) as p varies. Throughout the paper, we denote the unit circle by C and let M = 2k - (N-1)l.

190

Proposition 2.1. Let z be a root of (2.1) which lies on C. Then the roots z and p are of the form

(6)
$$z = e^{w_m i}$$
, and

(7)
$$p = 2 \left(-1\right)^m \frac{\sin w_m \sin \frac{l w_m}{2}}{\sin \frac{N l w_m}{2}} \equiv p_m$$

for some m = 0, 1, ..., M - 1 where $w_m = \frac{2m+1}{M}\pi$. Conversely, if p is given by (2.3), then $z = e^{w_m i}$ is a root of (2.1).

1 . . .

Proof. We consider roots of (2.1) which lie on C except the roots z = 1 and z = -1. Suppose that the value z satisfies $z^{Nl} = 1$ and $z^l \neq 1$. Then $z^{(N-1)l} + \cdots + z^l + 1 = 0$ and z is not a root of (2.1) which lies on C and we shall consider only the value z such that $z^{Nl} \neq 1$ or $z^l = 1$. Thus (2.1) can be written as

(8)
$$p = -\frac{z^{k-1}(z^2 - 1)}{z^{(N-1)l} + \dots + z^l + 1}.$$

Since p is real, we have

(9)
$$p = -\frac{\overline{z}^{k-1}(\overline{z}^2 - 1)}{\overline{z}^{(N-1)l} + \dots + \overline{z}^l + 1}$$
$$= -\frac{(z^2 - 1)z^{-k-1+(N-1)l}}{z^{(N-1)l} + \dots + z^l + 1}$$

where \overline{z} denotes the conjugate of z. It follows from (2.4) and (2.5) that

$$z^{2k-(N-1)l} = -1$$

which implies that (2.2) is valid for m = 0, 1, ..., M - 1 except for those integers m such that $e^{Nlw_m i} = 1$ and $e^{lw_m i} \neq 1$. We now show that p is of the form stated in (2.3). There are two cases to be considered as follows.

Case 1. z is of the form $e^{w_m i}$ for some m = 1, 2, ..., M - 1 and $z^{Nl} \neq 1$.

From (2.4) we have

$$p = -\frac{z^{k-1}(z^2-1)(z^l-1)}{z^{Nl}-1}$$

$$= -\frac{e^{(k-1)w_m i}(e^{2w_m i}-1)(e^{lw_m i}-1)}{e^{Nlw_m i}-1}$$

$$= -\frac{e^{(k-(N-1)\frac{1}{2})w_m i}(e^{w_m i}-e^{-w_m i})(e^{\frac{lw_m i}{2}}-e^{-\frac{lw_m i}{2}})}{e^{\frac{Nlw_m i}{2}}-e^{-\frac{Nlw_m i}{2}}}$$

$$= -e^{(k-(N-1)\frac{1}{2})w_m i}\frac{2i\sin(w_m)\sin(\frac{lw_m}{2})}{\sin(\frac{Nlw_m}{2})}$$

$$= -e^{\frac{(2m+1)}{2}\pi i}\frac{2i\sin(w_m)\sin(\frac{lw_m}{2})}{\sin(\frac{Nlw_m}{2})}$$

$$= 2(-1)^m\frac{\sin(w_m)\sin(\frac{lw_m}{2})}{\sin(\frac{Nlw_m}{2})} \equiv p_m.$$

Case 2. z is of the form $e^{w_m i}$ for some m = 1, 2, ..., M - 1 and $z^{Nl} = 1$.

In this case, we have $lw_m = 2q\pi$ for some positive integer q. Then taking the limit as $lw_m \rightarrow 2q\pi$ we obtain

(10)
$$p = \frac{2(-1)^{m+q(N-1)}\sin(w_m)}{N}.$$

From these two cases, we conclude that p is of the form in (2.3) for m = 1, 2, ..., M - 1 except for those m such that $e^{Nlw_m i} = 1$ and $e^{lw_m i} \neq 1$.

Conversely, if p is given by (2.3), then it is obvious that $z = e^{w_m i}$ is a root of (2.1). This completes the proof of the proposition. Q.E.D.

We now consider p as a function of z:

$$p(z) = -\frac{z^{k-1}(z^2 - 1)}{z^{(N-1)l} + \dots + z^l + 1}.$$

Then, we have

(11)
$$\frac{dp(z)}{dz} = - \frac{z^{k-2} \left(2z^2 + (k-1)(z^2-1)\right)}{z^{(N-1)l} + \dots + z^l + 1} + \frac{z^{k-2}(z^2-1) \left\{(N-1)lz^{(N-1)l} + \dots + lz^l\right\}}{\left(z^{(N-1)l} + \dots + z^l + 1\right)^2}$$

From this we have

Lemma 2.1. $\frac{dp}{dz}\Big|_{z=e^{w_m}i} \neq 0$. In particular, the roots of (2.1) which lie on *C* are simple.

Proof. Suppose on the contrary that $\left.\frac{dp}{dz}\right|_{z=e^{w_m}i} = 0$. We divide (2.7) by $\frac{p(z)}{z}$ to obtain

(12)
$$\frac{2z^2 + (k-1)(z^2 - 1)}{z^2 - 1} - \frac{l\left\{(N-1)z^{(N-1)l} + \dots + z^l\right\}}{z^{(N-1)l} + \dots + z^l + 1} = 0.$$

Substituting z by $\frac{1}{z}$ in (2.8) we obtain (13)

$$\frac{2+(k-1)(1-z^2)}{1-z^2} - \frac{l\left\{(N-1)+(N-2)z^l+\ldots+z^{(N-2)l}\right\}}{z^{(N-1)l}+\ldots+z^l+1} = 0.$$

By adding (2.8) and (2.9), we obtain

$$2k - (N-1)l = 0$$

which contradicts $k \ge (N-1)l$. This completes the proof. Q.E.D.

From Lemma 2.1, there exists a neighborhood of $z = e^{w_m i}$ such that the mapping p(z) is one-to-one and the inverse of p(z) exists locally. Now, let z be expressed as $z = re^{i\theta}$. Then we have

$$\frac{dz}{dp} = \frac{z}{r} \left\{ \frac{dr}{dp} + ir \frac{d\theta}{dp} \right\}$$

which implies that

$$\frac{dr}{dp} = Re\left\{\frac{r}{z}\frac{dz}{dp}\right\}$$

as p varies and remaining real. The following result describes the behavior of the roots of (2.1) as p varies.

Proposition 2.2. The moduli of the roots of (2.1) on C increases as |p| increases.

Proof. Let r be the modulus of z. Let $z = e^{w_m i}$ be a root of C. To prove this proposition, it suffices to show that

(14)
$$\frac{dr}{dp} \cdot p \Big|_{z=e^{w_m i}} > 0.$$

There are two cases to be considered.

Case 1. $z^{Nl} \neq 1$. In this case we have

$$p(z) = -\frac{z^{k-1}(z^2-1)(z^l-1)}{z^{Nl}-1} = -\frac{z^{k-1}f(z)}{z^{Nl}-1}$$

where $f(z) = z (z^{l} - 1)$. Then

$$\frac{dp}{dz} = -\frac{z^{k-2}g(z)}{\left(z^{Nl}-1\right)^2}$$

where $g(z) = ((k-1)f(z) + zf'(z))(z^{Nl} - 1) - Nlz^{Nl}f(z)$. Letting $w(z) = -\frac{(z^{Nl} - 1)^2}{z^{k-1}g(z)}$, we obtain

$$\frac{dr}{dp} = Re\left(\frac{r}{z}\frac{dz}{dp}\right) = rRe(w).$$

We now compute Re(w). We note that

$$f(\overline{z}) = \frac{f(z)}{z^{l+2}}$$
 and
 $f'(\overline{z}) = \frac{h(z)}{z^{l+1}}$

where $h(z) = l(1-z^2)+2(1-z^l)$. From the above relation and $z^M = -1$, we have

$$\begin{aligned} \overline{z}^{k-1}g(\overline{z}) &= \frac{1}{z^{k-1}} \left\{ \left((k-1)f(\overline{z}) + \frac{1}{z}f'(\overline{z}) \right) \left(\frac{1}{z^{Nl}} - 1 \right) - \frac{Nl}{z^{Nl}}f(\overline{z}) \right\} \\ &= \frac{\left((k-1)f(z) + h(z) \right) \left(1 - z^{Nl} \right) - Nlf(z)}{z^{Nl+l+1+k}} \\ &= -\frac{\left((k-1)f(z) + h(z) \right) \left(1 - z^{Nl} \right) - Nlf(z)}{z^{2Nl-k+1}}. \end{aligned}$$

It follows that

$$\begin{aligned} Re(w) &= \frac{w + \overline{w}}{2} \\ &= -\frac{1}{2} \left\{ \frac{\left(z^{Nl} - 1\right)^2}{z^{k-1}g(z)} + \frac{\left(\overline{z}^{Nl} - 1\right)^2}{\overline{z}^{k-1}g(\overline{z})} \right\} \\ &= -\frac{1}{2} \left\{ \frac{\overline{z}^{k-1}g(\overline{z})\left(z^{Nl} - 1\right)^2 + z^{k-1}g(z)\left(\overline{z}^{Nl} - 1\right)^2}{|g(z)|^2} \right\} \\ &= -\frac{1}{2|g(z)|^2} \left\{ \frac{\frac{((k-1)f(z) + h(z))(z^{Nl} - 1) + Nlf(z)}{z^{2Nl-k+1}} \cdot \left(z^{Nl-1}\right)^2 + z^{k-1}\left(\frac{((k-1)f(z) + f'(z))(z^{Nl} - 1)}{-Nlz^{Nl}f(z)\right)\left(\frac{1}{z^{Nl}} - 1\right)^2} \right\} \\ &= -\frac{\left(z^{Nl} - 1\right)^2 z^{k-1}}{2z^{2Nl} |g(z)|^2} \left\{ \begin{array}{c} \frac{((k-1)f(z) + h(z))(z^{Nl} - 1)}{(z^{Nl} - 1)^2} \\ + Nlf(z) + \left(((k-1)f(z) + zf'(z)\right) \\ (z^{Nl} - 1)\right) - Nlz^{Nl}f(z) \end{array} \right\} \\ &= -\frac{\left(z^{Nl} - 1\right)^3 z^{k-1}}{2z^{2Nl} |g(z)|^2} \left\{ h(z) + zf'(z) + (2(k-1) - Nl)f(z) \right\}. \end{aligned}$$

Since

$$h(z) + zf'(z) + (2(k-1) - Nl)f(z) = Mf(z)$$

we obtain

$$Re(w) = \frac{\left(z^{Nl} - 1\right)^4 M}{2z^{2Nl} \left|g(z)\right|^2} \cdot \frac{-z^{k-1}f(z)}{z^{Nl} - 1} = \frac{\left(z^{Nl} - 1\right)^4 Mp}{2z^{2Nl} \left|g(z)\right|^2}.$$

The value of Re(w) at $z = e^{w_m i}$ is

$$Re(w) = \frac{(z^{Nl} - 1)^4}{z^{2Nl}} \cdot \frac{Mp}{2|g(z)|^2} \\ = (2\cos Nlw_m - 2)^2 \cdot \frac{Mp}{2|g(z)|^2}.$$

Therefore,

$$\frac{dr}{dp} = \frac{2r\left(\cos N l w_m - 1\right)^2 M p}{|g(z)|^2} > 0$$

and it follows that (2.10) holds at $z = e^{w_m i}$. Case 2. $z^l = 1$. With an argument similar to Case 1., we obtain

$$\frac{dr}{dp} = \frac{2rN^2Mp}{\left|\left(M+1\right)z - M+1\right|^2}$$

P. Niamsup

which implies that (2.10) is valid for $z = e^{w_m i}$.

This completes the proof. $\hfill \Box$

We now determine the minimum of the absolute values of p_m given by (2.3). We have the following result.

Proposition 2.3. $p_0 = \min\{|p_m| : m = 0, 1, ..., M - 1\}$

To prove Proposition 2.3, we need the following lemmas. Lemma 2.2. [5] Let N be a positive integer, then

$$\left|\frac{\sin Nt}{\sin t}\right| \le N$$

holds for all $t \in \mathbb{R}$.

Lemma 2.3. [5] Let $0 < \theta < \frac{\pi}{2}$, then the inequality

 $\sin x\theta \, \sin y\theta \leq \sin \theta \, \sin xy\theta$

holds for all $x, y \in (1, \frac{\pi}{2\theta})$.

Proof of Proposition 2.3. By assumption, l is even which implies that M is also even. It is clear that $p_0 > 0$. Since each p_m is corresponded to $e^{w_m i}$ and its conjugate $\overline{e^{w_m i}}$, it is sufficient to consider p_m for $m = 0, 1, ..., \left[\frac{M-1}{2}\right] = \frac{M}{2} - 1$. To this end, we consider the following three cases.

Case I. N = 1. In this case, we have

$$p_m = 2(-1)^m \sin \frac{(2m+1)\pi}{2k}$$

It follows immediately that $p_m \ge p_0$.

Case II. N = 2. It suffices to show that $\frac{1}{p_m} \leq \frac{1}{p_0}$ for $m = 1, 2, ..., \frac{M}{2} - 1$. Since $z^l = -z^{2k}$ and $z = e^{w_m i}$, we get

$$p_m = -\frac{z^{k-1}(z^2-1)(-z^{2k}-1)}{z^{4k}-1}$$
$$= \frac{z^{k-1}(z^2-1)}{z^{2k}-1}$$
$$= \frac{z-z^{-1}}{z^{k}-z^{-k}}$$
$$= \frac{e^{w_m i} - e^{-w_m i}}{e^{kw_m i} - e^{-kw_m i}}$$
$$= \frac{\sin w_m}{\sin kw_m}.$$

196

We observe that

$$p_{\frac{M}{2}-i} = \frac{\sin\frac{2(\frac{M}{2}-i)+1}{M}\pi}{\sin\frac{2(\frac{M}{2}-i)+1}{M}k\pi}$$

= $\frac{\sin\frac{2(\frac{M}{2}-i)+1}{M}k\pi}{\sin\frac{M-(2i-1)}{M}\pi}$
= $\frac{\sin\left(\pi-\frac{(2i-1)}{M}\pi\right)}{\sin\left(k\pi-\frac{(2i-1)}{M}k\pi\right)}$
= $\frac{\sin\frac{(2i-1)}{M}\pi}{\sin\frac{(2i-1)}{M}k\pi}$
= $p_{i-1.}$

Therefore, it suffices to show that

(15)
$$\frac{1}{p_m} \le \frac{1}{p_0}$$

for $m = 1, 2, ..., \left[\frac{M}{4} - \frac{1}{2}\right]$. Note that when M = 4j then $\left[\frac{M}{4} - \frac{1}{2}\right] = \frac{M}{4}$ and when M = 2j for an odd number j, then $\left[\frac{M}{4} - \frac{1}{2}\right] = \frac{M}{4} - \frac{1}{2}$. Let $\theta = \frac{\pi}{M}$. Then we have

$$\frac{1}{p_0} = \frac{\sin k\theta}{\sin \theta}$$
 and $\frac{1}{p_m} = \frac{\sin k(2m+1)\theta}{\sin(2m+1)\theta}$.

Note that $0 < \theta < \frac{\pi}{2}$ and

$$1 \le M - k \le \frac{\pi}{2\theta}, 1 \le 2m + 1 \le \frac{\pi}{2\theta},$$

since k > l. It follows from Lemma 2.2 that

 $\sin(M-k)\theta\sin(2m+1)\theta \ge \sin\theta\sin(M-k)(2m+1)\theta.$

Taking into account that $(M-k)\theta = \pi - k\theta$, we obtain (2.8) for $m = 1, 2, ..., \left[\frac{M}{4} - \frac{1}{2}\right]$. Case III. $N \ge 3$. We will show that

$$(16) |p_m| \ge p_0$$

for $m = 0, 1, ..., \left[\frac{M-1}{2}\right]$. With the same argument as in Case II, it suffices to show (2.9) for $m = 0, 1, ..., \left[\frac{M}{4} - \frac{1}{2}\right]$. Let $\theta = \frac{\pi}{M}$. Then $0 < (2m+1) \theta \leq \frac{\pi}{2}$ and

$$|p_m| = 2\sin\left(2m+1\right)\theta \left|\frac{\sin\frac{(2m+1)l\theta}{2}}{\sin\frac{(2m+1)Nl\theta}{2}}\right|$$

By Lemma 2.3 and Jordan's inequality, namely $\frac{2}{\pi} \leq \frac{\sin \theta}{\theta} \leq 1$ for $0 \leq \theta \leq \frac{\pi}{2}$, we obtain

(17)
$$|p_m| \ge 2 \cdot \frac{2}{\pi} (2m+1) \theta \cdot \frac{1}{N} = \frac{4(2m+1)\theta}{\pi N}.$$

We will show that (2.13) holds in the following three subcases: Subcase (IIIa): $\frac{Nl\theta}{2} \leq \frac{\pi}{2}$. In this subcase we have

Subcase (IIIa): $\frac{1}{2} \leq \frac{1}{2}$. In this subcase we have

(18)
$$p_0 = \frac{2\sin\theta\sin\frac{l\theta}{2}}{\sin\frac{Nl\theta}{2}} \le \frac{2\cdot\theta\cdot\frac{l\theta}{2}}{\frac{2}{\pi}\cdot\frac{Nl\theta}{2}} = \frac{\pi\theta}{N}$$

Inequalities (2.14) and (2.15) imply that (2.13) holds for $m = 0, 1, ..., \left[\frac{M}{4} - \frac{1}{2}\right]$.

Subcase (IIIb): $\frac{Nl\theta}{2} > \frac{\pi}{2}$. In this subcase we have

$$\frac{Nl\theta}{2} = \frac{Nl\pi}{2M} < \frac{\pi}{2} \cdot \frac{Nl}{(N-1)l} = \frac{\pi}{2} \cdot \frac{N}{(N-1)l}$$

since k > (N-1)l and M = 2k - (N-1)l > 2(N-1)l - (N-1)l = (N-1)l. By using $\sin \frac{Nl\theta}{2} = \sin \left(\pi - \frac{Nl\theta}{2}\right)$, we get

$$p_0 = \frac{2\sin\theta \sin\frac{l\theta}{2}}{\sin\frac{Nl\theta}{2}} \le \frac{2\cdot\theta\cdot\frac{l\theta}{2}}{\frac{2}{\pi}\cdot\left(\pi - \frac{Nl\theta}{2}\right)} = \frac{\pi l\theta^2}{2\pi - Nl\theta}$$

It follows from (2.14), (2.15), and (2.16) that

$$\begin{aligned} \frac{|p_m|}{p_0} &\geq \frac{4(2m+1)\theta}{\pi N} \cdot \frac{2\pi - Nl\theta}{\pi l\theta^2} \\ &= \frac{4(2m+1)}{\pi^2} \left(\frac{2\pi}{Nl\theta} - 1\right) \\ &> \frac{4(2m+1)}{\pi^2} \left(\frac{2(N-1)}{N} - 1\right) \\ &= \frac{4(2m+1)}{\pi^2} \left(1 - \frac{2}{N}\right). \end{aligned}$$

From the above we have the following:

(i) If $N \ge 12$ and $m \ge 1$, then (2.13) holds.

198

- (ii) If $N \ge 4$ and $m \ge 2$, then (2.13) holds.
- (iii) If N = 3 and $m \ge 4$, then (2.13) holds.

We now consider the remaining cases.

(iv) $N \ge 4$ and m = 1. In this case it follows from (2.15) that $l\theta < \frac{\pi}{3}$ which implies that

(19)
$$|p_1| = \left| \frac{2\sin 3\theta \sin \frac{3l\theta}{2}}{\sin \frac{3Nl\theta}{2}} \right| \ge 2 \cdot \frac{2}{\pi} \cdot 3\theta \cdot \frac{2}{\pi} \cdot \frac{3l\theta}{2} = \frac{36l\theta^2}{\pi^2}.$$

It follows from (2.15), (2.16), and (2.17) that

$$\begin{aligned} \frac{|p_1|}{p_0} &\geq \frac{36l\theta^2}{\pi^2} \cdot \frac{2\pi - Nl\theta}{\pi l\theta^2} > \frac{36}{\pi^3} \left(2\pi - Nl\theta\right) \\ &> \frac{36}{\pi^3} \left(2\pi - \frac{\pi N}{N-1}\right) = \frac{72}{\pi^3} \left(\pi - \frac{\pi N}{2(N-1)}\right) \\ &\geq \frac{24}{\pi^2} > 1. \end{aligned}$$

(v) N=3 and $1\leq m\leq 3$. By (2.15) and the assumption of Subcase (IIIb) it follows that $\frac{\pi}{6}<\frac{l\theta}{2}<\frac{\pi}{4}$ and we have

(20)
$$\frac{|p_m|}{p_0} = \left| \frac{\sin(2m+1)\theta \sin\frac{3l\theta}{2}}{\sin\frac{3(2m+1)l\theta}{2} \sin\frac{l\theta}{2}} \right| \frac{\sin\frac{(2m+1)l\theta}{2}}{\sin\theta}$$

By Lemma 2.3, we get

$$\left|\frac{\sin(2m+1)\theta\,\sin\frac{3l\theta}{2}}{\sin\frac{3(2m+1)l\theta}{2}\,\sin\frac{l\theta}{2}}\right| \ge \frac{1}{3}\left|\frac{\sin\frac{3l\theta}{2}}{\sin\frac{l\theta}{2}}\right| = \frac{1}{3}\left|3-4\sin^2\frac{l\theta}{2}\right| > \frac{1}{3}.$$

By Jordan's inequality we have

$$\frac{\sin\frac{(2m+1)l\theta}{2}}{\sin\theta} > \frac{\frac{2}{\pi} \cdot (2m+1)\theta}{\theta} = \frac{2(2m+1)}{\pi}$$

Therefore,

$$\frac{|p_m|}{p_0} > \frac{2(2m+1)}{3\pi} > 1 \quad \text{for } m = 2, 3.$$

If m = 1 and $p_1 > 0$, using $\frac{\pi}{6} < \frac{l\theta}{2} < \frac{\pi}{4}$, we obtain

$$\frac{p_1}{p_0} = \frac{3-4\sin^2\frac{l\theta}{2}}{4\sin^3\frac{3l\theta}{2}-3}\frac{\sin 3\theta}{\sin \theta} > 1 \cdot \frac{1}{\theta} \cdot \frac{2}{\pi} \cdot 3\theta = \frac{6}{\pi} > 1.$$

This completes the proof of Proposition 2.3.

Q.E.D.

P. Niamsup

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Note that when p < 0 we have F(1) = -pN < 0 and $\lim_{z \to +\infty} F(z) = +\infty$. Thus F has a root which lies outside the unit disk. For p = 0, F(z) has simple roots at 1 and -1 and root at 0 of multiplicity k - 1. Let $z_1(p)$ be the branch of the root of (2.1) with $z_1(0) = 1$. Then it follows from (2.7) that

$$\left. \frac{dz_1}{dp} \right|_{p=0} = -\frac{N}{2} < 0.$$

By the continuity of the roots with respect to p, this implies that if p > 0 is sufficiently small then all the roots of (2.1) lie inside the unit disk. Next, Proposition 2.3 shows that p_0 is a positive minimum value of p such that a root of (2.1) intersects C as p increases from 0. Then by Proposition 2.2, if $p \ge p_0$, then there exists a root of (2.1) which lies outside the unit disk. From these arguments, we conclude that all the roots of (2.1) lie inside the unit disk if and only if 0 . Therefore, the zero zolution of (1.3) is asymptotically stable if and only the condition (1.4) holds. Q.E.D.

Remark 2.1. For the case k and l are odd positive integers, N must also be odd (otherwise, F(z) will have a root at -1 so that the zero solution of (1.3) is not asymptotically stable). Note that M is still an even integer. When N = 1 the same argument as in *Case I* of the proof of Proposition 2.3 shows that p_0 is the positive minimum of $|p_m|$ for $m = 0, 1, ..., \frac{M}{2} - 1$. When N = 3, the same argument as in *Case III* of the proof of Proposition 2.3 shows that p_0 is the positive minimum of $|p_m|$ for $m = 0, 1, ..., [\frac{M}{4} - \frac{1}{2}]$. However, we can not conclude from the proof in *Case III* of Proposition 2.3 that p_0 is the positive minimum of $|p_m|$ for $m = 0, 1, ..., [\frac{M}{2} - 1$. We then have the following conclusion:

Theorem 2.4. Let k, l, and N be positive integers with k and l odd and k > (N-1)l. Then the zero solution of (1.3) is asymptotically stable if and only if

0

where M = 2k - (N-1)l, $p_0^* = \min\{p_0, p^*\}$, $p_0 = \frac{2\sin(\frac{\pi}{M})\sin(\frac{l\pi}{2M})}{\sin(\frac{Nl\pi}{2M})}$ and

$$p^* = \min\left\{p_m : m = \left[\frac{M}{4} - \frac{1}{2}\right] + 1, \left[\frac{M}{4} - \frac{1}{2}\right] + 2, ..., \frac{M}{2} - 1\right\}.$$

Acknowledgment. This research is supported by the Thailand Research Fund.

References

- Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.
- $[\,2\,]$ S. A. Kuruklis, The asymptotic stability of $x_{n+1}-ax_n+bx_{n-k}=0,$ J. Math. Anal. Appl., 188 (1994), 719–731.
- [3] S. A. Levin and R. M. May, A note on difference-delay equations, Theoret. Population Biology, 9 (1976), 178–187.
- [4] P. Niamsup and Y. Lenbury, The asymptotic stability of $x_{n+1} a^2 x_{n-1} + bx_{n-k} = 0$, Kyungpook Math. J., **48** (2008), 173–181.
- [5] R. Ogita, H. Matsunaga and T. Hara, Asymptotic stability for a class of linear delay difference equations of higher order, J. Math. Anal. Appl., 248 (2000), 83–96.
- [6] V. G. Papanicolaou, On the asymptotic stability of class of linear difference equations, Math. Magazine, 69 (1996), 34–43.
- [7] G. Stépán, Retarded Systems: Stability and Characteristic Functions, Longman, Harlow, UK, 1989.

Department of Mathematics Faculty of Science Chiangmai University Chiangmai, 50200 Thailand

E-mail address: scipnmsp@chiangmai.ac.th