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On the stable cohomology algebra of 
extended mapping class groups for surfaces 

N ariya Kawazumi 

Abstract. 

Let E 9 , 1 be an oriented compact surface of genus g with 1 boundary 
component, and r 9 , 1 the mapping class group of E 9 ,1 . \Ve determine 
the stable cohomology group of r 9 ,1 with coefficients in H 1 (E9 ,1 ; Z) 0 n, 
n 2: 1, explicitly modulo the stable cohomology group with trivial 
coefficients. As a corollary the rational stable cohomology algebra of 
the semi-direct product r 9 , 1 1>< H 1 (E9 ,1 ; Z) (which we call the extended 
mapping class group) is proved to be freely generated by the generalized 
Morita-Mumford classes mi,/s (i 2: 0, j 2: 1, i + j 2: 2) [11] over the 
rational stable cohomology algebra of the group rg,l· 

Introduction 

Let g ;:=:: 2 be an integer, I.: 9 ,1 an oriented compact surface of genus g 

with 1 boundary component, and r g,l the mapping class group of I.:g,l· 

Similarly let L:9 be an oriented closed surface of genus g, and r 9 the 
mapping class group of L:9 • We denote by H the first integral homology 
group of the surface I.:9 ,1 , H 1 (I.: 9 ,1 ;Z), which can be regarded as that 
of L:9 . The mapping class groups r 9 and r 9 ,1 act on it in an obvious 
symplectic way. 

One of the earliest works in the study of twisted (co )homology of 
the mapping class group with symplectic coefficients is Morita's paper 
[18] computing the first homology group with coefficients in H. Here he 
proved H 1 (f 9 ,1 ; H) = Z and H 1 (r 9 ; H) = Z/(2- 2g). In particular, the 
integral homology H 1 (f 9 ; H) depends on the genus g. This suggests to 
us the situation in the symplectic twisted (co)homology for f 9 ,1 , which 
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we would like to call the 'bordered' case, is different from that in the 
'closed' case r g. 

The Harer stability theorem [3] and the theorem of Madsen and 
Weiss [16] are the most important facts on (co )homology of the mapping 
class groups. The former states the cohomology group of the mapping 
class group with trivial coefficients is independent of the genus g and 
the number of boundary components of the surface, provided that the 
degree is smaller than g/3 [3] or g/2 [8]. Moreover Ivanov [7] has gen
eralized this theorem to those with twisted coefficients in the 'bordered' 
case. These theorems enable us to consider the stable cohomology group 
of the mapping class groups for surfaces. When we consider trivial co
efficients Z ( resp. Q), we denote it by H* (roo; Z) ( resp. H* (roo; Q)). 
The latter theorem established in 2002 [16] gave a loop-space descrip
tion for H* (roo; Z). As a corollary it is proved the rational stable coho
mology algebra H* (r 00 ; Q) is generated by the Morita-Mumford classes 
ei = (-1)i+lKi [17] [21]. 

Looijenga [15] proved that the rational stable cohomology group of 
the mapping class group r 9 , the 'closed' one, with coefficients in any 
irreducible representation of the rational symplectic group was a free 
module over H*(r 00 ; Q), and described its free basis. His computation is 
involved with geometric considerations on the moduli orbifold of complex 
algebraic curves including a theorem on Hodge theory [2]. Here it is 
remarkable that his results are based on the Harer stability theorem 
with trivial coefficients. 

In [11] we independently constructed a bigraded series of cohomol
ogy classes of the mapping class group r g,l' the 'bordered' one, with 
coefficients in the exterior algebra 1\ *H. These series are twisted gener
alizations of the Morita-Mumford classes [17] [21], and are easily modi
fied to those with coefficients in the n-fold tensor product Hem, n 2:: 1. 

The present paper is a revised version of the author's preprint [12]. 
In §§1-3 we will consider only the 'bordered' case, i.e., the case when the 
surface has boundaries. Our purpose is to prove the stable cohomology 
group of the mapping class group with coefficients in the n-fold tensor 
product H®n, n 2:: 1, is a free module over the algebra H*(r =; Z) and 
some combinations of the (modified) twisted Morita-Mumford classes 
give its free basis (Theorems l.A and l.B). This implies the Ivanov sta
bility theorem with coefficients in any finite dimensional rational sym
plectic coefficients. Following Looijenga [15] we deduce them from the 
Harer stability theorem with trivial coefficients, but use the Lyndon
Hochschild-Serre spectral sequence for a pair of groups introduced in 
[11] instead of geometric considerations including Hodge theory. As 
a corollary the rational cohomology algebra of the semi-direct product 
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H XI r g,l (which we call the extended mapping class group) is proved to be 
stabilized and to be freely generated by the generalized Morita-Mumford 
classes over the rational stable cohomology algebra of the mapping class 
group in the stable range (Theorem l.C). After the original version was 
completed, the twisted Morita-Mumford classes turned out to lift to the 
mapping class group with punctures [13]. This will be discussed in §4, 
where we will also discuss briefly what the theorem of Madsen and Weiss 
[16] brought to our results. 

The author would like to express his gratitude to Shigeyuki Morita 
and Youichi Shibukawa for helpful discussions, and to the organizing 
committee of the 37th Taniguchi Symposium, especially to Mika Seppala, 
for part of the original version of this paper was achieved during the 
symposium. 
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§1. Results 

Let g 2: 2, r, s 2: 0 be integers, and L.~,r a 2-dimensional oriented 
connected c= manifold (i.e., oriented surface) of genus g with r ordered 
boundary components and s ordered punctures. The group of path
components 7ro(DiW(L.~,r)) is denoted by r~,r (or M~,r) and called 
the mapping class group of genus g with r ordered boundary compo
nents and s ordered punctures. Here DiW ('E.~, r) denotes the topological 
group (endowed with c= topology) consisting of all orientation preserv
ing diffeomorphisms of L.~,r which fix all the boundary points and the 
punctures pointwise. When s = 0, we drop the indices: L.9 ,r = L.~,r' 
fg,r = r~,r and similarly 'E.g = L.~,Ol fg = r~,o· Throughout this pa
per we often denote by H 1 (L.~,r) the first integral singular cohomology 
group of the space L.~,r· The group r~,q acts on it in an obvious way 
provided that q 2: r and t 2: s. When s = 0 and r = 1, we often write 
simply 
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The isomorphism H1 ('2:. 9 ;Z) = H 1 ('2:.9 ;Z) is the Poincare duality map, 
which is invariant under the action of the mapping class group r 9 . 

In view of the Harer stability theorem [3] there exists an integer N(g) 
depending only on the genus g such that the forgetful map r~,r+l -+ 

r~,r given by forgetting the (r + 1)-st boundary component induces an 
isomorphism 

H*(r~,r+li Z) = H*(r~,ri Z) 

for any*::; N(g) and s,r ~ 0. Harer [3] proved N(g) ~ g/3, and later 
Ivanov [8] improved the inequality; N(g) ~ g/2. Now consider a natural 
central extension 

(1.2) 0 -+ z -+ rs -+ rs+l -+ 1 
, g,r+l g,r 

given by collapsing the (r + 1)-st boundary component to the (s + 1)-st 
puncture. Let e E H 2 (r~;;:\ Z) be the Euler class of the central exten
sion. Then, substituting Harer's isomorphism into the Gysin sequence 
of the extension (1.2), we obtain a natural decomposition 

(1.3) H*(rs+l. Z) = H*(rs · Z) EB eH*-2 (rs+l. Z) = H*(rs · Z)[e] 
g,r ' g,r' g,r ' g,r' 

for*::; N(g) (cf. [17] [4] [15]). 
Our first theorem in the present paper is 

Theorem l.A. If s ~ 0, r ~ 1 and n ~ 0, we have 

H*(r~,ri H1 ('2:.~,ri Z) 0 n) = H*(r 9,1; H 0 n) ®H•(r9 , 1 ;Z) H*(r~,ri Z) 

for degrees ::; N(g) - n. Here the RHS is a tensor product over the 
graded algebra H*(r9 ,1;Z). 

If we denote by e(a) the Euler class corresponding to the a-th punc
ture, 1::; a::; s, then H*(r~,r;Z) = H*(r9 ,1;Z)[e(l)•· .. ,e(s)l for*::; 
N(g) from (1.3). Hence Theorem l.A means 

H*(r~,ri H1 ('2:.~,ri Z) 0 n) = H*(r9 ,1; H®n) ®z Z[e(ll• ... , ecs)] 

for degrees ::; N(g)- n. 
As a consequence one deduces the Ivanov stability theorem [7] for 

the r;,r-module H 1 ('2:.~,ri Z) 0 n and any finite dimensional rational Sp
modules. 

To describe the cohomology group H* (r 9 ,1; fi®n) we need to intro
duce some notions related to the mapping class groups. Observe the 
surface '2:.~, 1 is obtained by glueing the surfaces '2:. 9 ,1 and '2:.6, 2 along 
boundary components. The infinite cyclic group Z acts on the surface 
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~6. 2 by rotating the puncture and fixing all the boundary pointwise. 
So the group fg,1 X z is embedded into the group r~,1 (cf. e.g.,[6]). 
The Lyndon-Hochschild-Serre spectral sequence of the pair of groups 
(r~, 1 ,f9 , 1 x Z) introduced in [11]§1 induces the fiber integral 

(1.4) 71'!: Hq(r~, 1 ,f9 ,1 x Z;M)--+ Hq-2 (f9 ,1;M) 

for any f 9 ,1-module M. Here we mean by Hq(r~, 1 ,f9 , 1 x Z; M) the q-th 
cohomology group of the kernel of the restriction map 

C*(r~, 1 ,f9 ,1 x Z;M) := Ker(C*(r~, 1 ;M)--+ C*(f9 ,1 x Z;M)) 

of the normalized standard co chain complexes C* (-; ·) [5]. 
The cohomology class w defined below plays an important role 

throughout this paper. Regard the surface ~~. 1 as a subsurface obtained 
by deleting one interior point from the surface ~g. 1. The cohomology 
exact sequence of the pair of spaces (~9 , 1 , ~~. 1 ) gives a r~, 1 -exact se
quence 

(1.5) 0--+ H1 (~9 ,I) = H--+ H1 (~~. 1 )--+ H2 (~9 ,1, ~~. 1 ) = Z--+ 0. 

We denote by w the image of 1 E Z = H0 (r~, 1 ; Z) under the connecting 
homomorphism 6* induced by (1.5): 

(1.6) 

The restriction of w to the subgroup r g,1 X z ( c r~,1) is null cohomolo
gous. In fact, choose a simple curve l inside the subsurface ~6. 2 (c ~~. 1 ) 
connecting the puncture to a point on the boundary of ~~. 1 . The 1-

cocycle W[ E Z 1 (r~,1; H) given by 

(1.7) wz(r)=rl-lEH, 1Ef~, 1 , 

represents the cohomology class w E H 1 (r~, 1 ; H). Clearly we have 
wz(r) = 0 for any 1 E f 9 ,1 x Z. 

Thus, in view of the cohomology exact sequence 

o--+ H1 (r~, 1 ,f9 ,1 x Z;H)--+ H1 (r~, 1 ;H)--+ H 1(f9 ,1 x Z;H), 

there exists a unique element of H 1 (r~, 1 , r 9 ,1 x Z; H) mapping tow. We 
also denote it by 

wE H1 (f~, 1 ,f9 ,1 x Z;H). 

For a finite subset S of the natural numbers N we form the power 
of w 
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which we multiply in numerical order. Let i ;::: 0 be an integer satisfying 
the condition 

(1.8) i +us;::: 2 

Then we define the twisted1 Morita-Mumford class mi,S by 

(1.9) 

where n1 is the fiber integral given in (1.4) and e E H 2 (r 9 ,1 ; Z) is the 
Euler class of the central extension (1.2) for r = 1, s = 0. 

Definition 1.1. A set P={(Sl,ii),(S2,i2), ... ,(Sv,iv)} is a 
weighted partition 2 of the index set {1, 2, ... , n} if 

(1) The set { Sl> S2 , ••• , Sv} is a partition of the set {1, 2, ... , n} 

v 

{1,2, ... ,n} = Il Sa, Sa=/:- 0 (1:::; \fa:::; v). 
a=l 

(2) ill i2, ... , iv ;::: 0 are non-negative integers. 
(3) Each (Sa, ia) satisfies the condition (1.8): ia +USa ;=:: 2. 

We denote by P n the set consisting of all weighted partitions of the 
index set {1,2, ... ,n}. For each weighted partition P={(S1,i1), 
(S2, i2), ... , (Sv, iv)} E Pn we define the twisted Morita-Mumford class 

(1.10) 

Theorem l.B. For degrees:::; N(g)- n 

H*(r · H'$)n) = ffi H*(r Z) ffi H*-degm-p(r9 ,1·, Z). g,l, W g,l; mp = W 

By the extended mapping class group we mean the semi-direct prod-
uct 

r~,r := H ><1 r~,r = H1(:E9 ,1;Z) ><1 r~,r· 

This group was studied in [1]. The generalized Morita-Mumford classes 
mi,j E H*(r9 ,1;Z) are constructed as follows [11]. In a similar way to 

r g,l X z c r~,l the group r g,l X z is embedded into the group r~,l· Using 

1In [11] and [12] the author called it the generalized Morita-Mumford class. 
2We use the term 'partition of a set' following Stanley [22] p.33. 
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the simple curve lin (1.7), we define a 2-cocyclew1 E Z2 (r~, 1 ,f9 , 1 xZ; Z) 
by 

(1.11) w1(un1, u212) := 11h2Z -z) · u1, u1, u2 E H, 11,12 E r~, 1 , 

where · denotes the intersection product on H = H 1 (L.9 ; Z). Its image 

win H2 (r~, 1 ; Z) is equal to the Euler class of the central extension 

0 -+ Z -+ H1 (L.~, 1 ; Z) ~ r~, 1 -+ H1 (L.9 ,1; Z) ~ r~, 1 = r~, 1 -+ 1. 

The forgetful map 7r : r~, 1 -+ r 9 ,1 induces the fiber integral 

(1.12) 

Thus we can define the generalized Morita-Mumford class 

m. := n:,(eiwj) E H 2i+2j-2(r · z) l,J . g,1, 

fori ;::: 0, j ;::: 0 with i + j ;::: 2. Clearly m:;-;,0 is equal to (the image of) 
the i-th Morita-Mumford class e; (= (-1)i+ 1 K:;) E H 2i(f9 ;Z) [17] [21]: 

Theorem l.C. 

H*(r 9 ,1; Q) = H*(r 9 ,1 ~ HI(L.9 ,1; Z); Ql) = H*(r 9 ,1; Ql) 0 Ql[m;,1] 

for degrees ~ N (g), where integers i and j run over the domain 

{(i,j) E Z X Z; i;::: 0, j;::: 1 and i + j;::: 2}. 

§2. Stable Cohomology with Coefficients in H 1 (L.9,1 ; Z)®n 

This section is devoted to the proof of Theorems l.A and l.B. 
Suppose r, s ;::: 1. We have a natural commutative diagram of for

getful maps 

r~,r 
1r rs-1 ----+ g,r 

(2.1) wl wl 
r~,1 

1r 

fg,1· ----+ 

Here the upper and the lower 1r's are given by forgetting the s-th and 
the first punctures, respectively, and the left and the right w's by for
getting the punctures from the first to the ( s - 1 )-st and the boundary 
components except the first. 
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We regard the surface E~,r as a subsurface obtained by deleting 
one interior point from the surface E~;:;.I and numbering the resulting 
puncture the s-th. The inclusion homomorphism H 1 (E~:;1 ) --+ H 1 (E~,r) 
is equivariant under the forgetful map 7f : r~,r --+ r~:;1 ' and so induces 
a r~,r-exact sequence 

(2.2) 

We denote by w = W(s-l) the image of 1 E Z = H0(r~,r; Z) under the 
connecting homomorphism 8* induced by (2.2): 

From the commutative diagram (2.1), the homomorphism induced by 
the forgetful map w 

maps w defined in (1.6) to w = w(s-1) defined in (2.3). 
The kernel of the forgetful map n : r~;;_1 --+ r~,r forgetting the 

(s + 1)-st puncture is naturally isomorphic to n 1 (E~,r) (s ~ 0), and so 
we have a Gysin exact sequence 

• · ·--+ Hq(rs · M) ~ Hq(rs+l. M) 
g,r' g,r ' 

(2.4) 

for any r~,r-module M. Here we denote the Gysin map (the fiber in
tegral) by nu to distinguish it from the fiber integral 1f! introduced in 
(1.4). 

Theorem 2.1. Let I and J C N be mutually disjoint finite index 
sets. Supposes~ 0 and r ~ 1. Moreover if I =f=. 0, assumes~ 1. Then 
the forgetful map w induces an isomorphism 

(2.5) H*(rs . Hl(Es-l)®I 0 Hl(Es )®J) 
g,r' g,r g,r 

(ffi w8 0 H*(r9 ,1; H®(Jui-S))) 0H•(r9 •1 ;Z) H*(r~,r; Z) 
sci 

for degrees::::; N(g)- U(I U J), where w8 E HU8(r~, 1 ; H 08 ) is the power 
of the class w defined in (1.6). The RHS is a tensor product over the 
graded algebra H* (r 9 ,1 ; Z). 

In particular, if I= 0 and J = {1, 2, ... , n }, we obtain Theorem l.A 
stated in § 1. 
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Proof. We write simply H(s) := H1 (:E~,r) = H1 (:E~,r; Z). The 
r~,r-exact sequence (2.2) is rewritten to 

(2.6) 

We prove the theorem by double induction on U(I u J) and UI. When 
I U J = 0, the theorem is trivial. Suppose U(I U J) 2: 1. 

(A). The case I = 0: Let j 0 be the minimum of J and set J_ := 
J - {jo}. From the inductive assumption applied to J _ the forgetful 
homomorphism 

n* : H* (r~,r; H(s) Q9J_) __, H* (r~~\ H(s) Q9J_) 

can be identified with n* : H*(f~,r; Z) __, H*(r~;t\ Z) tensored by 
H*(f9,1; H 0 J- ))®H•(r9 , 1 ;z), and so has a left inverse over H*(f~,r)· 
Hence the Gysin sequence (2.4) splits into the H*(f~,r)-split exact se
quences 

0 __, H*(r~,r; H(s)®J-) __, 

(2.7) H *(rs+1·H ®J-)11"~H*- 1 (rs ·H ,o.H ®J-) 0 
g,r ' (s) --; g,r' (s) '61 (s) --; 

for*::::; N(g)- P-· When s = 0 and r = 1, we have 

0 __, H*(f · H 0 J-) ~ g,1, 

(2.8) H*(f1 · H 0 J-) ~ H*-1(f · H IV. H 0 J-) __, 0 g,1l g,1, '61 

for*::::; N(g)-UJ_. Compare the exact sequence (2.7) with the sequence 
(2.8) tensored by ®H·(r9,1)H*(f~,r). Then the forgetful map w induces 

·an isomorphism 

w* : H*(f~,r; H(s) ®H(s) 0 J_) ~ H*(f9,1; H ®H0 J_ )®H•(r9 ,1) H*(f~,r) 

for *::::; N(g)- p. Here we use the fact the map w induces an isomor
phism 

w*: H*(r~, 1 ) ®H·(r9 ,1) H*(r~,r) ~ H*(r~~1 ) 

deduced from (1.3) and (2.1). Finally label the first H and H(s) the 
index j 0 . Thus the induction proceeds. 

(B). The case I =f. 0: Then we suppose s 2: 1. Choose an index 
io E I. Set L := I- {io} and Jo .- J U {io}. The sequence (2.6) 
induces a r~,r-exact sequence 

0 --; H(s-1) 01 \29 H(s) 0J --; 

(2.9) H(s-1) ®L \29 H(s) ®Jo __, H(s-l)®L \29 Z0 {io} \29 H(s) ®J __, 0. 
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By the inductive assumption applied to the index sets L and Jo 

H*(rs H ®L /0, H ®Jo) g,ri (s-1) '61 (s) . 

( ffi ws ® H*(r . H®(JouL-Sl)) ® • H*(rs ). W g,1, H (r9 ,1) g,r 

ScL 

Each element of the RHS lifts to a (uniquely determined) element of 
H*(r~,ri H®(LUJol). Hence the map 

H*(r~,ri H 0 (LUJo)) ---+ H*(r~,ri Hcs-1) ®L ® H(s) ®Jo) 

has a right inverse for * :::; N(g)- ~(I U J). Therefore the cohomology 
exact sequence induced by the sequence (2.9) splits into a split exact 
sequence 

*-1( s ®I Q9J)w{io}0 
0 ---+ H r g,ri Hcs-1) - ® H(s) ---+ 

H*(r~,ri Hcs-1) ®I® H(s) ®J)---+ H*(r~,ri Hcs-1) ®L ® H(s) ®Jo) ---+ 0 

for*:::; N(g)- U(I U J). Thus we have 

H*(r~,ri Hcs-1) ®I® H(s) ®J) 

H*(rs · H ®L /0, H ®Jo) g,r, (s-1) '61 (s) 

EB(w{io} ® H*(r~,ri Hcs-1) ®L ® H(s) ®J)) 

( E9 w8 ® H*(r9 ,1; H 0 (JouL-Sl)) ®H•(r 9 ,1) H*(r~,r) 
SCL 

EB( ffi wsu{io} ® H*(r . H®(JuL-Sl)) ® H*(rs ) W g,1, H•(r 9 ,1) g,r 

SCL 

(ffi w8 ® H*(r · H 0 (Jui-S))) ® H*(rs ) W g,1, H•(r9,1) g,r 

SCI 

for *:::; N(g)- ~(I U J). This completes the induction. Q.E.D. 

We have introduced two sorts of fiber integrals or Gysin maps in
duced by the forgetful map 1r : r~, 1 ---+ r 9 ,1 in (1.4) and (2.4). These 
two Gysin maps are related to each other in the following way. 

Lemma 2.2. For any r 9 ,1 -module M we have 

HP(r1 · M) g,1, HP(r1 · M) g,1' 

wU 1 ~~ 1 
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Here we write simply H = H1 (~9 , 1 ; Z) as in (1.1). 

Proof. Let G be a group, K a subgroup of G and M a G-module. 
We define the cohomology group H*(G, K; M) by that of the kernel of 
the restriction map 

C*(G, K; M) := Ker(C*(G; M) ---t C*(K; M)) 

of the normalized standard cochain complexes C*(·; ·) (11]§1. Consider 
a normal subgroup N of G satisfying the condition: K N = G. In (5] 
p.118, l.27ff and p.119, l.6ff two mutually equivalent filtrations (Ai) and 
(Aj) are introduced on the normalized standard cochain complex, and 
induce the (ordinary) Lyndon-Hochschild-Serre spectral sequence. The 
filtration (Aj) (or equivalently (Aj)) restricted to C*(G,K;M) induces 
the Lyndon-Hochschild-Serre spectral sequence of pairs of groups (11]: 

In our situation we consider the case G = r~, 1 , K = r 9 ,1 x Z 
and N = 11'1(~g,1) c r~,1· Since HP-i(fg,1;Hi(11'1(~g,1);M)) = 0 for 
i ?: 2, any u E HP(f~, 1 ; M) is represented by a cocycle z whose value 
z( 1'1, 1'2, ... , 'Yv), 1'1, 1'2, ... , 'Yv E r~, 1, depends only on 1'1 and the cosets 
')'211'1 (~9 ,1), ... , ')'p11'1 (~9,1). We denote by rp_ 1z the cocycle given by 
restricting ')'1 into 11'1 (~9,1) and regarding ')'2, ... , 'Yv as elements off 9 ,1 = 
f~, 1 /11'1(~9,1). By definition we have 1l'~U = (rp-1z] E HP-1(f9 ,1; H l8l 

M). 
On the other hand the cocycle w U z defined by 

for ')'o, '/'1' ... '')'p E r~,1' represents the cup product w u u E HP+l (r~,1' 
r 9 ,1 x Z; H l8l M). The value (w U z)('Yo, 'Yb ... , 'Yv) depends only on ')'o, 
1'1 and the cosets ')'211'1 (~9 ,1), ... , ')'p11'1 (~~,1). 

Hence, from a computation involved with (11] Lemma 2.3, 

g 

11'! (wuz)('Y2, ... , 'Yv) = - L ai !Zlz(bi, 1'2 ... , 'Yv) +bi !Zlz(ai -I, '/'2 ... , 'Yv), 
i=1 

where { a1, a2, ... , a9 , b1, b2, ... , b9 } is a usual symplectic generating sys
tem of the fundamental group 11'1 (~9 , 1 ). This implies 11'!(wUz) = rv_ 1z 

and so 11'!(w U u) = [11'!(w U z)] = [rv-1z] = 1l'~U, as was to be shown. 
Q.E.D. 
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Proof of Theorem l.B. We prove the theorem by induction on n. 
When n = 0, the theorem is trivial, so we assume n ;=:: 1. Set J = 
{1,2, ... ,n}, j 0 = 1 and J_ = {2, ... ,n}. Recall the exact sequence 
(2.8) in the proof of Theorem 2.1. From Theorem 2.1 and (1.3) the 
Gysin map 7rU restricted to 

(H*(r9 ,l; H 0 J_) 0 eZ[e]) EB E9 w8 0 H*(r9 ,1; H 0 <J_-S)) 0 Z[e] 
0#SCJ_ 

is an isomorphism onto H*- 1 (r 9 ,1 ; H®J) for * :::; N(g) - n + 1. We 
denoteS+:= Su {1} for S c L. Lemma 2.2 implies 

1ru(eiw8 ) = 1r!(eiw8+) = mi,S+ E H*(r9 ,I; H 08+). 

Therefore from the inductive assumption we obtain 

(2.10) 
00 

E9 ffimi,s+H*(r9,l;H0 (J_-s)) 
0#SCJ_ i=O 

00 

EB E9 mi,{I}H*(r9 ,I; H 0 J_) 

E9 m?H*(r9 ,l; Z) 
PEPn 

i=l 

for *:::; N(g)- n, which completes the induction. Q.E.D. 

§3. Stable Cohomology Algebra of Extended Mapping Class 
Groups 

Let i and j be integers with i ;=:: 0, j ;=:: 1 and i + j ;=:: 2. As in [11], 
we define 

where 7r! is the fiber integral (1.4), and w1 E H1 (r~; 1 , r 9 ,1 x Z; (\1 H) is 
the j-th power of w. 

The n-th symmetric group 6n acts on the set Pn of the weighted 
partitions of {1, 2, ... , n} by 

aP := {(a(SI), ii), (a(S2), i2), ... , (a(Sv), iv)}, 

where a E 6n and P = {(Sl,il),(S2,i2), ... ,(Sv,iv)} E Pn. The 6n
orbits in Pn are parametrized by the set Qn defined as follows. 
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Definition 3.1. A sequence Q = ((j1,i1),(Jz,i2), ... ,(jv,iv)) is a 
weighted partition of the number n if 

(1) The sequence (j1 ,j2 , ... ,jv) is a partition of the number n 

J1 + )2 + ... + Jv = n, J1 ?: J2 ?: ... ?: Jv ?: 1. 

(2) i1, i2, ... , iv ?: 0 are non-negative integers. 
(3) ia ?: ia+1 if Ja = Ja+l· 
( 4) Each (ja, ia) satisfies the condition: ia + Ja ?: 2. 

We denote by Qn the set consisting of all weighted partitions of the 
number n. Define 

,\P := ((US1,il),(US2,i2), ... ,(USv,iv)) E Qn 

for P = {(S1,i1), (S2,i2), ... , (Sv,iv)} E Pn provided that US1?: US2?: 
· · · ?: USv and USa = USa+l :::;.. ia ?: ia+l, (1 :::; a < v). Then the map 
,\ : Pn --+ Qn, P >---+ ,\P induces a bijection ,\ : Pn/6n = Qn. Define 

"(2" + · 1) 1\n m~ ·= m· · m· · · · ·m· · E HL- •a Ja- (f 1· H) Q · Zl,Jl zz,Jz Zv,Jv g, ' 

for Q = ((j1,i1),(j2,i2), ... ,(jv,iv)) E Qn· The canonical projection 
,\: H®n--+ 1\ n H maps mp to ±m>.P for any P E Pn 

(3.1) 

Theorem 3.2. Let k be a field with chk > n or= 0. Then we have 

H*(r 9 ,1; f\ n H 1 (E9 ,1; k)) 

for degrees :::; N(g)- n. 

.EB H*(f9 ,1;k)mQ 

QEQn 

ffi H*-degmfi(f . k) w g,1, 

As a corollary we obtain Theorem l.C. In fact, let h : H ~ f 9 ,1 = 
r g, 1 ---; H denote the twisted 1-cocycle U'"'( >---+ u, u E H' 'Y E r g, 1· Then 
we have 

w1 = -J.L(huwl) E Z2 (r!, 1,r9 ,1 x Z), 

where f..l : H®2 --+ Z is the intersection pairing. If we define MJ : H®2J --+ 

z by Mj(U1 Q9 ... Q9 U2j) := TI1=1 J.L(Uk Q9 Uj+k), then 

eiwlj = ±M·(hjeiwlJ) E H 2i+2J(fl f1 x Z) J g,1' g, . 
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Since h1 comes from the group r 9 ,1, we obtain 

(3.2) - ±M.(h1 ) H2i+2j-2(r---,-) mi,j = 1 mi,j E 9 ,1 . 

The Lyndon-Hochschild-Serre spectral sequence of the group extension 
H---> f 9 ,1 = H ><1 f 9 ,1---> f 9 ,1 is given by 

From (3.2) the class mi,j E E~i+j-2 ,1 lifts to the class ±mi,j E 

H 2i+21-2(r 9,1 ). This proves Theorem l.C. 

Proof of Theorem 3.2. We define the order in each P = {(S1,i1), 
(S2, i2), ... , (Sv, iv)} E Pn by 

(1) usl ~ us2 ~ ... ~ USv. 

(2) If USa= USa+!, ia ~ ia+l· 

(3) If USa = USa+l and ia = ia+l, then the minimum of Sa is 
smaller than that of Sa+l· 

Furthermore we denote 

where the indices are set in numerical order inside each subset Sa. In 
other words, if '1/Ja : {1, 2, ... , USa} ---> Sa is the unique order-preserving 
bijection, then We have Tp(i) = '1/Ja(i- i:~~i USb) for i:~~i USb < i :'S: 
2::~=1 usb. 

Let the n-th symmetric group 6n act on H®n by 

u( U1 181 U2 181 · · · 181 Un) = (sign 0" )ua(l) 181 Ua(2) 181 · · · 181 Ua(n) 

for u E 6n, ui E H (1 :::; i:::; n). Then we have 

(3.3) 

for T E 6n and P E Pn with T(P) = P. In fact, from the (anti-) 
commutativity of cup products we have T*w 8 = w 8 if S c {1, 2, ... , n }, 
T E 6n and T(S) = S. Hence T*mi,S = mi,S· Furthermore, since 
deg mi,S = US mod 2, we have 
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for S, T c {1, 2, ... , n} with ~S = ~T and S n T = 0. Here if lfJ: S---> T 

. h . d . b". . h ( S T ) S IS t e umque or er-preservmg IJectwn, t en T S maps s E to 

lfJ(s), and t E T to lfJ-I(t). 
Now, for any CJ E 6n, the permutation CJ-ITu(P)TP -I fixes P. From 

(3.3) 
-I ( . -I) 

(J*mP = Tu(P)*Tp *mp = SignTu(P)TP mu(P)" 

Therefore for any Po E Pn the sum 2:PE.A-l.A(Pa) (sign Tj>)mp is invariant 

under the 6n-action. This means m>-Po # 0 in H*(f9 ,I; N'H ® k). 
The group H*(f9 ,I; H®n) is decomposed into a direct sum of 6n

submodules parametrized by Qn = Pn/6n, which implies mQ's, Q E 

Qn, are linearly independent over H* (r g,I; k). 
From the assumption on the characteristic of the field k the map ,\* : 

H*(f9 ,I; (H ® k)®n) ---> H*(f9 ,I; (\"H ® k) is surjective. By Theorem 
l.B the H*(f9 ,I; k)-module H*(fg,I; (H ® k)®n) is generated by mp, 

P E Pn for* :S; N(g)- n. Hence, from (3.1), the H*(f9 ,I;k)-module 
H*(f9 ,I; (\ n H ® k) is generated by mQ, Q E Qn. Q.E.D. 

§4. Concluding Remarks 

After the original version was completed in 1995, the twisted Morita
Mumford classes turned out to lift to the mapping class group M 9 ,* := 

r~.o [13] [14]. The cohomology class w E HI (r~. I; H) in the previous 
sections has already appeared in Morita's work [19]. To explain it fol
lowing [14], we introduce the fiber product M 9 ,* := M 9 ,* xr9 M 9 ,* of 
the group M 9 ,* with respect to the forgetful map 71" : M 9 ,* = r~,o ---> r 9 . 

Since the kernel of 71" is naturally isomorphic to the fundamental group 
71" 1 2:: 9 , we have an isomorphism 

In [19] Morita introduced a twisted 1-cocycle 

taking the homology class of 7/JlfJ-I E 7rii:9 . As in §1 we choose a simple 
curve eon I:~,I connecting the puncture PI to a point p 0 on the boundary. 
Take a diffeomorphism 7/Je : (2::9 , p 1 ) ---> (2::9 , Po) sliding the point PI along 
the curve e. Define a homomorphism w' : r~,I ---> M 9 ,* by forgetting 
the puncture PI and collapsing the boundary to a new puncture p 0 , 

and w" : r~,I ---> M 9 ,* by forgetting the boundary. A homomorphism 
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ae: f~, 1 ----+ M 9 ,* is defined by r.p f-+ (w'(rp),'l/Jew"(rp)'l/Je- 1). Then we 
obtain 

( 4.1) 

by a straight forward computation ([14] Lemma 4.1). 
Now let e be the Euler class of the forgetful central extension .7:: ----+ 

f 9 ,1 ----+ M 9 ,*, and e the pull-back of e by the second projection 7f 

M 9 ,*----+ M 9 ,*, (r.p,'¢) f-+ '¢.Then the twisted Morita-Mumford class 

(4.2) m· := m(ei(-k )05 ) E H 2iHS-2 (M · H® 5 ) t,S . 0 g,*, 

is defined for any i and S C N with i + ~S 2': 2. Here 7r! is the Gysin map 
of the first projection 1r: M 9 ,*----+ M 9 ,*, (r.p,'¢) f-+ rp. As was proved in 
[13] [14] by (4.1), this is exactly a lift ofmi,S E H*(f9,1;H05 ) defined 

in §1. We define mp E H*(M9,*; H 0 n) for P E Pn in a similar way to 
§1. From Theorem l.B we have 

Theorem 4.1. For degrees :s; N(g)- n 

H*(M 9,*; H 0 n) = EB H*(M9 ,*; Z)mp. 

PEPn 

Consider the semi-direct products~:= H><JM 9 ,* and H><JM 9 ,*. 
Making use of ko instead of w, we can define a 2-cocycle k0 E Z 2 (H ><J 

M 9 ,*; .7::) and the generalized Morita-Mumford class mi,j for i, j 2': 0 
with i+ j 2': 2 in a similar way to (1.11) and (1.12). Then from Theorem 
1. C we obtain 

Theorem 4.2. For degrees :s; N(g) 

H*(~; Q) = H*(M 9 ,*; Q) \9 Q[mi,j; i 2': 0, j 2': 1 and i + j 2': 2]. 

In 2002 Madsen and Weiss [16] gave a loop-space description of 
H* (f 00 ; .7::) and proved the algebra H* (f 00 ; Q) is generated by the 
Morita-Mumford classes. This result improves ours in the present paper 
in a surprising way. Theorem l.C and Theorem l.B are improved to the 
following. 

Theorem 4.3. For degrees :s; N(g) 

H*(f9 ,1 ;Q)=Q[mi,j; i,j2':0, andi+j2':2]. 

Theorem 4.4. For degrees :s; N(g)- n 

H*(f 9 ,1 ; H 0 n) = EB Q[e1; j 2': 1]mf3. 

PEPn 
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Theorems 4.1 and 4.2 also have appropriate improvements. 
Finally we give a brief remark on a relation to the Johnson homo

morphism [9]. Let I 9 ,1 be the Torelli group, i.e., the kernel of the action 
of the mapping class group r 9 ,1 on the integral homology group H. 
Johnson [10] proved the first Johnson homomorphism T1 : I 9 ,1 ----+ (\ 3 H 
induces the isomorphism H 1 (I9 ,1 ; Q) ~ (\ 3 H Q9 Q. The twisted Morita
Mumford classes are related to the extended Johnson homomorphism 
k : r 9 ,1 ----+ ~ (\ 3 H introduced by Morita [20]. It extends the homomor
phism T1 and is equal to imo,3· Let Sp(H) denote the symplectic group 
of H. The extended homomorphism k induces a natural homomorphism 

* 
(4.3) kM: ((/\ H 1(I9 ,1; Q)) Q9 M)Sp(H) ----+ H*(f9 ,1; M) 

for any finite dimensional Q[Sp(H)]-module M. It was proved in [13] 
[14] the image of the map is exactly the submodule generated by the 
Morita-Mumford classes ei 's and the twisted ones. The Madsen-Weiss 
theorem implies the map kM is stably surjective. In fact, Theorem 4.4 
is applicable, because M is regarded as a Sp(H)-submodule of some 
Hem 0 Q. 
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