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Intermediate solutions for nonlinear difference 
equations with p-Laplacian 

Mariella Cecchi, Zuzana Dosia and Mauro Marini 

Abstract. 

The paper deals with the existence of the so-called intermediate 
solutions for the nonlinear difference equation with deviating argument. 
The roles of the nonlinearity and deviating argument are discussed and 
illustrated by examples. 

§1. Introduction 

Consider the difference equation 

(1) 

where .6. is the forward difference operator D.xn = Xn+l - Xn, a > 0 is 
a real number, a= {an}, b = {bn} are positive real sequences, p?: 0 is 
a fixed integer number and F is a real positive continuous function on 
(0, oo). 

Equation (1) is the discrete analogue of a nonlinear differential equa
tion with p-Laplacian operator, that appears in studying spherically 
symmetric solutions for certain nonlinear elliptic systems. 

An important special case of (1) is the discrete Emden-Fowler equa
tion 

where (3 > 0 is a real number. Both equations (1), (2) are widely 
considered in the literature, see, e.g., [2, 3, 6, 8, 9], the monograph 
[1] and references therein. In particular, in [2, 3] equation (1) has been 
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investigated when bn :::; 0 for large n. In this paper we continue such a 
study, by assuming the positiveness of b. 

Throughout the paper, for brevity, by solution of (1) we mean a 
nontrivial sequence satisfying (1) for n 2:: p. As usual, a solution x = 
{xn} of (1) is said to be nonoscillatory ifthere exists nx 2:: 1 such that 
XnXn+l > 0 for n 2:: nx. 

For the sake of simplicity, we restrict our study to nonoscillatory 
solutions x for which Xn > 0 for large nand we denote by xf11 = {x~l} 
its quasidifference, where 

(3) 

Clearly, x[11 is decreasing for large n. Then for any eventually positive 
solution x of (1) we say x E M+ or x E M-, according to Xn > 0, !:lxn > 0 
for n 2:: nx 2:: 1 or Xn > 0, !:lxn < 0 for n 2:: nx 2:: 1. 

We deal with the existence of a particular type of nonoscillatory 
solutions, namely the so called intermediate solutions. Solution x of (1) 
is said to be intermediate if either 

(4) xEM-, limxn = 0, limx[l] = -oo, 
n n n 

or 

(5) xEM+, limxn = oo, limx~l = 0. 
n n . 

This terminology originates from the corresponding continuous case and 
very few is known in the literature (see, e.g., (7, Remark 1.1.]). A com
parison with some partial results in [8, 9] is also given. A complete study 
concerning the nonoscillation of (1) will be given in a forthcoming paper 
[5]. 

§2. Main results 

Put 
00 1 00 

Sa := L (ak)l/a' sb := L bk. 
k=l k=l 

Lemma 1. {i1) If Sa < oo, then any solution x EM+ is bounded. 
{~) Assume that F is nondecreasing. If Sb < oo, then for any 

solution x E M- the quasidifference xf11 is bounded. 

Proof. Claim (il). Since xf11 is positive decreasing for large n, say 
n 2:: no, from (3) we have 
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The assertion follows by summing this inequality. 
Claim (i2). Since x is positive decreasing for large n, say n ;::: n0 , 

from (1) we have 
.6.x~l 2: -bnF(Xna+P) 

and again the assertion follows by summing this inequality. Q.E.D. 

As follows from Lemma 1, ifF is nondecreasing, equation (1) does 
not admit intermediate solutions when Sa + Sb < oo. Thus, two cases 
(i) Sa < oo, Sb = oo, (ii) Sa = oo, Sb < oo are considered here. 

Theorem 1. Assume that F is nondecreasing on (0, 1] and 

(6) = oo, 

(7) 
00 ( j-1 )1/a 

s1 := E :. E bi < oo. 
j=2 J i=1 

Then (1} has solutions satisfying (4). 

Proof. Clearly, (6) and (7) yield Sa < oo, Sb = oo. Let no large so 
that no ;::: 2, and 

no-1 

(8) F(1) L bi ;::: 1, 
i=1 

oo ( 1 j-1 ) 1/a 1 

L ~ L bi S:: (F(1))1/a · 
j=no+1 3 i=l 

(9) 

Let Nno = {n E N, n ;::: no} and denote by X the Frechet space of 
the real sequences defined for n E Nna, endowed with the topology of 
convergence on finite subsets of Nna. Consider the set 0 c X defined by 

0 = { v = {vn} EX :!;; (aj~1/a S:: Vn S:: 1 }· 

LetT: n -t X be the map given by T(v) = z = {zn}, where Zno = 1 
and 

Zn ~ ~ (o;~l/o (1 + '~" b;F(vHp)) l/• fo, n >no. 
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Clearly Zn ?: l:}:n (ai)11"'. In view of (8) and (9), we have for n > no 

z,. :; t. (a; :1/• ( 1+ F(l) ;~ b; f" «; 

:; (F(l ))1/• ;~~+1 (a;: 1/• (~ b;) 1/a <; 1, 

therefore T(O) c n. Let us show that T(O) is relatively compact and 
Tis continuous on n. In virtue of the Ascoli theorem, any bounded set 
in X is relatively compact (see, e.g., [1, Theorem 5.6.1]) and so, because 
T(O) is bounded on X, the compactness follows. 

Let us prove the continuity ofT on n. Let v(k) = { vjk)} be a 

sequence in 0, converging on finite subsets ofNno to v<=) = { vj=>} E 0. 
From (8) we have 

Since F is continuous, the sequence A(k) = {AJk)} converges, on finite 

subsets of Nn0 , to A(=) (with clear meaning of A<=>) and so limk AJk) = 

Aj=> for any fixed j E Nn0 • Hence, in view of (7), the series Ej AJk) to
tally converges. Using the discrete analogue of the Lebesgue dominated 
convergence theorem, the sequence T(v(k)) converges on finite subsets 
of Nno to T(v<=>) and so the continuity ofT is proved. 

Applying the Tychonov fixed point theorem, there exists a sequence 
x such that for n > no 

Clearly, xis solution of (1) and x En. From (8) we have 



Intermediate solutions for nonlinear difference equations with p-Laplacian 37 

and so, in view of (7), x converges to zero. Since 

from (10) we obtain 

x[1J < -1- ~ b·F ( ~ 1 ) 
n - ~ • ~ ( )1/a 

i=no m=i+p am 

and so, by (6), limn x~l = -oo. Q.E.D. 

Theorem 2. Assume that F is nondecreasing on [1, oo), and 

(11) < oo, 

(12) ( ) 
1/a 

00 1 00 

~ ai ~bi = oo. 
•=1 J=• 

Then equation (1} has solutions satisfying (5). 

Proof (outline). Clearly, Sa= oo and Sb < oo. Let no large so that 
no~ 3 and 

(13) 

Let X be defined as in Theorem 1. The assertion follows by applying 
the fixed point Tychonov fixed point theorem in the set 

0 = { u = {un} EX: 1::; Un::; ~ (aj~1/a} 
to the map T: 0-+ X given by T(u) = y = {Yn}, where Yno = 1, 
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Finally, the fixed point ofT, say x, satisfies limn x~l =0 and it is un
bounded in virtue of (12). Q.E.D. 

If F is bounded or is bounded away zero near zero, the assumption 
on monotonicity of F in Theorems 1, 2 can be relaxed, as the following 
result shows. 

Theorem 3. (i1} Assume 0 < info<u:Sl F( u) ::; sup0<u<l F( u) < 
oo. If Sa < oo and (7} holds, then (1} has solutions satisfying (4). 

(~)Assume 0 < infu:2:1 F(u) ::; SUPu>l F(u) < 00. If sb < 00 and 
(12} holds, then (1} has solutions satisfying (5}. 

The proof is similar to the ones of the above theorems with minor 
changes. 

Remark 1. In [9], a more general equation is considered, but the ex
istence results concern with unbounded and zero-convergent solutions 
which are not intermediate ones; moreover these results require strong 
assumptions on nonlinearity which are not satisfied for any (3 > 0. 

In [8], a second order difference system, including (1) with p = 0, is 
considered. Comparing [8, Th.4] with our Theorem 2, both summation 
conditions are equivalent, but [8, Th.4] is not applicable to (1), due 
to different assumptions on nonlinearities. In addition, the proof of 
[8, Th.4] seems not to be correct because a previous result [8, Th.2], 
with a different assumption, is applied. Comparing [8, Th.ll] with our 
Theorem 1, one can check that assumptions of [8, Th.ll] can hold for 
(1) only if limsupu_.oo F(u) < oo, so this result is not applicable to (2). 

§3. The role of F and p 

When assumptions of Theorem 3 are satisfied, the existence of in
termediate solutions does not depend on p. When F is unbounded, the 
situation can be different, as the following two examples show. 

Example 1. Consider equation (2) with bn = 1, an= n(n + 1), a= 
2/3, (3 = 1/2. It is easy to verify that 81 < oo, Jp = oo for any p 2: 0 
and so, from Theorem 1, equation (2) has intermediate solutions in the 
class M-. 

Example 2. Consider the equations 

(15) ~(an[~xn[4sgn ~xn) + bn[Xn[ 2 sgn Xn = 0, 

(16) ~(an[~xn[ 4sgn ~xn) + bn[Xn+l[ 2 sgn Xn+l = 0, 
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2 ( 2 2 ) -4 where bn = en , an = e-n 12 - e-Cn+l) 12 . We will show that 

Theorem 1 is applicable if p = 0 and not for p = 1. This means that 
equation (15) has solutions satisfying (5), while the existence of such 
solutions for (16) is an open problem. We have L~n(ak)- 1 14 = e-n2/ 2 

and so Sa < oo. Furthermore, 

= = 
sl::::: :z:::: (e-i2/2- e-(i+l)2/2) ei2/4il/4::::: :z..=e-i2/4il/4 < 00. 

i=2 i=2 

Concerning (6), if p = 0, we have 

L 1 :z:::: ·2 ·2 ( = )2 = 
= e' e-• = oo, 

j=i (ak)l/4 i=l 

and if p = 1, we have 

J, ~ ~ e<' (~, (a,~ ,1,)' ~ ~ ,;' e-(;H)' ~ e-' ~ e " < oo. 

Concerning intermediate solutions in the class M+, it is easy to 
produce an example of equation (2) for which Theorem 2 holds for any 
p ;:=: 0 and, similarly, an example such that ! 0 < oo and h = oo. 

Remark 2. It is possible to show, by means of some recent summation 
inequalities, see [4, Lemma 2], that the conditions (6) and (7) [similarly, 
(11) and (12)] are not compatible for F(u) = uf3 if f3 > a and p ;:=: 1. 
Thus Theorems 1, 2 can be applied to (2) only when f3:::; a. A detailed 
discussion on this problem is given in [5]. 

References 

[ 1] R. P. Agarwal and D. O'Regan, Infinite Interval Problems for Differential, 
Difference and Integral Equations, Kluwer Acad. Publ., 2001. 

[ 2] M. Cecchi, Z. Doshi and M. Marini, Unbounded solutions of quasilinear 
difference equations, Comput. Math. Appl., 45 (2003), 1113-1123. 

[ 3] M. Cecchi, Z. Dosla, M. Marini and I. Vrkoc, Summation inequalities and 
half-linear difference equations, J. Math. Anal. Appl., 302 (2005), 1-13. 

[ 4] M. Cecchi, z. Dosla, M. Marini and I. Vrkoc, Asymptotic properties for 
half-linear difference equations, to appear in Math. Bohemica, 2006. 

[ 5] M. Cecchi, Z. Dosla and M. Marini, On oscillation and nonoscillation prop
erties of Emden-Fowler difference equations, submitted for publication, 
2008. 



40 M. Cecchi, Z. Do8hl., M. Marini 

[ 6] H. F. Huo and W. T. Li, Oscillation of the Emden-Fowler difference systems, 
J. Math. Anal. Appl., 256 (2001), 478-485. 

[ 7] W. Jingfa, Oscillation and nonoscillation theorems for a class of second 
order quasilinear functional differential equations, Hiroshima Math. J., 
27 (1997), 449-466. 

[ 8] W. T. Li, Classification Schemes for Nonoscillatory Solutions of Two
Dimensional Nonlinear Difference Systems, Comput. Math. Appl., 42 
(2001), 341-355. 

[ 9] G. Zhang, S. S. Cheng andY. Gao, Classification schemes for positive solu
tions of a second-order nonlinear difference equation, J. Comput. Appl. 
Math., 101 (1999), 39-51. 

Mariella Cecchi 
Depart. of Electronics and Telecommunications 
University of Florence 
ViaS. Marta 3,50139 Florence 
Italy 

Zuzana Doshi 
Depart. of Mathematics, Masaryk University 
Janackovo nam. 
2a, 66295 Brno 
Czech Republic 

Mauro Marini 
Depart. of Electronics and Telecommunication 
University of Florence 
ViaS. Marta 3, 50139 Florence 
Italy 

E-mail address: mariella. cecchi@unifi. it. 
dosla@math.muni.cz 
mauro.marini@unifi.it 


