Golden optimal path in discrete-time dynamic optimization processes

Seiichi Iwamoto and Masami Yasuda

Abstract

. We are concerned with dynamic optimization processes from a viewpoint of Golden optimality. A path is called Golden if any state moves to the next state repeating the same Golden section in each transition. A policy is called Golden if it, together with a relevant dynamics, yields a Golden path. The probelm is whether an optimal path/policy is Golden or not. This paper minimizes a quadratic criterion and maximizes a square-root criterion over an infinite horizon. We show that a Golden path is optimal in both optimizations. The Golden optimal path is obtained by solving a corresponding Bellman equation for dynamic programming. This in turn admits a Golden optimal policy.

§1. Introduction

Recently the Golden optimal solution, its duality, and its equivalence have been discussed in static optimization problems $[4,5,6]$. In this paper we consider the Golden optimal solution in dynamic optimization problems.

We consider two typical types of criterion - quadratic and squareroot - in a deterministic optimization. We minimize quadratic criteria
$I(x)=\sum_{n=0}^{\infty}\left[x_{n}^{2}+\left(x_{n}-x_{n+1}\right)^{2}\right], J(x)=\sum_{n=0}^{\infty}\left[\left(x_{n}-x_{n+1}\right)^{2}+x_{n+1}^{2}\right]$
and maximize square-root criteria

$$
\begin{gathered}
K(x)=\sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}}+\sqrt{x_{n}-x_{n+1}}\right) \\
L(x)=\sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}-x_{n+1}}+\sqrt{x_{n+1}}\right)
\end{gathered}
$$

Received October 12, 2007.
respectively. Here β is $0<\beta<1$. The differences between I and J and between K and L are

$$
\begin{aligned}
& J(x)=I(x)-x_{0}^{2} \\
& L(x)=K(x)+\sum_{n=0}^{\infty}\left(\beta^{n-1}-\beta^{n}\right) \sqrt{x_{n}}\left(\beta^{-1}=0\right)
\end{aligned}
$$

We show that a Golden path is optimal in these four optimization problems. The Golden optimal path is obtained by solving Bellman equation for dynamic programming $[3,7]$.

§2. Golden paths

A real number

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

is called Golden number $[1,2,8]$. It is the larger of the two solutions to quadratic equation

$$
\begin{equation*}
x^{2}-x-1=0 \tag{1}
\end{equation*}
$$

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci quadratic equation has two real solutions: ϕ and its conjugate $\bar{\phi}:=1-\phi$. We note that

$$
\phi+\bar{\phi}=1, \phi \cdot \bar{\phi}=-1
$$

Further we have

$$
\begin{gathered}
\phi^{2}=1+\phi, \bar{\phi}^{2}=2-\phi \\
\phi^{2}+\bar{\phi}^{2}=3, \phi^{2} \cdot \bar{\phi}^{2}=1
\end{gathered}
$$

A point $(2-\phi) x$ splits an interval $[0, x]$ into two intervals $[0,(2-\phi) x]$ and $[(2-\phi) x, x]$. A point $(\phi-1) x$ splits the interval into $[0,(\phi-1) x]$ and $[(\phi-1) x, x]$. In either case, the length constitutes the Golden ratio $(2-\phi):(\phi-1)=1: \phi$. Thus both divisions are the Golden section.

Definition 2.1. A sequence $x:\{0,1, \ldots\} \rightarrow R^{1}$ is called Golden if and only if either

$$
\frac{x_{t+1}}{x_{t}}=\phi-1 \text { or } \frac{x_{t+1}}{x_{t}}=2-\phi
$$

Lemma 2.1. A Golden sequence x is either

$$
x_{t}=x_{0}(\phi-1)^{t} \text { or } x_{t}=x_{0}(2-\phi)^{t} .
$$

We remark that

$$
(\phi-1)^{t}=\phi^{-t},(2-\phi)^{t}=(1+\phi)^{-t}
$$

where

$$
\phi-1=\phi^{-1} \approx 0.618,2-\phi=(1+\phi)^{-1} \approx 0.382
$$

Let us introduce a controlled linear dynamics with real parameter b as follows.

$$
\begin{equation*}
x_{t+1}=b x_{t}+u_{t} t=0,1, \ldots \tag{2}
\end{equation*}
$$

where $u:\{0,1, \ldots\} \rightarrow R^{1}$ is called control. If $u_{t}=p x_{t}$, the control u is called proportional, where p is a real constant, proportional rate. A sequence x satisfying (2) is called path.

Definition 2.2. A proportional control u on dynamics (2) is called Golden if and only if it generates a Golden path x.

Lemma 2.2. A proportional control $u_{t}=p x_{t}$ on (2) is Golden if and only if

$$
\begin{equation*}
p=-b+\phi-1 \text { or } p=-b+2-\phi \tag{3}
\end{equation*}
$$

§3. Control processes

This section minimizes two quadratic cost functions

$$
\sum_{n=0}^{\infty}\left[x_{n}^{2}+\left(x_{n}-x_{n+1}\right)^{2}\right] \text { and } \sum_{n=0}^{\infty}\left[\left(x_{n}-x_{n+1}\right)^{2}+x_{n+1}^{2}\right] .
$$

Both problems are solved as a control process with criterion

$$
\sum_{n=0}^{\infty}\left(x_{n}^{2}+u_{n}^{2}\right) \text { and } \sum_{n=0}^{\infty}\left(u_{n}^{2}+x_{n+1}^{2}\right)
$$

under a common additive dynamics with a given initial state

$$
x_{n+1}=b x_{n}+u_{n}, x_{0}=c
$$

where $c \in R^{1}$.

3.1. Quadratic in current state

Let us now consider a control process with an additive transition $T(x, u)=b x+u$. Here b is a constant, which represents a characteristics of the process :

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{n=0}^{\infty}\left(x_{n}^{2}+u_{n}^{2}\right) \\
\text { subject to } & \text { (i) } \quad x_{n+1}=b x_{n}+u_{n} \\
& \text { (ii) } \quad-\infty<u_{n}<\infty \\
& \text { (iii) } \quad x_{0}=c
\end{array}
$$

Let $v(c)$ be the minimum value of $\mathrm{C}(c)$. Then the value function v satisfies Bellman equation [3]:

$$
\begin{equation*}
v(x)=\min _{-\infty<u<\infty}\left[x^{2}+u^{2}+v(b x+u)\right] . \tag{4}
\end{equation*}
$$

Eq. (4) has a quadratic form $v(x)=v x^{2}$, where $v \in R^{1}$.
Lemma 3.1. The control process $\mathrm{C}(c)$ with characteristic value $b(\epsilon$ R^{1}) has a proportional optimal policy $f^{\infty}, f(x)=p x$, and a quadratic minimum value function $v(x)=v x^{2}$, where

$$
v=\frac{b^{2}+\sqrt{b^{4}+4}}{2}, p=-\frac{v}{1+v} b .
$$

The proportional optimal policy f^{∞} splits at any time an interval $[0, x]$ into $[0,(b+p) x]=\left[0, \frac{b x}{1+v}\right]$ and $\left[\frac{b x}{1+v}, x\right]$. In particular, when $b=1$, the quadratic coefficient v is reduced to the Golden number

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

Further the division of $[0, x]$ into $\left[0, \frac{x}{1+\phi}\right]$ and $\left[\frac{x}{1+\phi}, x\right]$ is Golden. A quadratic function $w(x)=a x^{2}$ is called Golden if $a=\phi$.

Theorem 3.1. The control process $\mathrm{C}(c)$ with characteristic value $b=1$ has a Golden optimal policy $f^{\infty}, f(x)=(1-\phi) x$, and the Golden quadratic minimum value function $v(x)=\phi x^{2}$.

3.2. Qquadratic in next state

Here we consider the cost function $r: X \times U \rightarrow R^{1}$ which is quadratic in current control and next state :

$$
r(x, u)=u^{2}+(b x+u)^{2}
$$

Then a control process is represented by the following sequential minimization problem :

$$
\begin{array}{ll}
& \text { minimize } \\
& \sum_{n=0}^{\infty}\left(u_{n}^{2}+x_{n+1}^{2}\right) \\
\mathrm{C}^{\prime}(c) \quad \text { subject to } & \text { (i) } x_{n+1}=b x_{n}+u_{n} \\
& \text { (ii) }-\infty<u_{n}<\infty \\
& \text { (iii) } x_{0}=c .
\end{array}
$$

The value function v satisfies Bellman equation [3]:

$$
\begin{equation*}
v(x)=\min _{-\infty<u<\infty}\left[u^{2}+(b x+u)^{2}+v(b x+u)\right] \tag{5}
\end{equation*}
$$

Eq. (5) has a quadratic solution $v(x)=v x^{2}$, where $v \in R^{1}$.
Lemma 3.2. The control process $\mathrm{C}^{\prime}(c)$ with characteristic value b has a proportional optimal policy $f^{\infty}, f(x)=p x$, and a quadratic minimum value function $v(x)=v x^{2}$, where

$$
v=\frac{b^{2}-2+\sqrt{b^{4}+4}}{2}, p=-\frac{1+v}{2+v} b .
$$

The policy f^{∞} splits an interval $[0, x]$ into $\left[0, \frac{b x}{2+v}\right]$ and $\left[\frac{b x}{2+v}, x\right]$. When $b=1$, the coefficient v is reduced to the inverse Golden number

$$
\phi^{-1}=\phi-1=\frac{-1+\sqrt{5}}{2} \approx 0.618
$$

Further the division of $[0, x]$ into $[0,(2-\phi) x]$ and $[(2-\phi) x, x]$ is Golden. A quadratic function $w(x)=a x^{2}$ is called inverse Golden if $a=\phi^{-1}$.

Theorem 3.2. The control process $\mathrm{C}^{\prime}(c)$ with characteristic value $b=1$ has a Golden optimal policy $f^{\infty}, f(x)=(1-\phi) x$, and the inverse Golden quadratic minimum value function $v(x)=(\phi-1) x^{2}$.

§4. Allocation processes

This section maximizes two discounted square-root reward functions

$$
\sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}}+\sqrt{x_{n}-x_{n+1}}\right) \text { and } \sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}-x_{n+1}}+\sqrt{x_{n+1}}\right)
$$

Both problems are solved as an allocation process with criterion

$$
\sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}}+\sqrt{u_{n}}\right) \text { and } \sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{u_{n}}+\sqrt{x_{n+1}}\right)
$$

under a common subtractive dynamics with a given initial state

$$
x_{n+1}=x_{n}-u_{n}, x_{0}=c
$$

where $c \geq 0$.

4.1. Square-root in current state

Let us now consider an allocation process with a subtractive transition $T(x, u)=x-u$:

$$
\begin{array}{lll}
& \text { Maximize } & \sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{x_{n}}+\sqrt{u_{n}}\right) \\
\text { A(c) } \quad \text { subject to } & \text { (i) } x_{n+1}=x_{n}-u_{n} & \\
& \text { (ii) } 0 \leq u_{n} \leq x_{n} \\
& \text { (iii) } x_{0}=c .
\end{array}
$$

Let $v(c)$ be the maximum value of $\mathrm{A}(c)$. Then the maximum value function v satisfies the following Bellman equation:

$$
\begin{equation*}
v(x)=\operatorname{Max}_{0 \leq u \leq x}[\sqrt{x}+\sqrt{u}+\beta v(x-u)] \tag{6}
\end{equation*}
$$

Eq. (6) has a square-root form $v(x)=v \sqrt{x}$, where $v \in R^{1}$.
Let us adopt a proportional policy $f^{\infty}(f(x)=p x)$ with proportional rate $p(0<p<1)$. Then state x under the control $u=p x$ goes deterministically to the next state $T(x, u)=x-u=x-p x=(1-$ $p) x$. Thus we have $x=(1-p) x+p x$. The state transition of control process $\mathrm{A}(c)$ governed by the proportional policy f^{∞} means that the current control $u=p x$ splits the state interval $[0, x]$ into two intervals $[0,(1-p) x]$ and $[(1-p) x, x]$. When the split yields a Golden section, the proportional policy $f^{\infty}(f(x)=p x)$ is called Golden.

Lemma 4.1. The allocation process $\mathrm{A}(c)$ has a proportional optimal policy $f^{\infty}, f(x)=p x$, and a square-root maximum value function $v(x)=$ $v \sqrt{x}$, where

$$
v=\frac{2}{1-\beta^{2}}, p=\frac{\left(1-\beta^{2}\right)^{2}}{\left(1+\beta^{2}\right)^{2}}
$$

We remark that the coefficient v is the solution to

$$
v=1+\sqrt{1+(\beta v)^{2}}, v \geq 2
$$

Let us solve $1-p=\phi-1$ or $2-\phi$. Then we have the following result.
Theorem 4.1. When $\beta=\phi(1-\sqrt{\phi-1}) \approx 0.346$ or $\beta=\sqrt{\phi}-$ $\sqrt{\phi-1} \approx 0.486$, the proportional policy $f^{\infty}, f(x)=p x$, is Golden optimal.

4.2. Square-root in next state

Now we consider an allocation process with transition $T(x, u)=$ $x-u$:

$$
\begin{array}{lll}
& \text { Maximize } & \sum_{n=0}^{\infty} \beta^{n}\left(\sqrt{u_{n}}+\sqrt{x_{n+1}}\right) \\
\mathrm{A}^{\prime}(c) \quad \text { subject to } & \\
& \text { (i) } x_{n+1}=x_{n}-u_{n} \\
& \text { (ii) } 0 \leq u_{n} \leq x_{n} \\
& \text { (iii) } x_{0}=c .
\end{array}
$$

Let $v(c)$ be the maximum value of $\mathrm{A}^{\prime}(c)$. Then the maximum value function v satisfies an optimality equation:

$$
\begin{equation*}
v(x)=\operatorname{Max}_{0 \leq u \leq x}[\sqrt{u}+\sqrt{x-u}+\beta v(x-u)] \tag{7}
\end{equation*}
$$

Eq. (7) has a square-root solution $v(x)=v \sqrt{x}$, where $v \in R^{1}$.
Let us adopt a proportional policy $f^{\infty}(f(x)=p x)$ with $p(0<$ $p<1)$. Then the current control $u=p x$ splits the interval $[0, x]$ into $[0,(1-p) x]$ and $[(1-p) x, x]$.

Lemma 4.2. The allocation process $\mathrm{A}^{\prime}(c)$ has a proportional optimal policy $f^{\infty}, f(x)=p x$, and a square-root maximum value function $v(x)=v \sqrt{x}$, where

$$
v=\frac{\beta+\sqrt{2-\beta^{2}}}{1-\beta^{2}}, p=\frac{1-\beta \sqrt{2-\beta^{2}}}{2}
$$

Note that the coefficient v is the positive solution to

$$
v=\sqrt{1+(1+\beta v)^{2}}
$$

By solving $1-p=\phi-1$, we have the following result.
Theorem 4.2. When $\beta=\sqrt{1-2 \sqrt{2 \phi-3}} \approx 0.168$, the proportional policy $f^{\infty}, f(x)=p x$, is Golden optimal.

References

[1] A. Beutelspacher and B. Petri, Der Goldene Schnitt 2., überarbeitete und erweiterte Auflange, Elsevier GmbH, Spectrum Akademischer Verlag, Heidelberg, 1996.
[2] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publ. Co. Pte. Ltd., 1977.
[3] S. Iwamoto, Theory of Dynamic Program: Japanese, Kyushu Univ. Press, Fukuoka, 1987.
[4] S. Iwamoto, Cross dual on the Golden optimum solutions, Math. Econom., Res. Inst. Math. Sci., Kyoto Univ., RIMS Kôkyûroku, 1443, 2005, pp. 27-43.
[5] S. Iwamoto, The Golden optimum solution in quadratic programming, In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, Okinawa, 2005, (eds. W. Takahashi and T. Tanaka), Yokohama Publ., Yokohama, 2007, pp.109-205.
[6] S. Iwamoto, The Golden trinity - optimility, inequality, identity -, Math. Econom., Res. Inst. Math. Sci., Kyoto Univ., RIMS Kôkyûroku, 1488, 2006, pp. 1-14.
[7] S. Iwamoto and M. Yasuda, Dynamic programming creates the golden ratio, too, Decision-Making and Mathematical Model under Uncertainty, Res. Inst. Math. Sci., Kyoto Univ., RIMS Kôkyûroku, 1477, 2006, pp. 136140.
[8] H. Walser, Der Goldene Schnitt, B. G. Teubner, Leibzig, 1996.

Seiichi Iwamoto
Department of Economic Engineering
Graduate School of Economics
Kyushu University
Fukuoka 812-8581, Japan
Masami Yasuda
Department of Mathematical Science
Faculty of Science, Chiba University
Chiba 263-8522, Japan

E-mail address: iwamoto@en.kyushu-u.ac.jp
yasuda@math.s.chiba-u.ac.jp

