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Introduction 

One of the primary themes of Morita's work over the last 20 years 
has been the study of the structure of mapping class groups via their 
actions on nilpotent quotients of surface groups. A secondary theme has 
been the relation of this work to the study of invariants of 3-manifolds 
and homology spheres. The goal of this paper is to introduce to topol
ogists a new tool that may be useful in these pursuits. 

The tool is the relative weight filtration of the relative completion 
of a mapping class group of a surface that is associated to a system of 
simple closed curves on the surface. Establishing the existence of relative 
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weight filtrations on completions of mapping class groups is non-trivial 
and was established with Makoto Matsumoto using Galois actions in 
[20], and with Gregory Pearlstein and Tomohide Terasoma using Hodge 
theory in [22]. The existence of relative weight filtrations on completions 
of mapping class groups follows from general results about fundamental 
groups of smooth varieties and because all mapping class groups occur as 
fundamental groups of moduli spaces of curves. The general theories of 
the Hodge and Galois theory of fundamental groups of algebraic varieties 
imply that relative weight filtrations have strong exactness properties. 

The paper begins with an exposition for topologists of the theory of 
relative completion of discrete groups. It is illustrated by the examples 
of mapping class groups and automorphism groups of free groups. The 
paper continues with an exposition of the weight filtration associated 
to a nilpotent endomorphism of a vector space, and its generalization, 
the relative weight filtration associated to a nilpotent endomorphism 
of a filtered vector space, which is due to Deligne [11] and was further 
developed by Steenbrink and Zucker [48], and Kashiwara [31]. Since the 
generic nilpotent endomorphism of a filtered vector space does not have 
a relative weight filtration, the existence of a relative weight filtration of 
a nilpotent endomorphism of a filtered vector space imposes non-trivial 
restrictions on the endomorphism. (Cf. [48].) 

Relative weight filtrations appear in the study of mapping class 
groups in the following context. Suppose that S is a compact oriented 
surface of genus g which, for simplicity, we suppose to be ;:::: 3. Denote 
the relative completion of its mapping class group fs by Qs. This is a 
proalgebraic group (defined over Qi) that is an extension 

1 _,Us_, 9s _, Sp(H1(S)) _, 1 

of the symplectic group that is associated to the first homology of S and 
its intersection form by a prounipotent group Us, which is essentially 
(but not quite) the unipotent completion of the Torelli group Ts of S. 
(Cf. [18].) There is a natural Zariski dense homomorphism fs _, 9s; 
the image of the Torelli group Ts is Zariski dense in Us. The Lie algebra 
of 9s is an extension 

of the symplectic Lie algebra associated to H 1(S) by us, which is a 
pronilpotent Lie algebra. It has a natural weight filtration which is 
defined by 
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where Lmus denotes the mth term of the lower central series of u8 . A 
system 1 = {co, ... , em} of disjoint simple closed curves on S determines 
commuting Dehn twists To, ... , Tm. Their product T-y lies in a prounipo
tent subgroup of 9s and has a unique logarithm N 1 :=log T1 E g8 whose 
adjoint action 

ad(N1 ): gs-+ gs 

preserves the weight filtration W •. It therefore induces an inverse system 
of nilpotent endomorphisms 

each of which preserves the induced weight filtration W •. General results 
in Hodge and Galois theory imply the existence of the relative weight 
filtration M-: of gs associated to the curve system r. This filtration is 
compatible with the bracket in the sense that the bracket induces a map 

This filtration and the weight filtration W. have very strong exactness 
and naturality properties. For example, there is a natural (though not 
canonical) isomorphism of pronilpotent Lie algebras 

rnlk 

There are similar results when S has decorations, such as points and 
boundary components. The Lie algebra p(S, x) of the unipotent com
pletion of 1r1 ( S, x) also has a relative weight filtration associated to each 
curve system 1 of (S, x). The natural action gs -+ Der p(S, x) preserves 
the relative weight filtration !vi-: as well as the weight filtration W •. 
This map has strong exactness properties with respect to both of these 
filtrations. In particular, it is compatible with their identifications with 
their associated bigraded objects. 

Since the bracket preserves the relative weight filtration, M~ gs is a 
subalgebra of gs whenever k S 0. These correspond to subgroups M~ 9s 
(k S 0) of Q8 . The subalgebras MJ gs, parametrized by curve systems 1 
on S are natural analogues of parabolic subalgebras of semi-simple Lie 
algebras as they are parametrized by the boundary components of the 
corresponding moduli space of curves and they equal their normalizers 
in gs, as we establish in Proposition 8.5. 

A particularly interesting case occurs when the curve system 1 is 
maximal. Maximal curve systems correspond to pants decompositions. 
Since each oriented "pair of pants" naturally bounds a ball, a pants 
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decomposition of S determines a handlebody U with boundary S in 
which each c1 E 1 bounds an imbedded disk in U. The handlebody 
U is unique in the sense that if V is another such handlebody, then 
there is a diffeomorphism U ----. V which restricts to the identity on 
S. In Section 9 we use Morse Theory to show that the relative weight 
filtration corresponding to a pants decomposition depends only on the 
handle body U that it determines. We denote it by M;'. In Section 10 we 
use the exactness properties of the relative weight filtration and results 
of Griffiths, Luft and Pitsch [14, 35, 43] to show that the relative weight 
filtrations M;' and M~ of gs associated to two handlebodies U and 
V are equal if and only if there is a diffeomorphism U ----. V whose 
restriction to their boundaries is the identity S----. S. 

Each handlebody U with boundary S determines a subgroup Au 
of r s which consists of those elements of r s that extend to an isotopy 
class of diffeomorphisms of U. In the pointed case, we combine results 
of Griffiths, Luft and Pitsch [14, 35, 43] with the exactness properties of 
M;' to prove that 

Au,x = fs,x n M[/ 9s,x, Au,x n M'!29s,x = ker{Au,x----. Aut 1r1(U, x)}. 

These results provide an upper bound on the size of Au,x in r s,x. They 
also imply that there is an injection 

Aut1r1(U,x)----. Gr~u 9s,x-

This induces a homomorphism A9 ----. Gr~1u 9s,x from the relative com
pletion A9 of Aut 1r1 (U, x). In Section 10 we show that this homomorph
ism is not surjective, which implies the unexpected result that Au is not 
Zariski dense in Mf/ 9s. This implies that the relative weight filtration 
of 98 is not obtained simply by taking the Zariski closure in 9s of a 
filtration of r s. 

We give an application to the problem of determining which ele
ments of r 8 extend to a handle body. Very similar results have been 
obtained independently by Jamie Jorgensen [30] by different methods. 
If s bounds the handle body u' then the elements of r s that extend to 
some handlebody is 

C = U ¢Au¢-1 . 

¢Ers 

In Section 11, we use properties of M;' to show that the Zariski closure 
of the intersection of C with the mth term of the lower central series of 
Us is a proper (i.e., ~) closed subvariety of the mth term of the lower 
central series of Us for all m 2:: 1 when g 2:: 7 and slightly restricted 
ranges when 3 :::; g < 7. 
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A more substantial potential application should be to finite type 
invariants of 3-manifolds and homology 3-spheres. The set of all genus 
g Heegaard decompositions of 3-manifolds and homology 3-spheres are 
the double coset spaces 

Au\rs/Au and TAv\Ts/TAu, 

where S3 = U U V is a Heegaard decomposition of the 3-sphere, au = 
8V = S, and TAu:= TsnAu. The sets of all3-manifolds and homology 
3-manifolds are obtained from these by a suitable stabilization where the 
genus of S goes to infinity. 1 It is thus natural to consider the double 
coset spaces 

£u\9s/£u and W_l£v\Us/W-1£u, 

where £u denotes the Zariski closure of Au in 9s, as well as their sta
bilizations as g(S) ---+ oo. There are natural mappings 

and 
TAv\Ts/TAu---+ W_l£v\Us/W-1£u. 

and their stabilizations as g(S) ---+ oo. Functions on £u Ws/ £u should 
yield finite type invariants of Heegaard decompositions and functions on 
the stabilization should yield finite type invariants of 3-manifolds - and 
similarly for homology 3-spheres. However, there is one major difficulty 
in carrying out this program. One needs to take the quotients 

£u\9s/£u 

using geometric invariant theory (GIT). But since the group £u is not 
reductive, the GIT problems are more difficult and less likely to be well 
behaved. (Cf. [12].) Amassa Fauntleroy and I are attempting to use the 
strictness properties of M;' to construct and study the GIT quotients 
above. 

The reader should be aware that, in an attempt to make this ma
terial more accessible to non-experts, the Hodge and Galois theoretic 
aspects of the theory have been suppressed. This choice comes at the 
expense of giving the basic properties of relative weight filtrations a false 

1The stabilization is by taking the connected sum with the standard genus 
one Heegaard decomposition of the 3-sphere, cf. (6]. To construct the stabi
lization maps, one needs to use the mapping class group r s,v associated to a 
surface with one boundary component and the corresponding handlebody sub
group As,D· 
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aura of mystery. Readers wanting more background should consult the 
papers of Deligne [11], Steenbrink-Zucker [48] and Kashiwara [31]. 

Convention 1.1. Throughout the paper the default coefficient group 
in all homology and cohomology groups is Q, the rational numbers. 
So, for example, H,(S) denotes the rational homology of Sand H'(f) 
denotes the rational cohomology of the group r. All other coefficients 
will be made explicit. 

Acknowledgments: First and foremost, it is a great pleasure to thank 
Shigeyuki Morita for his decades of inspiring work. His work comple
ments my own and has had significant impact upon it. I would also like 
to thank my collaborators Gregory Pearlstein, Tomohide Terasoma and 
especially Makoto Matsumoto for joint work which makes the current 
work possible. I would also like to thank Alan Hatcher for communicat
ing a proof of the folk result, Proposition 10.1 and Amassa Fauntleroy 
for discussions of geometric quotients by non-reductive groups. Finally, 
I thank the anonymous referee for his very careful and reading of the 
manuscript and for his suggested improvements to Proposition 3.15. 

§2. Filtrations 

Since filtrations play a central role in this paper, it is wise to first lay 
out the general conventions used in this paper. Deligne's conventions on 
filtrations [9] are used systematically as they work well and as they are 
used in Hodge theory and the study of Galois actions. 

Suppose that V is a vector space over a field F of characteristic zero: 
An increasing filtration G. of V is a sequence of subspaces 

· · · s;;; Fm-1 V s;;; Fm V s;;; Fm+l V s;;; · · · 

where m E Z. When V is finite dimensional, we require that the in
tersection of the Fm V be trivial and that their union be all of V. The 
infinite dimensional case is more subtle and is discussed below. 

The mth graded quotient F m vI F m-1 v of F, will be denoted by 
Gr~ V. The associated graded vector space will be denoted by Gr; V. 

Decreasing filtrations of V will be denoted with an upper index: 

... ;:2 pm-1v ;:2 pmv ;:2 pm+lv ;:2 ... 

The mth graded quotient FmV/Fm+1v will be denoted by Gr~ V. We 
require that the intersection of the pm V be trivial and that their union 
be all of V. 
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An increasing filtration F. of V can be regarded as a decreasing 
filtration by "raising indices": Fmv := F_mV. For this reason, we will 
discuss the remaining properties only for increasing filtrations. 

If (V, F.) and (W, F.) are filtered vector spaces, then V 0 W and 
Hom(V, W) inherit natural filtrations: 

Fm(V0W) := L FjV0FkW 
i+k=m 

and 

FmHom(V, W) := {¢: V ~ W: ¢(HV) ~ Fm+kW for all k E Z}. 

In particular, the dual V* of V has a natural filtration 

FmV* = {¢ E V*: ¢(F-m-1V) = 0}. 

With these definitions, there are natural isomorphisms 

Gr~(V0W) ~ EfJ GrfV0Gr[V 
j+k=m 

Gr~ Hom(V, W) ~ EfJ Hom(Grf V, Gr~+k W) 
k 

Gr~ (V*) ~ (Gr~m V)*. 

A filtration F. of V naturally induces one on every subspace W and 
every quotient p : V ~ V /U by 

There are thus two ways of inducing a filtration on a subquotient q : 
W ~ p(W). One way is to restrict the quotient filtration on V/U to 
the subspace p(W); the other is to give p(W) the image of the filtration 
induced by F. on W. These are easily seen to agree. (Cf. [9]). 

In particular, if a vector space V has two filtrations F. and G., then 
the filtration F. induces a natural filtration (also denoted by F.) on each 
G.-graded quotient Gr~ V of V. There are then natural isomorphisms 

GrF Grc V ~ Grc GrF V m n n m · 

2.1. The infinite dimensional case 

Unless otherwise noted, all infinite dimensional vector spaces con
sidered will be either ind- or pro- objects of the category Vec~n of finite 
dimensional F-vector spaces. The dual of a pro-object of Vec~n is an 
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ind-object of Vee~n, and vice-versa. If V is an ind-object of Veefji', then 
it is naturally isomorphic to its double dual. Similarly, an ind-object 
of Vee~n is naturally isomorphic to its double dual. A filtration of a 
pro-object (resp. ind-object) of Vee~n is simply a filtration of it by pro
objects (resp. ind-objects) of Veer;J'. 

§3. Relative Completion of Discrete Groups 

Here we summarize the theory of relative unipotent completion of 
discrete groups. Some of the statements are stronger than results in the 
literature. Full proofs will appear in [21]. Versions of many of these 
results for the related notion of weighted completion can be found in 
[19]. 

3.1. Unipotent and Prounipotent Groups 

Suppose that F is a field of characteristic zero. Recall that a unipo
tent algebraic group over F is a subgroup U, for some n, of the group 
of the n x n unipotent upper triangular matrices 

{X E GLn(F): X- I is strictly upper triangular} 

that is defined by polynomial equations. The Baker-Campbell-Hausdorff 
formula implies that 

U = {logu E gln(F): u E U} 

is a Lie algebra with bracket [x, y] = xy- yx. The exponential mapping 
exp : u --+ U is a polynomial bijection. The algebraic subgroups of U 
correspond bijectively to the Lie subalgebras of u via the exponential 
mapping. 

A pronilpotent Lie algebra is, by definition, the inverse limit of finite 
dimensional nilpotent Lie algebras: 

u = limua 
+--

<> 

It has a natural topology; a base of neighbourhoods of 0 consists of the 
kernels of the projections of u to each of the Ua. 

A prounipotent group U is the inverse limit 

U = limUa 
+--

01.· 

of an inverse system of unipotent groups. The Lie algebra u of U is 
the inverse limit of the Lie algebras of the Ua. It is a pronilpotent Lie 
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algebra The exponential mapping exp : U _., u is an isomorphism of 
proalgebraic varieties. 

Pronilpotent Lie algebras have nice presentations. Suppose that u 
is a pronilpotent Lie algebra. Define H 1 ( u) to be the abelianization of 
u. It is a topological vector space ~ if u is the inverse limit of the 
finite dimensional nilpotent Lie algebras Ua, then H 1 ( u) is the inverse 
limit of the H 1(ua)· A continuous sections: H 1(u) _., u of the natural 
projection u _., H 1(u) induces a continuous Lie algebra homomorphism 

s*: JL(H1(u))~ _., u 

from the free completed Lie algebra generated by H 1 (u) to u. This 
induces an isomorphism on abelianizations. Since u is pronilpotent, s* 

is surjective. It follows that u has a presentation of the form 

where t = ker s* is a closed ideal contained in the commutator subalgebra 
of JL( H 1 ( u) )~. Such presentations are said to be minimal. 

Define the continuous cohomology H•(u) of a pronilpotent Lie al
gebra u that is the inverse limit of the finite dimensional nilpotent Lie 
algebras Ua by 

H•(u) := limH•(ua)· 
---+ 

a 

This will be regarded an ind-object of the category of finite dimensional 
F-vector spaces. It is easy to check that for all k 2': 0, 

This generalizes to pronilpotent coefficients (i.e., projective systems of 
nilpotent coefficients): If V =lim Va where Va is a nilpotent Ua-module, 

f--

then 

Hk(u, V) := limHk(ua, Va) and Hk(u, V*) := limHk(ua, v;). 
f-- ---+ 

a a 

There are natural isomorphisms 

Iff is a free pronilpotent Lie algebra, then Hk(f; V) = 0 for all k > 1 
and all nilpotent f-modules V. 

A complete proof of the following analogue of Hopf's Theorem will 
appear in [21]. 



318 R. Hain 

Proposition 3.1. If r is a closed ideal in the free pronilpotent Lie 
algebra f that is contained in [f, f], then there is a natural isomorphism 

of ind-vector spaces. Moreover, if B : r/[r, f] ----> r is a continuous section 
of the quotient mapping, then r is generated as a closed ideal by im e. 

Proof. The fact that every subalgebra of a free Lie algebra is free 
[45], implies that every subalgebra of a free pronilpotent Lie algebra is 
also a free pronilpotent Lie algebra. Consequently, r is a free pronilpo
tent Lie algebra and has vanishing cohomology in degrees > 1. Using 
standard cochains, one can show that there is a spectral sequence 

E;·t = Hs(f/r, Ht(r)) =;. Hs+t(f). 

Since r c;;; [f,f], H 1(f) = H 1(f/r). Since H 1(r) = Homcts(Hl(r),F) and 
since 

Ho(f/r,Hl(r)) = Ho(f,Hl(r)) ~r/[r,f], 

the vanishing of the higher cohomology off and r imply (when plugged 
into the spectral sequence) that 

H 2(f/r) = H 0 (f, H 1 (r)) = Homcts(Ho(f, H1 (r)), F) = Homcts(f/[r, f], F). 

Q.E.D. 

An immediate corollary is an analogue of Stallings' result [47]. A 
detailed proof will appear in [21]. 

Corollary 3.2. A homomorphism ¢ : u1 ----> u2 of pronilpotent Lie 
algebras is an isomorphism if and only if it induces an isomorphism 
H 1(u2)----> H 1(ul) and a monomorphism H 2(u2)----> H 2(u1) ofind-vector 
spaces. 

Sketch of Proof. The only if assertion is trivially true. Suppose 
that Hk(u2) ----> Hk(ul) is an isomorphism when k = 1 and a monomor
phism when k = 2. Since u1 and u2 are pronilpotent, the isomorphism 
on H 1 implies that ¢ is a quotient map in the category of pronilpotent 
Lie algebras. Choose a minimal presentation u1 = f/r1. Let r2 be the 
kernel off ----> u1 ----> u2. Then u2 = f/r2 and ¢ is an isomorphism if and 
only if the inclusion ¢ : r1 ----> r2 is a quotient mapping. But this holds if 
and only if 

is a monomorphism. Q.E.D. 
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Corollary 3.3. A pronilpotent Lie algebra u is trivial if and only if 
H 1 (u) = 0 and free if and only if H 2 (u) = 0. D 

3.2. Relative Unipotent Completion 

The data for relative completion are: 

(i) a discrete group r; 
(ii) a field F of characteristic zero; 

(iii) a reductive algebraic group Rover F, such as GLn(F), SLn(F) 
or Spn(F); 

(iv) a Zariski dense homomorphism p: r---> R. 2 

The completion of r with respect to p consists of a proalgebraic 
group (i.e., an inverse limit of algebraic groups) Q over F that is an 
extension 

(1) 1--->U--->Q--->R--->1 

where u is prounipotent and a homomorphism p : r ---> g whose com
position with Q ---> R is p. It is characterized by the following universal 
mapping property: 

If G is an affine (pro )algebraic group over F that is an extension 

of R by a (pro)unipotent group U, and if p: r---> G is a homomorphism 
whose composition with G ---> R is p, then there is a unique homomorph
ism ¢ : Q ---> G of (pro )algebraic F -groups such that 

G----R 

commutes. 
The universal mapping property implies that the homomorphism 

p : r ---> Q is Zariski dense - that is, if Q' is a proalgebraic subgroup 
of Q defined over F that contains the image of p, then Q' = Q. The 
point being that the Zariski closure of imp in Q has the same universal 
mapping property as Q. 

Suppose that K is an extension field of F. Every (pro )algebraic 
group G over F gives rise to a (pro )algebraic group G !g) F K over K 

2In this paper I will not distinguish between an algebraic group G over F 
and its group ofF- rational points G(F). 
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by extension of scalars. The universal mapping property of the relative 
completion g K of r over K with respect to p : r ~ R 0 F K implies that 
r ~ g 0F K induces a homomorphism gK ~ g 0F K. 

Theorem 3.4 (Rain-Matsumoto (21]). The homomorphism QK ~ 
g 0 F K is an isomorphism. 

In general we will work over the smallest field F possible, which is 
the smallest field over which both R and p are defined. In all principal 
examples in this paper, the field will be Q. 

3.3. Unipotent Completion 

When R is the trivial group, relative completion reduces to classical 
unipotent completion, which is also known as Malcev completion and 
which can be computed by the methods of rational homotopy theory due 
to Quillen, Chen and Sullivan. We shall denote the unipotent completion 
of r over F by r;p.. The default field will be Q. We shall abbreviate 
r/8 to run. The unipotent completion of r over F is obtained from run 
by extension of scalars: 

r un _ run ,o. F 
/F - '<>'IQ • 

If r is a free group Fn = (xi, ... 'Xn) on n-generators, the Lie algebra 
of F;:j F is the completed free Lie algebra 

which is the closure of the free Lie algebra ll...(X1, ... , Xn) in the noncom
mutative power series ring F((X1, ... , Xn)). The prounipotent group 
pun is 

n/F 
F::fF = {expu E F((X1, ... , Xn)): u E fn}· 

The naturalhomomorphism,O: Fn ~ F;:jF is defined by p(x1) = expX1. 
This can be proved using universal mapping properties. A theorem of 
Magnus (36] implies that the homomorphism Fn ~ F;{n is injective. 

3.4. Completions of Aut Fn and Out Fn 

Denote the automorphism group of the free group F,, by Aut Fn and 
its quotient by inner automorphisms of Fn by Out Fn. There are natural 
surjections 

AutFn ~ GLn(Z) and OutFn ~ GLn(Z). 

Denote their kernels by IAn and IOn, respectively. Let Aut+ Fn be the 
index 2 subgroup of Aut Fn whose image in GLn (Z) is SLn (Z). Let 
Out+ Fn be its quotient by the group of inner automorphisms. 
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Take F = Q, R = SLn(Q) and let 

p: Aut+ Fn -t SLn(Q) 

be the natural representation. This is Zariski dense. The completion of 
Aut+ Fn with respect top is an extension 

1 -t IAn-tAn -t SLn(Q)-* 1. 

Similarly, we have the completion of Out+ Fn· It is an extension 

The corresponding sequences of Lie algebras 

are exact. There are natural homomorphisms 

an-t Derfn and On -t OutDerfn, 

where OutDer fn denotes the Lie algebra of outer derivations of fn· 
The natural homomorphisms IAn -t IAn and IOn -t Wn induce 

homomorphisms IA~n -t IAn and IO~n -t Wn. We shall see later (cf. 
Cor. 3.14) that these homomorphisms are isomorphisms when n 2:: 4, 
surjective when n = 3 and are far from surjective when n = 2. 

Proposition 3.5. The natural homomorphism p: Aut+ Fn -tAn 
is injective. 

Proof. Since the unipotent completion Fn -t F;;n is injective, it 
follows that the natural representation e : Aut Fn -t Aut F;;n is injec
tive. The Zariski closure of the image of Aut+ Fn under e is easily seen 
to be an extension of SLn(Q) by a prounipotent group. The univer
sal mapping property of relative completion induces a homomorphism 
'lj; : An -t Aut F;;n such that the diagram 

AutF;;n 

The injectivity of p follows from the injectivity of e. Q.E.D. 

The injectivity of Out+ Fn -t Out F;;n would follow if one could 
prove that F;;n n Aut Fn = Fn in Aut F;;n, where Fn and F;;n are re
garded as subgroups of Aut F;;n via the inner action. This is not clear. 
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3.5. Properties of Relative Completion 

Here we list some of the basic properties of relative completion that 
we shall need. The proofs of these are sprinkled throughout the literature 
and are sometimes proved for the related notion of weighted completion 
[19]. The notes [21] will give an efficient and uniform presentation of the 
theory relative and related completions of discrete and profinite groups. 

Proposition 3.6 (Naturality). Suppose that p1 : r1 ---+ R1, j = 

1, 2 are Zariski dense homomorphisms from discrete groups to reductive 
grmtps over F. Let r 1 ---+ g1 be the completion of r 1 with respect to p1 
over F. If the diagram 

commutes where ¢ R is a homomorphism of algebraic groups, then there 
is a unique homomorphism ¢g : 91 ---+ 92 such that the diagram 

Completions are, in general, right exact. Here we state a useful 
special case. 

Proposition 3. 7 (Right exactness). Suppose that p : r ---+ R is 
a Zariski dense homomorphism from a discrete group to a reductive F
group. Denote the completion r with respect to p by g and the completion 
of imp with respect to the inclusion imp '----+ R by R. Then the sequence 

( ) un 
ker p IF ---+ g ---+ n ---+ 1 

is exact. 

A generalization of Levi's Theorem implies that, when r is finitely 
generated, the extension (1) is split, and that any two splitting are 
conjugate by an element of U. It follows that u is a Lie algebra in the 
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category of pro-representations3 of R and that there is an isomorphism 

g ~ R ~ expu 

that is unique up to conjugation by an element of exp u. 
Relative completions are manageable and somewhat computable as 

they are quite tightly controlled by cohomology. 
Suppose that F is an algebraic closure of F. An irreducible rep

resentation V of R is absolutely irreducible if V &;p F is an irreducible 
representation of R &!F F. 

Theorem 3.8. For all finite dimensional R-modules V, there is a 
homomorphism 

that is natural with respect to the maps described in Proposition 3.6. It 
is an isomorphism when k = 1 and injective when k = 2. If every irre
ducible finite dimensional representation of R is absolutely irreducible, 
then there is a natural R-module isomorphism 

and a natural R-module injection 

where {Vo:} is a set of representatives of the isomorphism classes of 
irreducible finite dimensional R-modules and where each H 1 (f; Va:) is 
regarded as a trivial R-module. 

This theorem alone and in combination with the Base Change The
orem 3.4 can often be used to compute u. Combined with Corollary 3.3, 
it gives the following criterion for the vanishing of u. 

Corollary 3.9. The prounipotent radical of g vanishes if and only 
if H 1 (f; V) = 0 for all irreducible finite dimensional R-modules. D 

Combining this with right exactness (Prop. 3. 7) yields: 

3That is, an inverse limit of finite dimensional R-modules. Since R is re
ductive, the pro-representations of R are direct products of finite dimensional 
R-modules. 
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Corollary 3.10. If H 1 (imp; V) = 0 for all finite dimensional R
modules V, then 

( ker p) ~; --> Q --> R --> 1 

is exact. That is, U is a quotient of ( ker p) ~;. 

Additional hypotheses give an upper bound on the kernel. The 
following result is a refined version of [16, Prop. 4.13]. 

Theorem 3.11. Suppose that p : r --> R is a Zariski dense homo
morphism. Denote ker p by T. If the imp module H1(T; F) is finite di
mensional and the restriction (via p) of a finite dimensional R-module, 
and if H 1 (imp; V) = 0 for all irreducible finite dimensional representa
tions of R, then there is a natural exact sequence 

1 --> K --> TJF --> Q --> R --> 1 

where K is contained in the center of TJp· Moreover, if H 2 (imp; V) 
is finite dimensional for all irreducible R-modules V, then K is an R
submodule of the abelian prounipotent group 

where Va ranges over representatives of the isomorphism classes of finite 
dimensional R-modules. 

3.6. Examples 

Equipped with the results of the previous section, we can approach 
the problem of computing the relative completions in natural examples. 

Example 3.12 (Lattices). If r is an irreducible lattice in a semi
simple real Lie group G of rank 2: 2, then Raghunathan's vanishing 
theorem [44] states that 

for all irreducible representations V of G. Corollary 3.9 implies that the 
completion of r with respect to the inclusion r --> G over ~ is G. 

In particular, when n 2: 3, the completion of any finite index sub
group f of SLn(Z) with respect to the inclusion r--> SLn(Q) is SLn(Q). 
When g 2: 2, the completion of any finite index subgroup of Sp9 (Z) with 
respect to the inclusion r--> Sp9 (Q) is Sp9 (Q). 

The rank condition is necessary. The groups SL2(~) and Sp1 (~)are 
isomorphic and have real rank 1. If we take r to be one of the isomorphic 
groups SL2(Z), Aut+ F2, fs,x, where Sis a genus 1 surface, then the 
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prounipotent radical of the completion of r with respect to the inclusion 
r ---+ SL2 (Q) is a free prounipotent group whose abelianization is infinite 
dimensional. (Cf. [18, Rem. 3.9].) It is closely connected with classical 
modular forms and elliptic motives. (Cf. [22].) 

Results of Borel [2] imply that if imp is arithmetic of sufficiently 
high rank, then H 2 (im p; V) vanishes for all non-trivial R-modules and 
H 2 (imp; Q) is isomorphic to the corresponding cohomology group of the 
compact dual of the symmetric space of R ® R In particular, Borel's 
formula implies the vanishing of H 2 (SL2 (Z); V) for all SLn-modules V 
when n 2: 4. It also implies the vanishing of H 2 (Sp9 (Z), V) for all 
non-trivial irreducible Sp9 -modules when g 2: 3. 

Example 3.13 (Universal Central Extensions). Suppose that r is 
a non-zero multiple of the universal central extension of Sp9 (Z), where 
g 2: 2: 

0 ---+ Z---+ r---+ Sp9 (Z) ---+ 1. 

Let R = Sp9 (Q) and p : r ---+ Sp9 (Q) be the obvious homomorph
ism. Denote the relative completion of r with respect to p by Q. By 
Example 3.12, the completion of Sp9 (Z) with respect to the inclusion 
Sp9 (Z) ---+ Sp9 (Q) is Sp9 (Q). Raghunathan's Theorem implies that 
H 1 (Sp9 (Z); V) vanishes for all finite dimensional representations V of 
Sp9 . An elementary spectral sequence argument implies that H 1 (r, V) 
also vanishes for all finite dimensional Sp9-modules V. Cor. 3.9 then 
implies that g---+ Sp9 (Q) is an isomorphism. 

This provides an interesting example of Theorem 3.11. Borel's van
ishing theorem implies that, when g ?: 3, H 2 (Sp9 (Z), V) vanishes for 
all non-trivial irreducible Sp9 (Q)-modules and that H 2 (Sp9 (Z), Q) is !
dimensional. Since the unipotent completion of Z is Q, Theorem 3.11 
implies that we have an exact sequence 

H 2 (Sp9 (Q); Q)*---+ Q---+ g---+ Sp9 (((Jl)---+ 1. 

Since g---+ Sp9 (Q) is an isomorphism, it follows that H 2 (Sp9 (Q); Q)* ---+ 
((Jl is an isomorphism and that ((Jl ---+ g is trivial. 0 

As remarked in Example 3.12, IA~n---+ L4.2 and IO~n---+ IfJ2 are far 
from surjective. However, when n?: 3, the situation improves. 

Corollary 3.14. Ifn 2: 3, then the natural homomorphisms IA~n---+ 
IAn and IO~n ---+ IDn are surjective. If n 2: 4, they are isomorphisms. 

Proof. By results of Magnus [36] and Kawazumi [33], there are 
natural GLn (Z)-equivariant isomorphisms 

H1(IAn) ~ Hom(V,A2 V) and H1(IOn) ~ Hom(V,A2 V)/V, 
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where V = H 1 (Fn), from which it follows that the SLn(Z)-modules 
H 1 (IAn) and H 1 (IOn) are the restrictions of SL(V)-modules. Surjectiv
ity when n 2: 3 follows from Corollary 3.10 and Raghunathan's vanishing 
result. When n 2: 4, the result follows from Theorem 3.11 and Borel's 
vanishing result, stated above. Q.E.D. 

Another situation in which left exactness holds, that we shall need 
later, is the following. Suppose that 

1---r---t---c---1 

Pr l Pt l II 
1____,..R____,.. fi---G---1 

is a commutative diagram of groups with exact rows where: 

(i) r and r are discrete groups; 
(ii) R and R are reductive F-groups; 

(iii) G is a finite group; 
(iv) pr is Zariski dense (which implies that Pt is also Zariski dense). 

Denote the completion of r with respect to Pr by Q and the comple
tion of f with respect to Pt by Q. Naturality implies that there is a 

homomorphism Q ---+ Q such that the diagram 

commutes. Right exactness implies that the sequence Q ---+ Q ---+ G ---+ 1 
is exact. Denote the prounipotent radicals of Q and Q by U and U, 
respectively. 

Proposition 3.15. The natural homomorphism Q---+ Q is injective. 
Consequently, the induced mapping U ---+ U of prounipotent radicals is 
an isomorphism. 

Proof. Stallings' criterion (Cor. 3.2) will be used to show that u ---+ 

u is an isomorphism. To prove this we need the notion of an induced 
module. (This is sometimes called a co-induced module, cf. [3, p. 67].) 

For an R-module V, define the representation induced from V toR 
by 
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where FunR denotes the set of left R-invariant functions ¢ : R ---t V. 
This is a left R-module with respect to the action (r¢)(x) = ¢(xr), 
where r, x E R. Since R has finite index in R, the induced representation 
is a rational representation of R whenever V is a rational representation 
of R. 

For all R-modules U and R-modules V, there is a natural isomor
phism 

HomR(Res~ U, V) ~ HomR(U, Ind~ V), 

where Res~ U denotes the restriction of U to R. 

Likewise, for any r module V, we can define Ind~ V = Funr(r, V). 
If Vis an R-module, viewed as a r-module via pr, then the restriction 
mapping 

is an isomorphism of r -modules. 
To apply Stallings' criterion, we need to show that Hk(u) ---t Hk(u) 

is an isomorphism (resp., injection) when k = 1 (resp., k = 2). Since R 
is reductive, it suffices to show that the natural mapping 

is an isomorphism (resp., injection) for all finite dimensional R-modules 
V when k = 1 (resp., k = 2). Consider the commutative diagram 

The right hand vertical map is an isomorphism by Shapiro's Lemma [3, 
p. 73]. We apply Theorem 3.8. When k = 1, all horizontal mappings are 
isomorphisms, which implies that <h is an isomorphism. When k = 2, 
all horizontal mappings are injective, which implies that ¢2 is injective. 

Q.E.D. 

Example 3.16. Suppose that n 2: 1. Denote the subgroup of 
GLn(R) that consists of matrices with determinant ±1 by SL(R). Then 
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Proposition 3.15 implies that the commutative diagram 

has exact rows. It follows that An is the identity component of An. 
There is a similar story for Out Fn. It is for this reason that in Section 3.4 
we considered only the completions of Aut+ Fn and Out+ Fn. 

§4. Mapping Class Groups and their Completions 

Suppose that g, n, r are non-negative integers. A decorated surface 
of type (g, n, r) is a pair (S, D) where Sis a compact oriented surface of 
genus g and D = P U V is a set of decorations, where P = { x1, ... , Xn} 

is a set of n points of S and V = { v1, ... , Vr} is a set of r non-zero 
tangent vectors of S. If Vj E TyiS, the points x1, ... , Xn, Yl, ... , Yr are 
required to be distinct. The decorated surface (S, D) is stable if the 
punctured surface S'r; : = S - { X1, ... , Xn, Yl, ... , Yr} has negative Euler 
characteristic: 

x(S'r;) = x(S) -IPI-IVI = 2- 2g- (r + n) < o. 

The mapping class group r S,D of a stable decorated surface (S, D) is 
the group of connected components of the group of orientation preserving 
diffeomorphisms of S that fix P and V set wise. There is a natural 
surjection 

r S,D --; Aut D := Aut p X Aut v. 
For a subgroup G of Aut D define f~,D to be the inverse image of Gunder 
this homomorphism. The classical mapping group of (S, D) corresponds 
to the trivial group 1: 

fs,D := r1,D = 7ro Diff+(s, D). 

There is a natural extension 

1 __, r s,D __, r~,D __, a __, 1. 
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The classification of surfaces implies that r~,D depends only on 
(g, n, r) and the subgroup G of Sn x Sr. 

For a commutative ring R, set H R = H 1 ( S; R). The group of au
tomorphisms of H that preserve the intersection pairing is an algebraic 
group over Q that we shall denote by Sp(H). There is a natural surjec
tive homomorphism 

p: r~,D __. G x Sp(Hz). 

Its kernel is, by definition, the Torelli group Ts,D· 

4.1. Boundary Components versus Tangent Vectors 

Tangent vectors are essentially interchangeable with marked bound
ary components. Because boundary components are less natural in al
gebraic geometry, we prefer to work with tangent vectors. A marked 
boundary component of a surface is a boundary component of the surface 
together with a point on the boundary component. Marked boundary 
components can be exchanged with tangent vectors as follows: 

If v E TyS is a non-zero tangent vector of a surfaceS, then one can 
replace (S, v) by a surfaceS with a marked boundary component. Here 
S is the real oriented blowup of S at y. This is the surface obtained 
from S by replacing y by the circle of rays in TyS. The marked point on 
the boundary of S corresponds to the ray JR+v in TyS determined by v. 
It will be denoted by [v]. 

This process may be reversed by collapsing the boundary component 
to a point y and choosing any non-zero tangent vector at y that lies in 
the ray in TyS determined by the marked point. These identifications 
are well defined and mutually inverse up to isotopy. 

The corresponding mapping class groups are isomorphic. For exam
ple, if S is compact, then the natural homomorphisms 

are isomorphisms. 

4.2. Completions of Mapping Class Groups 

The ground field F will be Q unless otherwise stated. Suppose that 
(S, D) is a stable decorated surface and that G is a subgroup of Aut D, 
where D = P U V. The group G x Sp(H) is a reductive algebraic group 
over Q and the representation p : r~ D ---+ G x Sp(H) is Zariski dense. 
Denote the completion of r~,D relati~e top by g~D· It is an extension 

1 __. u<j,D __. g~D __. c x Sp(H) __. 1. 
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The next result follows directly from Proposition 3.15. 

Proposition 4.1. For all subgroups G of Aut D, the sequence 

1 ---+ YS,D ---+ g~D ---+ G ---+ 1 

is exact. 

The proposition implies that 9s,D is the connected component of 
the identity of g~D· 

Corollary 4.2. For all subgroups G of Aut D, the Lie algebra of 
g~D is gs,D· 

Theorem 4.3. If (S, D) is a stable decorated surface where g(S) ~ 
3, then 

0 ---+ Q ---+ T8,'b ---+ YS,D ---+ Sp(H) ---+ 1 

is exact. When g = 2, the homomorphism T8,'b---+ Us,D is surjective. 

This result deserves some comment. Corollary 3.10 implies that 
T8,'b---+ Us,D is surjective when g ~ 2. Theorem 3.11 implies that 

Q---+ T8,'b ---+ YS,D ---+ Sp(H) ---+ 1 

is exact when g ~ 3. The injectivity of Q ---+ T8,'b is equivalent to the 
non-vanishing of a Chern class. A clumsy proof of the non-vanishing is 
given in [16]. However, the non-vanishing follows directly from an earlier 
result of Morita [39], as explained in [23]. 

4.3. Tautological Homomorphisms 

Suppose that (S, D) is a decorated surface. A decoration i5 = PUV 
of S is a refinement of D if 

D ~ D, P ~ P U V and V ~ V, 

where D = P U V and D = P U V. Thus, in passing from D to D, 
tangent vectors can become points, and points and tangent vectors can 
be forgotten. 

Suppose that (S, D) is stable. This implies that (S, D) is also stable. 
For each G ~ Aut D n Aut i5, there is a natural homomorphism r~ i5 ---+ 

r~,v· , 
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4.4. Nat ural Actions 

The natural actions of mapping class groups on the fundamental 
groups of associated surfaces can be completed. 

Suppose that (S, D) is a stable decorated surface where D = P U V. 
Recall that S'rY is the surface obtained from S by removing the support 
of D. 

Definition 4.4. An admissible base point x of S'rY is either (1) a 
point x of S'rY or (2) a tangent vector x E V. Let D = D U {x}. This 
equals D when x E V. 

If xis an admissible base point of S'rY,_then 1r1 (S'rY,x) is defined. 
Suppose that G is a subgroup of Aut D that fixes x. It can also be 

viewed as a subgroup of Aut D. Denote the Lie algebra of 1r1 (S'rY, x)un 
by p(S'rY, x). There are natural actions 

iJx: r;,iJ---> Autp(S'rY,x) and e: r~,D---> Outp(S'rY). 

The Zariski closure of the image of each of these is an extension of 
G x Sp(H) by a prounipotent group. The universal mapping property 
of relative completion implies that ex and e induce homomorphisms 

¢x : gr;,D --->Aut p(S'rY, x) and¢: Q<j_D --->Out p(S'rY). 

These, in turn, induce Lie algebra homomorphisms 

d¢x: fJs,iJ---> Derp(S'rY,x) and d¢: fJs,D---> OutDerp(S'rY). 

Proposition 4.5. If D is non-empty, then p : r~,D ---t Qlf D is 
injective. 

Proof. It suffices to prove that Ts,D injects into Us,D· It also suf
fices to prove the case where D consists only of points. Write D = 
D' U {x}. SetS'= S- D' and 1r = 1r1 (S',x). Then the natural homo
morphism r S,D ---t Aut 7r is injective. Since 7r is resdidually torsion free 
nilpotent, 7r ---t 7run is injective. It follows that r S,D ---t Aut p is injec
tive, where p is the Lie algebra of 1run. The result follows as this homo
morphism factors rs,D ---t YS,D ---t Autp, which forces rs,D ---t YS,D to 
be injective. Q.E.D. 

Denote the Lie algebra of TJJ,'b by ts,D· Since the natural rep
resentations TJJ,':r ---> Aut p(S, x) and TJfn ---> Out p(S) factor through 
9s,x---> Autp(S,x) and 9s---> Outp(S), Theorem 4.3 implies: 
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Proposition 4.6. When g ~ 3, the natural representations TJ3,~----> 
Aut p(S, x) and TJ3n ----> Out p(S) have non-trivial kernel. Equivalently, 
both ts,x----> Derp(S,x) and ts----> OutDerp(S) have non-trivial kernel. 
D 

When g ~ 3, the only known elements of the kernel of ts,x ----> 

Derp(S,x) are those in ker{ts,x ----> us,x}· So it is natural (and in
teresting) to ask whether us,x ----> Derp(S,x) is injective when g > 3. 
(This homomorphism fails to be injective when g = 1, 2.) 

§5. Weight Filtrations on Homology and Cohomology 

The rational cohomology4 of a complex algebraic variety X carries 
a natural filtration 

0 = WoHm(X) ~ W1Hm(X) ~ · · · 

· · · ~ W2m-1Hm(X) ~ W2mHm(X) = Hm(X) 

called the weight filtration, which was constructed by Deligne using 
Hodge theory in [9, 10]. Weight filtrations can be constructed Galois 
actions as well [11]. Algebraic maps between complex algebraic varieties 
induce weight filtration preserving maps of their cohomology [10]. In 
particular, (H•(X), W.) is a filtered algebra. The weight filtration is a 
powerful tool for studying the topology of complex algebraic varieties 
due to its strong exactness properties. In this section we give a brief in
troduction to weight filtrations directed at topologists. Deligne's paper 
[7] provides a more complete exposition of the yoga of weight filtrations. 
Full details can be found in [9]. 

An integer k is a (non-trivial) weight of Hm(X) if its kth weight 
graded quotient 

is non-zero. We say that Hm(X) is pure of weight kif k is the only non
trivial weight of Hm(X). The weights on Hm(X) are ~ m when X is 
smooth and:::; m when X is compact. So if X is smooth and projective, 
then Hm(X) is pure of weight m. 

Since we are working with fundamental groups, it is more natural 
to work with weight filtrations on homology than on cohomology. The 

4Recall Convention 1.1: all (co) homology is with rational coefficients unless 
otherwise noted. 
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weight filtration on Hm(X) is defined by 

When X is smooth, the weights on Hm(X) lie in {-2m, ... , -m }. 

Example 5.1. The weight filtration on the homology of a smooth 
complex algebraic curve is determined by the topology of the underlying 
surface. Suppose that S is a compact oriented surface and that D is a 
finite subset. Set S' = S- D. Then one has the exact sequence (the 
dual of the Gysin sequence): 

The weight filtration on H1 (S') is given by 

k?_3 

k=2 

k:::;l. 

Note that Gr~1 H1 (S') = H1 (S). The weight filtration on H0 (S') and 
H2 (S') are uninteresting. 

Higher dimensional examples with non-trivial weight filtrations can 
be constructed by taking products of curves. The weight filtration on 
the product of two varieties is the tensor product of the two weight 
filtrations: 

WkHn(X x Y) = EB L W;Hc(X) 0 WjHm(Y). 
C+m=ni+j=k 

This induces an isomorphism 

Grr Hn(X x Y) ~ EB L GrJV Hc(X) 0 Grf Hm(Y). 
f+m=ni+j=k 

5.1. Strictness and Exactness Properties 

Weight filtrations that arise from Hodge and/ or Galois theory have 
strong exactness properties which make them a powerful tool in studying 
the topology of algebraic varieties and algebraic maps. 

Definition 5.2. A morphism f(VI, W.)---+ (V2, W.) of filtered vec
tor spaces is strict with respect to W. if for all m E Z 
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Suppose that V is a vector space and that A is a subspace of V and 
q : V -+ B is a quotient. A filtration w. of V induces one on A and B 
by restriction and projection, respectively: 

WmA :=An WmV and WmB = q(WmV). 

In particular, we can induce filtrations on the kernel and cokernel of a 
filtration preserving map f : (V1, W.) -+ (V2, W.). 

It is easy to check that f is strict with respect to W. if and only if 

0-+ Gr~ ker j -+ Gr~ V1 -+ Gr~ V2 -+ Gr~ coker j -+ 0 

is exact for all m E Z. 
Another important property of weight filtrations on cohomology 

groups of algebraic varieties, established in [9], is that there are nat
ural (but not canonical) isomorphisms 

that are preserved by algebraic maps and which are compatible with ten
sor products, cup products, the Ki.inneth isomorphism, etc. Establishing 
the existence of natural splittings of the weight filtration is the essential 
ingredient in establishing the strictness and exactness properties stated 
above. 

Many other invariants of algebraic varieties and maps (such as the 
Leray spectral sequence, Gysin sequences, long exact sequences of a pair) 
carry natural weight filtrations, and all of their internal maps ( differen
tials, Gysin maps, connecting homomorphisms) and all maps induced 
between them by algebraic maps preserve the weight filtration (some
times with a shift) and are strict. The following example of Deligne [10] 
illustrates the basic yoga of weights and how it can be used to prove a 
topological result. 

Example 5.3 (Deligne). Suppose that G is a connected linear alge
braic group over C and that X is a smooth complex projective variety. 
Suppose that 1-1 : G x X -+ X is an algebraic action. Deligne [10] shows 
that the weights on Hk(G) are strictly larger thank except when k = 0. 
Since X is smooth and projective, Hk(X) is pure of weight k. The 
mapping 

1-1* : Hn(X)-+ H"(G X X)~ EB HR(G) ® Hrn(X) 
€+rn=n 

is thus filtration preserving. Since Hn(X) = WnHn(X), strictness im
plies that 
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from which it follows that JL* is the inclusion 

That is, rational cohomology cannot distinguish JL from the trivial action. 

§6. Weight Filtrations on Completed Mapping Class Groups 

Completions of mapping class groups have natural weight filtra
tions that are preserved by the natural homomorphisms between them. 
They arise because mapping class groups occur as fundamental groups 
of smooth stacks (moduli spaces of curves) and are constructed using 
either Hodge theory [18] or Galois theory [20]. 

Denote the lower central series of a Lie algebra ~ by 

where V"+l~ := [~, L"'~]. 

Theorem 6.1 (Hain [18]). If(S, D) is a stable decorated surface and 
G is a subgroup of Aut D, then O(QCj D) has a natural weight filtration 
with which the product, antipode and' coproduct are strictly compatible. 
This corresponds to a weight filtration 

by subgroups, where w_lg?D = Us,D· It also induces a filtration of 
the Lie algebra gs,D of the identity component. It has the property that 
9S,D = Wogs,D and Us,D = w-l9S,D· The adjoint action 

the bracket 9s,D Q9 9s,D --> 9s.D and the natural homomorphisms 9s,i.> --> 

gs,D are all strictly compatible with the weight filtration. When g 2:: 3 
and #D = 1, the weight filtration is related to the lower central series 
ofus,D by 

When g = 0 and m 2:: 1, 

In particular, when g = 0, gs,D = W_ 2gs,D and all odd weight graded 
quotients of gs,D are trivial. 
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For each subgroup G of Aut D, conjugation induces infinitesimal 
actions 

ad: 9s,D --. Der O(Q~D) and ad: 9S,D --. Der 9S,D· 

Since Gr(;" 9s,D = gs,D/us,D ~ sp(H), we have: 

Corollary 6.2. Each Gr~ O(QCj D) is a direct sum of finite dimen

sional sp(H)-modules and each Gr~ gs,D is a direct product of finite 
dimensional sp(H)-modules. D 

These weight filtrations are compatible with those constructed (in 
[38, 15]) on fundamental groups of algebraic curves and their configura
tion spaces: 

Theorem 6.3 (Morgan, Hain). If (S, D) is a stable decorated sur
face, then the Lie algebra jJ of the unipotent completion of the funda
mental group of the configuration space of m ordered points in Sb has a 
natural weight filtration that satisfies jJ = W_ 1p. In particular, p(Sb, x) 
has a natural weight filtration that satisfies jJ ( Sb, x) = W _1 jJ ( Sb, x). 
The bracket and the surjection jJ ( Sb, x) --. H 1 ( Sb) are strictly compat
ible with the weight filtration. When #D ~ 1, the weight filtration of 
p(Sb) is given by its lower central series: 

when m ~ 1. 

The natural action of the gs,D on the p(Sb) is compatible with these 
weight filtrations. 

Theorem 6.4 (Hain [18]). If (S, D) is a stable decorated surface and 
x is an admissible base point of S'rJ, then the natural homomorphisms 

9s,Du{x} __.. Derp(S'rJ,x) and 9s,D--. OutDerp(Sb) 

are strictly compatible with the natural weight filtrations. 

For all stable decorated surfaces (S, D), the weight filtrations on 

gs,D, p(S'rJ,x), Derp(S'rJ,x), OutDerp(Sb) 
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all have natural splittings. 5 That is, if g is such a Lie algebra, then there 
is a natural isomorphism of complete Lie algebras 

and if </> : g --+ ~ is a natural homomorphism between two such Lie 
algebras, then the diagram 

g----=._. Tim Gr~ g 

¢1 ! Gr~ ¢ 

~ ----=._.Tim Gr~ ~ 

commutes.6 

The existence of natural splittings allows one to study, without loss 
of information, the infinitesimal actions 

d¢x : us,.D--+ Der p(S~, x) and d¢: us,D--+ OutDer p(S~) 

using the associated graded actions 

Gr;v us,.D--+ Der Gr;v p(S~, x) and Gr;v Us,D--+ OutDer Gr;v p(S~). 

It also allows us to construct presentations of us,D by giving presenta
tions to their associated weight graded quotients as was done in [18] for 
the us when g ::=: 6. 

Remark 6.5. One might hope that there are natural weight filtra
tions on the Lie algebras fn, an and On associated to Aut+ Fn and 
Out+ Fn with respect to which the natural actions an --+ Der fn and 
On --+ OutDer fn are strict and for which each Lie algebra is naturally 
isomorphic to its associated graded. This would simplify the problem of 
finding presentations of ian and ion. 

5In Hodge theory, one usually tensors with IC first to construct these split
tings. However, the machinery of tannakian categories implies the existence of 
such splittings over Q. Cf. [9, 38] 

6Examples of morphisms </> : g --> ~ that are strictly compatible with the 
weight filtration are those which are induced by morphisms of moduli spaces of 
curves or are associated with monodromy representations cif fundamental groups 
of moduli spaces of curves associated to natural local systems over moduli spaces 
such as those associated to families of unipotent completions of fundamental 
groups of universal curves and other tautological bundles. 
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Such weight filtrations would probably exist if Aut Fn or Out Fn 
were the fundamental group of an algebraic variety or stack defined over 
a number field, or if one could construct an action of the Galois group of 
(say) Q(JLn), where JLn denotes the nth roots of unity, on their profinite 
completions that was compatible with the action of the Galois group on 
the profinite completion of 1r1 (A1 - JLn, 0). It is not clear how to proceed, 
or if this could ever be true. 

§7. The Relative Weight Filtration of a Nilpotent Endomor
phism 

This section is an exposition of the linear algebra of nilpotent endo
morphisms of filtered vector spaces, which arises naturally in the study 
of degenerations of complex algebraic varieties. For example, suppose 
that 

f:X---+6. 

is a family of complex algebraic varieties over the unit disk that is topo
logically locally trivial over the punctured disk 6. *. Denote the fiber of 
f over t E 6. by Xt. Fix a base point t 0 E 6. *. Since the family is locally 
topologically trivial over 6. *, there is a monodromy operator 7 

for each m E N. A general result of Griffiths-Landman-Grothendieck 
(Cf. [32, 34]) implies that the eigenvalues of h are roots of unity. So, 
by replacing the family by its pullback along a finite covering 6. ---+ 

6., s f-+ sc if necessary, we may assume that h is unipotent (i.e., all of 
its eigenvalues are 1). In this case it is the exponential of a nilpotent 
matrix N = log h. 

Example 7.1. A classical and relevant example occurs when the 
fiber Xt over t E 6. * is a compact Riemann surface and the central fiber 
Xo is obtained from S = Xto by contracting a a finite set of disjoint 
simple closed curves (the vanishing cycles) { c1 , c2 , ... , Cr} in S. The 
geometric monodromy T is the product of the Dehn twists about the Cj. 

The induced mapping 

7Recall Convention 1.1: all (co )homology is with rational coefficients unless 
otherwise noted. 
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is given by the Picard-Lefschetz formula: 

r 

h(x) =X+ :L)cj,X)Cj. 
j=1 

This is clearly unipotent. Its logarithm N : H 1 (S) ---> H 1 (S) is the 
operator 

r 

N: x f-+ L(cj,x)cj 
j=1 

which satisfies N 2 = 0. (This formula is independent of the orientations 
assigned to the Cj . ) D 

7.1. The Weight Filtration of a Nilpotent Endomorphism 
There is a natural weight filtration of a vector space associated to a 

nilpotent endomorphism N of it. 

Proposition 7.2. If N is a nilpotent endomorphism of a finite 
dimensional vector space V, then there is a unique filtration 

0 = W(N)-m-1 ~ W(N)-m ~ W(N)-m+1 ~ · · · 

· · · ~ W(N)m-1 ~ W(N)m = V 

of V such that 

(i) for all n E Z, NW(N)n ~ W(N)n-2i 
(ii) for each k E /£, 

N k. G w(NJv G w(NJv . rk ___. r_k 

is an isomorphism. 

The filtration W(N). of V is called the weight filtration of N. 

Proof To prove existence , it is enough to consider the case where 
N has a single Jordan block. There is a basis 

of V such that Nei = ej-Z· Define 

W(N)j = span{ek: k:::; j}. 

Uniqueness is proved by induction on the exponent of nilpotency of 
N. If N = 0, then uniqueness is clear. Suppose that m > 0 and that 
Nm+1 = 0, but that Nm f=- 0. The vanishing of Nm+l implies that 

W(N)k = V and W(N)-k- 1 = 0 for all k ~ m. 
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Since Nm: Grm V--+ Gr_m Vis an isomorphism, we must have 

W(N)m-1 = ker Nm and W(N)-m = imNm. 

Since Nm -:/- 0, 

0-:/- W(N)-m ~ W(N)m-1 -:/- V. 

The induced endomorphism N of V' := W(N)m-1/W(N)-m satisfies 
j\[m = 0. By induction, the weight filtration of W(N) of N is unique. 
All weight filtrations of V must satisfy 

W(N)k = inverse image of W(N)k whenever - m < k < m. 

Uniqueness follows. Q.E.D. 

Note that W(N). is centered at 0. If V = Hrn(X), where X is a 
smooth projective variety, it is natural to reindex the weight filtration 
of a nilpotent endomorphism N of V so that it is centered at the weight 
m of V. The shifted filtration 

is centered at m. The reindexed filtration M. satisfies N Mk ~ Mk-z 
and 

is an isomorphism for all k E Z. We will call the shifted weight filtration 
M. the monodromy weight filtration of N: V--+ V. 

Example 7.3. The monodromy weight filtration for nilpotent en
domorphism N of the weight -1 vector space H1(S) in Example 7.1 
is: 

(2) 

Mo = W(N)I = H1(S) 

M-1 = W(N)o =kerN 

M_z = W(N)-1 = imN = span{c1, ... , Cr} 

M_3 = W(N)-z = 0. 

The existence of a weight filtration extends to arbitrary direct sums 
and direct products of nilpotent N-modules. 
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7.2. Curve Systems 

A curve system on a stable decorated surface (S, D) is a set 

I = {Co, ... , Cr} 

of disjoint simple closed curves such that each connected component of 

r 

Sb - hi := Sb - U Cj 

j=l 

has negative Euler characteristic. Equivalently, no two c1 are isotopic 
in Sb and no Cj bounds a disk or punctured disk in Sb. Two curve 
systems are considered to be equal if they are isotopic in S. 

Denote the Dehn twist about Cj by Tj. Since the Cj are disjoint, 
these commute. Set T = nj Tj. The action 

ofT on H 1 (Sb) is given by the Picard-Lefschetz formula: 

r 

T*(x) = x + 2)c1, x)cj. 
j=O 

This is clearly unipotent. Its logarithm N1 : H 1 (Sb)---> H 1 (Sb) is the 
operator T* - id which is given by 

r 

N1 : x f-+ L(cj, x)cj. 
j=l 

It satisfies N~ = 0. Note that it preserves the weight filtration W. 
defined on H 1 (Sb) in Example 5.1 and acts trivially on W_ 2 H 1 (Sb). 

The following example will be used later in the paper. 

Example 7.4. Suppose that H = H 1 (S) and N = N1 , where H 
has weight -1. Denote the corresponding monodromy weight filtration 
by M •. Set 

There is a natural isomorphism sp(H) ~ S2 H, which we consider to 
have weight 0 as it is a subspace of End( H), which has weight 0. Note 
that 

Gr~ sp(H) = sp(Gr~1 H) 
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and that there is a natural Lie algebra isomorphism 

Grg1 sp(H) ~ gf(A) EB sp(Ho). 

Denote by.; the element of sp(Gr~ H) that corresponds to the identity 
element of gl(A). Note that .; acts as the identity on A, minus the 
identity on B and trivially on H 0 . It follows that if we consider Hem to 
have weight -n, then .; acts on Gr~1 H®n as multiplication by k - n. It 
follows that if V is an sp(H)-submodule of H®n, then.; acts on Gr~1 V 
as multiplication by k - n. 

7.3. The Weight Filtration of a Nilpotent Endomorphism 
of a Filtered Vector Space 

Now suppose that N is a nilpotent endomorphism of a filtered finite 
dimensional vector space V. That is, V has a filtration 

which is stable under N. This is extended to the infinite dimensional 
case using the conventions of Section 2 .1. Namely, infinite dimensional 
examples are either ind- or pro-objects of the category of finite dimen
sional filtered vector spaces; the nilpotent endomorphism N is replaced 
by a locally nilpotent endomorphism (i.e., a direct limit of nilpotent en
domorphisms) in the ind case and a pronilpotent endomorphism (i.e., 
an inverse limit of nilpotent endomorphisms) in the pro case. 

We will often call the filtration W. of V the weight filtration of V 
and Gr:;; V the mth weight graded quotient of V. 

Natural examples of a filtered vector space (V, W.) with a nilpotent 
endomorphism arise from degenerations of smooth (not necessarily com
pact) varieties. In this case (V, W.) is Hm ( Xt) endowed with its natural 
weight filtration, and N is the logarithm of the unipotent part of the 
monodromy operator. 

Since N preserves the weight filtration, it induces an endomorphism 

Nm := Gr:;; N : Gr:;; V ----> Gr:;; V. 

of the mth weight graded quotient of V. Since, by assumption, Gr:;; V 
is the product or sum of nilpotent N-modules, Proposition 7.2 implies 
that each graded quotient has a weight filtration W(N171 ). The reindexed 

filtration W(Nm)[m]. is centered atm. Denote it by M~m) 

Definition 7.5. A filtration M. of V is called a relative weight 
filtration of N : (V, W.) ----> (V, W.) if 

(i) for each k E Z, N Mk ~ Mk-2; 
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(ii) the filtration induced by M. on Gr~ Vis the reindexed weight 
filtration M~m). 

Relative weight filtrations, if they exist, are unique. (Cf. [48]). 

Example 7.6. If N : (V, W.) ---) (V, W.) satisfies N(Wm V) c 
Wm-2V for all m E Z, then each Nm = 0 and the relative weight 
flirtation M. of N exists and equals the original weight filtration W •. 

Example 7. 7. Suppose that r is a curve system on a stable dec
orated surface (S, D). Take V = H 1 (Sb) with the weight filtration 
defined in Example 5.1 and N to be the nilpotent endomorphism N 1 

associated to 1 defined in Section 7.2. The non-trivial weight graded 
quotients of H 1 ( Sb) are 

Note that N_ 1 : H 1 (S)---) H 1 (S) is the operator given in Example 7.1. 

Consequently .1\1~-l) is given by Example 7.3: 

Since N_ 2 = 0, 

0 = M(-2 ) c M(- 2 ) = ii (D). 
-3 - -2 0 

The relative weight filtration of N 1 : H 1 (Sb) ---) H 1 (Sb) exists. It is 
defined by 

Even though the weight filtration of a nilpotent endomorphism of 
a finite dimensional vector space always exists, the relative weight fil
tration of a nilpotent endomorphism of a filtered vector space (V, W.) 
usually does not exist. Necessary and sufficient conditions for the exis
tence of a relative weight filtration are given in [48]. 

The existence of a relative weight filtration on the rational cohomol
ogy of the general fiber of a degeneration of complex algebraic varieties 
was first established for degenerations of varieties by Deligne [11, (1.8)] 
using €-adic methods, and for smooth varieties over the complex num
bers using Hodge theory by Steenbrink and Zucker [48]. It provides 
non-trivial restrictions on the possible monodromy operators of degen
erations of algebraic varieties. For example, the existence relative weight 
filtration is a strong enough invariant to show that a bounding pair (BP) 
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map cannot be the geometric monodromy of a degeneration of complex 
algebraic curves:8 

Example 7.8. Suppose that g(S) 2: 1 and that the curve system 
{eo, cl} is a bounding pair of simple closed curves inS. (That is, S -11'1 
has two connected components.) Suppose that P = {xo,xl} is a pair 
of points in S- bl, one in each component. Denote the Dehn twist 
about Cj by Tj· The associated bounding pair map is T = T1T01. It acts 
non-trivially and unipotently on H 1(Sb). Its logarithm N = T* -id acts 
trivially on both weight graded quotients of H 1 ( Sb). Because of this, 
the relative weight filtration M., if it exists, must agree with the weight 
filtration W.. But since these satisfy 

M_3Ht(Sb) = W_3Hl(Sb) = 0 and 

M-1H1(Sb) = W_lHl(Sb) = H1(Sb), 

the condition N M_1 ~ M_3 implies that N = 0. But this contra
dicts the non-triviality ofT*. Consequently, the endomorphism N of 
(Hl(Sb), W.) has no relative weight filtration. 

§8. Relative Weight Filtrations on Mapping Class Groups 

An element a of a proalgebraic group Q is prounipotent if it lies 
in a prounipotent subgroup. An element N of a pro-Lie algebra g is 
pronilpotent if it lies in a pronilpotent subalgebra. 

Lemma 8.1. Each prounipotent element of a proalgebraic group Q 
can be written uniquely as the exponential of a pronilpotent element of 
g, the Lie algebra of Q. 

Proof Suppose that T is a prounipotent element of Q. The exis
tence of a pronilpotent logarithm ofT is clear as it lies in a prounipotent 
subgroup. Since every algebraic subgroup of a prounipotent group is 
prounipotent, the intersection of two prounipotent subgroups of Q is 
also prounipotent. If T = exp N 1 = exp N 2 , then lies in the intersec
tion of the two unipotent !-parameter subgroups {exptNj : t E F}, 
j = 1, 2. If T f. 1, this forces N1 = N 2 . If T = 1, the unique logarithm 
is N = 0. Q.E.D. 

8This can be proved by elementary and direct arguments. However, us
ing the non-existence of the relative weight filtration to prove that a BP map 
cannot be the geometric monodromy of degeneration of curves illustrates the 
kinds of restrictions that the existence of relative weight filtrations places on the 
monodromy of degenerations of varieties in general. 
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Proposition 8.2. If T E r~ D is a Dehn twist, then p(T) is a 
prounipotent element of gS,D· ' 

Proof. The Picard-Lefschetz formula implies that p(T) is a unipo
tent element of Sp(H1 (S)) and that it is the exponential of N = p( T)-id. 
The inverse image 1i of the unipotent subgroup L := { exp tN : t E IQ} 
of Sp(H) in gs,D is prounipotent as it is an extension 

1 __. Us,D __. 1i __. L __. 1 

of a unipotent group by a prounipotent group. Since fj( T) E 'H, it is 
prounipotent and thus has a unique pronilpotent logarithm. Q.E.D. 

Suppose that (S, D) is a stable decorated surface and that "( = 
{co, ... , Cm} is a curve system on ( S, D). Denote the Dehn twist on Cj 

by Tj· By Proposition 8.2 p(Tj) has a canonical logarithm Ni E g8,v. 
Define the closed cone in gs,D associated to "f by 

m 

C('"Y) = { 2::>iNi: ri E IQ and ri 2': 0} 
j=O 

and the open cone by 

m 

C 0 b) = { L r i Nj : r i E IQ and r i > 0} 
j=O 

Then C('"Y) is a simplicial cone in iQ' whose faces correspond to the 
subsets a of"(: 

Suppose that N E C('"Y) and that G is a subgroup of Aut D. The 
infinitesimal actions 

ad: gs,D __. Der ow~v) and ad: gs,D __. Der gs,D· 

induce actions of N on each weight graded quotient of O(g~ v) and 

gs,D· By Corollary 6.2, each weight graded quotient of O(g1 v) is a 
direct sum of finite dimensional.sp(H)-modules and each weight graded 
quotient of gs,D is a direct product of finite dimensional.sp(H)-modules. 
Consequently, each weight graded quotient of O(gfj v) is a direct sum 
of finite dimensional nilpotent N-modules and and ~ach weight graded 
quotient of gs,D is a direct product of finite dimensional nilpotent N
modules. 

The following theorem is a special case of more general results proved 
in [20] using Galois theory and in [22] using Hodge theory. 
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Theorem 8.3. For all curve systems 'Y of a stable decorated surface 
(S,D), all subgroups G of AutD, and all N E C 0 ('Y), there is a (neces
sarily unique) relative weight filtration M-: (denoted M.) of O(Qs,D) of 
the endomorphism 

ad(N) E Der(O(Q~D), W.) 

that is compatible with the product, antipode and coproduct of O(Qs,D)· 
It induces relative weight filtrations on 9s,D and p(Sb,x), where x E 

Sb - I'YI is an admissible base point. The bracket of each of these Lie 
algebras is strictly compatible with M.. These relative weight filtrations 
depends only on 'Y and will be denoted by M-:. Each Nj E C('Y) lies in 
M_ 2gs,D. Moreover, for each curve system "( there is a natural (though 
not canonica0 isomorphism 

9s,D ~ IT Gr{: Gr~ 9S,D 
k,m 

of completed Lie algebras. In addition, if D is a refinement of D that 
contains the base point x and i' is a curve system on (S, D) whose image 
in (S, D) is"(, then the natural actions 

d¢x : 9s,£J---+ Der p(Sb, x) and d¢>: 9S,D---+ OutDer p(Sb). 

are strictly compatible with W. and the relative weight filtrations M-: 
and M~. The filtrations M. and W. can be simultaneously split. That 
is, they can be chosen so that the diagram 

9s,iJ --""'-~ IJk,m Gr{: Gr~ 9s,£J 

! ! 
Derp(Sb,x) ~DerGr~ Gr~ p(Sb,x) 

commutes. There is a similar diagram ford¢>: gs,D---+ OutDerp(Sb). 

Since the diagonal~: O(Q~D) ---+ O(Q~D)®O(Q~D) preserves M., 

the image of M_10(9~D) under the diagonal is contained in 

M_lO(Q~D) ® O(Q~D) + O(Q~D) ® M_lO(Q~D)· 

This implies that M_10(Q~D) is a Hopf ideal of O(Q~D). Define 
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This is a subgroup of gCj D· Since M. is preserved by the bracket, 
Mk 9S,D is a pronilpotent Lie subalgebra of gs,D whenever k :::; 0. The 
Lie algebra of Mog~D is Mogs,D· When k < 0, Mk9S,D is pronilpotent. 
Denote the corresponding prounipotent subgroup of g~D by MkgS,D· 

The uniqueness of relative weight filtrations is a strong condition 
which implies that M: has many nice properties. Some are established 
in the following paragraphs. 

Proposition 8.4. Suppose that '/ is a curve system on a stable 
decorated surface (S, D). If¢ E r~ D' then the relative weight filtrations 

of O(g~D) and 9s,D satisfy M!hl' = Ad(¢)M:. 

Proof. For a curve system a, let T(j = I1cE<J Tc where Tc denotes the 
Dehn twist about c. Denote the logarithm of Tu by Nu. Since Tq,(c) = 

rPTcrP- 1, it follows that T¢h) = rjJT'YrjJ- 1, which implies Nq,('y) = Ad(¢)N'Y. 
Since N'Y(MZ} <;;; ML2, it follows that 

Nq,h) ( Ad(¢)Mn = ( Ad(¢)N'Y )( Ad(¢)Mn 

= Ad(¢)(N"~(Mn) <;;; Ad(¢)ML2· 

The result now follows from the uniqueness of the relative weight filtra
tion. Q.E.D. 

The subalgebra MJ gs,D of 9s,D behaves like a parabolic subalgebra 
of a semi-simple Lie algebra: 

Parabolic subalgebras of semi-simple and Kac-Moody Lie algebras 
are self normalizing, and correspond to boundary strata in the semi
simple case. The following result suggests that when g ;::: 2, the subal
gebras MJ 9s,D of 9s,D might provide a good notion of parabolic subal
gebra of 9S,D· 

Proposition 8.5. If'/ is a curve system on a stable decorated sur
face (S, D) where g(S) ;::: 3, then the normalizer of MJ 9s,D in 9s,D is 

MJgs,D· 

Proof. Since the functor Gr~1 Gr~ is exact, it suffices to prove 
the result for the associated bigraded Lie algebra Gr~1 Gr~ 9S,D· Set 
M. = M: and H = H 1 (S). Let~ E Gr~1 sp(H) be the element defined 
in Example 7.4. It lies in Gr~ Gr6" 9S,D· Johnson's theorem [29] implies 
that Gr~ 9s,D is an sp(H)-quotient of (Hn(IOA3 H)®m, where n = #D-

1. It follows from Example 7.4 that if k > 0 and X E Gr{: Gr~ 9s,D, 
then [~,X] = (k - m)X, which is non-zero whenever k > 0. Thus, if 
X rf- Mo Gr~ Gr~ gs,D, then X does not normalize Mo Gr~1 Gr~ 9S,D· 

Q.E.D. 
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This result also holds in genus 2, but not in genus 1. 

8.1. Dependence on 'Y 

For a curve system 'Y of a stable decorated surface (S, D), denote 
the subspace of H 1 (S) spanned by the homology classes of the c E 'Y by 
("!). 

Proposition 8.6. If 'Y is a curve system of a stable decorated surface 
(S, D) and O" ~ "/, then the relative weight filtrations M-: and M~ of 
O((}~v), Qs,D and p(Sb) are equal if and only if (O") = ("!). 

Proof. The condition that ("!) = (O") implies that the monodromy 
weight filtrations on H1 (S) are equal. Since each weight graded quotient 
of O((}~v), Qs,D and p(Sb) is a subquotient of a tensor power of H1 (S), 
it follows that the monodromy weight filtrations associated to 'Y and O" 

on Gr~ Qs,D are equal if and only if("!) = (0"). Similarly for p(Sb) and 
O((}Cj v)· 

To complete the proof, we now show· that if the monodromy weight 
filtrations on Gr~ V agree, where V = O((}~v), Qs,D or p(Sb), then 
the relative weight filtrations on V agree. Since O" ~ 'Y, for each c E O", 

Nc(Mn ~ MJ_2 . That is M-: is a relative weight filtration on V for 
each N E C 0 (0"). Uniqueness implies that M~ = M-:. Q.E.D. 

When g(S) = 0, H 1 (S) = 0 and the hypotheses of Proposition 8.6 
are satisfied when O" is empty. This implies that the relative weight 
filtration is the existing weight filtration: 

Corollary 8. 7. If 'Y = {co, ... , cm} is a curve system on a stable 
decorated surface (S, D) of genus 0 and G is a subgroup of Aut D, then 
the relative weight filtrations of O((}~D), p(Sb, x) and Qs,D equal their 

natural weight filtrations W.. Consequently, g~D = M'(f g~D. D 

Suppose that (S, D) is a stable decorated surface, where D = P U 
V. For the purposes of this definition, we will consider V as a set of 
boundary components. Following Hatcher-Thurston [27] we say that 
two curve systems "f 1 and 1" of (S, D) differ by an A-move if 

that bound a genus 0 subsurface T of S and there are c~ E 1' and c~ E 'Y" 
that lie in T and 

Figure 1 illustrates an A-move. 
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Fig. 1. An A-move 

Suppose that a and 'Y are curve systems on the stable decorated 
surface (S, D). We say that 'Y is Qbtained from a by homology neutral 
insertions (or that a is obtained from 'Y by homology neutral deletions) 
if a ~ 'Y and the subspaces (a) and ("!) of H 1 (S) are equal. 

The invariance of the Ml under homology neutral insertions and 
deletions follows directly from Proposition 8.6. 

Proposition 8.8. Suppose that (S, D) is a stable decorated surface. 
If 'Yl and 'Yz are two curve systems on (S, D) that differ by a sequence 
of A-moves and by homology neutral insertions and deletions, then the 
relative weight filtrations Ml1 and Ml2 of Qs,D are equal. D 

8.2. Glueing Lemma 

Suppose that 'Y = {co, ... , Gm} is a curve system on the stable dec
orated surface (S, D). For each connected component T' of Sb - I'YI 
there is a compact oriented surface T and decorations Dr = Pr U Vr 
such that 

Pr =T'nP 

and Vr is the union ofT' n V with the new tangent vectors obtained by 
collapsing the boundary components created by removing the Cj. 9 

There is a natural homomorphism (the glueing map) 

(3) 

whose image is the subgroup of r s,D that are represented by diffeomor
phisms that restrict to the identity on each Cj. The kernel is isomorphic 
to Z"~. 

9It is convenient and natural to choose a point on each Cj, as it will provide 
a marking on each boundary component of Sb- bl· 
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Proposition 8.9 (Glueing Lemma). The glueing map induces a 
homomorphism on relative completions such that the diagram 

commutes. The induced Lie algebra homomorphism 

EI1 9T,DT ~ 9S,D 
T 

is strict with respect to the weight filtration W. on the 9T,DT and the 
relative weight filtration M-: on 9B,D. 

Proof. Here we prove the existence of the induced homomorphism 
TIT QT,DT ~ 9s,D· Its compatibility with the filtrations follows from 
the existence of limit mixed Hodge structures [22] or, alternatively, the 
Galois equivariance of the corresponding map of profinite mapping class 
groups. 

SetH= H1(S) and HT = H1(T). The relative weight filtration 
M. := M-: of H satisfies 

Gr~1 H = ffiTHT and M_2H = ('y). 

Set 

MmSp(H) := {¢ E Sp(H): (¢- id)(MkH) ~ Mk+mH}. 

This is the subgroup of Sp(H) with Lie algebra Mmsp(H). The Zariski 
closure of the image of TIT rT,DT in Sp(H) is contained in MoSp(H) 
and is the extension of the subgroup IJT Sp(HT) of Gr(if Sp(H) by a 
unipotent subgroup of M_2Sp(H). Denote by 1t the inverse image of 
TIT rT,DT under the surjection Mo9s,D ~ Gr(if Sp(H). It is an exten
sion of TIT rT,DT by the prounipotent group M_2QS,D· 

The completion of TIT rT,DT with respect to the natural homo
morphism TIT rT,DT ~ TIT Sp(HT) is TIT QT,DT. The universal map
ping property of relative completion implies that the homomorphism 
TIT rT,DT ~ 1t induces a homomorphism TIT 9T,DT ~ 1t such that the 
diagram 

nTrT,DT -----,..rs,D 

l l 
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commutes. Q.E.D. 

There is a more elaborate version of the Clueing Lemma that applies 
to groups that contain 

rrr~,1T 
T 

as a finite index subgroup, where Gr ~ Aut Dr, and which map to r~ D 

for certain G ~ Aut D. Rather than formulate such a result in gener~l, 
we now state and prove a very special case that we shall need when 
investigating handlebody subgroups of fs,D· 

Consider the decorated surface (S, D) of genus h-1 with one marked 
boundary component that is constructed as the double covering of the 
2-sphere branched at the 2hth roots of unity, J.L2h, and with the disk 
of radius 1/2 removed from one of the branches. This surface can be 
described as the Riemann surface of the algebraic function 

y2 = x2h _ 1 

with the disk lxl < 1/2 removed from one of the two branches. The 
marked boundary point is chosen to be x = 1/2. 

Fig. 2. The surfaceS- hi when h = 3 

For j = 1, ... , h, let Cj be the circle in S that is the inverse image 
in S of the interval [(2j-l, ( 2J] in C, where ( = exp 27ri/2h. Then 
1 := { c1 , ... , ch} is a curve system that separates S into two genus 0 
subsurfaces (To, Do) and (T1, D1), where 

Do= {c1, ... ,ch} and D1 = {8S}UDo. 

The case h = 3 is illustrated in Figure 2. 
The group J..Lh of hth roots of unity acts on S: ( 2J : (x, y) f----+ ((2Jx, y). 

It acts on Do and D 1 by taking Cj to Cj+l• where the indices are con
sidered mod h. Denote the natural homomorphism r? D. ----+ /Lh by Pj. 

J, J 
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Set 

There is an obvious glueing homomorphism 

(4) 

The completion of [r To ,Do x r r1 ,D1]P.h with respect to the natural 
homomorphism to J.Lh is easily seen to be the restriction of Q~h D x Q~h D 

0' 0 1' 1 

to the diagonal of J.Lh x J.Lh· Denote it by 

Proposition 8.10. The homomorphism (4) induces a homomorph-
ism 

[f'.Jl.h X f'.Jl.h jP.h ---+ 1'. 
!:IT0 ,D0 !:IT1 ,D1 !:!S,D 

that is strictly compatible with the induced mapping 

(O(Qs D), Mn---+ (O([Q~h D X Q~h D ]J.'h ), W.). 
1 01 0 1, 1 

The existence of the induced homomorphism is proved by an argu
ment similar to the proof of Proposition 8.9. The strictness with respect 
to the filtrations follows from either Hodge theory or Galois theory. 

Since To and T1 are spheres, Corollary 8. 7 implies that Q~h D. = 
J' J 

W0Q~h D .. This gives the following important consequence of strictness. 
J' J 

Corollary 8.11. The image of [Q!:.h D x QTP.h D ]~'h ---+ 9s D lies in 
_LQ' 0 1' 1 1 

Mo9s,D· D 

Define ¢h E r S,D to be the mapping class of the diffeomorphism 

of S composed with 1/hth of the inverse of the Dehn twist about aT. 
This fixes the boundary point 1/2. Observe that ¢~ is the inverse of the 
Dehn twist about aT. Since ¢h lies in the image of ( 4), we have: 

Proposition 8.12. The image of ¢h in 9s,D lies in Mo9s,D· 

We shall also need a certain diffeomorphism 7/J of a surface S of 
genus 2 with one boundary component. It is convenient to take S to the 
Riemann surface 
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rotate 1r 

Fig. 3. The diffeomorphism 1/J 

with one of the two preimages of the disk lxl < 1/2 removed. It is 
illustrated in Figure 3. The element 7/J of r s,as is the composition of the 
diffeomorphism ( x, y) r--+ (-x, y) of S with the square root of the inverse 
of the Dehn twist about the boundary of S. In terms of the illustration 
in Figure 3, it is obtained by rotating S by 1r about the vertical axis of 
the boundary circle and composing with the square root of the inverse 
of the Dehn twist about the boundary of S. An argument similar to the 
one used to prove Proposition 8.12 can be used to prove: 

Proposition 8.13. The image of 7/J in 9s,as lies in Mo9s,as-

§9. Handlebodies and Relative Weight Filtrations 

A curve system 'Y = { c0 , ... , em} on a stable decorated surface (S, D) 
is said to be rational if each connected component of S- hi is a genus 
0 surface. 10 

Lemma 9.1. If 'Y is a rational curve system on a stable decorated 
surface (S, D), then there is a unique handlebody U-y such that S = 8U-y 
and each curve c E 'Y bounds a disk in U .U 

Proof. This follows directly from the elementary fact that an ori
ented 2-sphere bounds a handlebody (necessarily a 3-ball) in a unique 
way, as the handle body is the cone over S. Q.E.D. 

A maximal curve system on a stable decorated surface (S, D) is 
called a pants decomposition of B'v. If 'Y is a pants decomposition of S'v, 

10This is equivalent to the condition that the nodal surface S h obtained 
from S by collapsing each c E 1 to point has the topological type of a stable 
rational curve. It is also equivalent to the condition that Gri\11 H1 (S) = 0. 

11That is, if U1 and U2 are handlebodies with 8U1 = 8U2 = S where each 
c E 1 bounds in each Uj, then there is a homeomorphism f : U1 --> U2 that is 
the identity on S. 
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then each component of Sb- bl is a sphere with r boundary components 
and n punctures, where r + n = 3. Thus pants decompositions are 
rational and determine a handlebody U1 . It is proved in [26]that any 
two pants decompositions of Scan be joined by A-moves and S-moves. 
It is clear that A-moves leave the handlebody U1 unchanged while S
moves change the handlebody. 

Fig. 4. An 5-rnove 

Theorem 9.2. Two pants decompositions of a decorated stable sur
face determine the same handlebody if and only if they can be joined by 
A-moves. 

Sketch of Proof. It is clear that A-moves do not change the han-: 
dlebody. We use ideas from Morse theory to prove the converse. They 
are an elaboration of ideas used by Hatcher and Thurston [27] (see also 
[26]). We will use boundary components instead of tangent vectors and 
will assume, without loss of generality, that the decorations D consist 
entirely of boundary components. 

If 1 is a pants decomposition of (S, D), then the boundary of the 
associated handlebody U equals 

au= su u ]])lv, 

vEno(8S) 

where ]])lv is a disk that corresponds to the boundary component v of S. 
We regard this as a manifold with corners at the submanifold as of au. 

To a pants decomposition 1 of S, we associate a graph G1 . This 
has one white vertex for each c E 1 and one black vertex for each pair 
of pants. Edges connect a black and a white vertex; each black vertex is 
joined to the white vertex corresponding to its boundary components. 
All black vertices have valence 3; white vertices have valence 1 if they 
are boundary components of S, otherwise they have valence 2. The 
handlebody U is a regular neighbourhood of G1 . The circles retract 
onto the white vertices. 

A height function f : G, ---+ [0, 1] on such a graph is a continuous 
function whose restriction to each edge has no critical points and whose 
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local extrema occur only at white vertices. We also require that f vanish 
on each 1-valent white vertex. Every G-y has a height function. 

We will say that a smooth function F : U --+ [0, 1] is Morse if it 
vanishes identically on each ID\,, it has no critical points in U, and if its 
restriction Fls to S is a Morse function. A Morse function F : U --+ 

[0, 1] is convex if F- 1 (a) is a disjoint union of contractible sets for each 
a E [0, 1]. 

A height function f extends to a convex Morse function F : U --+ 

[0, 1] where Fls has one critical point for each black vertex and two for 
each 2-valent white vertex that is a local extremum of f. The critical 
values of Fls equal the values off on the black vertices and the values 
off± E on the 2-valent white vertices that are local extrema. The stable 
or unstable manifold in S of the critical point of Fls corresponding to a 
2-valent white vertex is the isotopy class of the corresponding c E f. The 
white vertices that are not local extrema of f correspond to components 
of the level sets of F. The isotopy class of the vertex corresponding to 
c E 'f is c. 

Suppose now that 'Yo and 'll are two pants decompositions of (S, D) 
that determine the same handlebody U. Choose height functions J1 : 

'lj --+ [0, 1]. Extend these to convex Morse functions F1 : U --+ [0, 1] 
using the construction in [27]. It follows from [27] that the result will 
follow if we can show that there is a smooth function F : U x [0, 1] --+ 

[0, 1] that vanishes identically on each IDv x [0, 1], whose restriction to 
S x [0, 1] --+ [0, 1] is a generic 1-parameter family of Morse functions, 
and where the restriction Ft: U--+ [0, 1] to each U x {t} has no critical 
points and is a convex Morse functions for all but finitely many t E [0, 1]. 

To construct such an F, first extend F0 and F 1 to Morse functions 
Hj : (M, 8M) --+ ([0, 1], 0), where 

A1 = S3- UvE-rro(as)B3 

and where IDv is a hemisphere of the boundary of the corresponding 
3-ball. Join these by a generic 1-parameter family of functions Ht : 
(M, 8M) --+ ([0, 1], 0) that have no critical points in a neighbourhood 
of aM and where H : (M, 8M) X [0, 1] --+ ([0, 1], 0) X [0, 1] that takes 
(x, t) to (Ht(x), t) is smooth. The critical set I: c M x [0, 1] of H is 
1-dimensional and has relative dimension 0 over [0, 1]. On the other 
hand, we can choose U so that it is a regular neighbourhood of a graph 
r in M. Then u X [0, 1] is a regular neighbourhood of r X [0, 1] in 
M x [0, 1]. Since r x [0, 1] has relative dimension 1 over [0, 1] and is 
disjoint from I:t :=I: n M x { t} when t = 0, 1, there is a vector field on 
M X [0, 1] that is tangent to the t-slices and whose flow moves r X [0, 1] 
in M x [0, 1] to a subset J that is disjoint from I: and intersects each 
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fiber in a graph Jt homeomorphic tor. Then we may identify a regular 
neighbourhood W of J in M with U x [0, 1] where Wt := Wn(M x {t}) 
is homeomorphic with U and does not intersect :E. We may then deform 
the restriction of H to W so that it is a generic !-parameter family of 
functions fJS X [0, 1] C oW and has no critical points in the interior of 
w. 

The issue now is that the restriction Ht : U --> [0, 1] of Ht to U --> 

[0, 1] may not be convex as there may be a, t E [0, 1] where Ht-1 (a) is 
not a disjoint union of contractible sets. There are parameter values 
0 < h < t2 < · · · < tm < 1 where Htlu is Morse when t tf_ {t1, ... , tm}· 
On each interval (tj-1, tj) of [0, 1]-{ t1, ... , tm}, the Morse function Ht Is 
is represented by a graph G1 and a height function h1 : G1 --> [0, 1]. As t 
moves through t1 , two vertices of G1 reverse height and G1 changes into 
GJ+1 by one of the elementary moves described in [27]. The extra data 
of the function Ht: U--> [0, 1], when t E (t1_ 1 , t1), is determined by an 
equivalence relation on imbedded intervals in G1 that correspond to non
critical values of Ht: two "strands" are equivalent if the corresponding 
circles are boundary components of the same component of H1- 1 (a) for 
some non-critical value a E [0, 1]. 

Fig. 5. Interior versus Exterior 

Even if the Morse functions Ht are not convex, we can use the 
sequence of graphs (Go, h0 ), ... , (Gm, hm) to construct a sequence of 
A-moves that join /o to 1 1 . Note that at a black vertex, the level set 
can change, for example, from a disk to two disks or to an annulus, as 
illustrated in Figure 5. However, we can apply the Hatcher-Thurston 
construction to each graph to obtain a sequence of convex Morse func
tions KJ : U --> [0, 1] where 0 :::; j :::; m where K 0 and K 1 correspond 
to the pants decompositions /o and 1 1 . Denote by /-lj the pants de
composition of S that corresponds to the restriction of K1 to S. Then 
it follows by examinining the list of elementary moves in [27] that the 
pants decompositions determined by two convex Morse functions that 
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differ by an elementary move, themselves differ by an A-move. In par
ticular, J..ti-1 and J.ti differ by an A-move. This shows that 'Yo ={to and 
1'1 = ftm are connected by a sequence of A-moves. Q.E.D. 

This result has the important consequence that each way of writing 
8 as the boundary of a handlebody U defines a relative weight filtration 
on invariants of (8, D), such as 9S,D· 

Corollary 9.3. Suppose that (8, D) is a stable decorated surface 
and that x is an admissible base point of 8b. If U is a handle body 
and 8 =au, then u determines relative weight filtrations M!' on 9s,D, 
O(Qs,D), 9s,Du{x} and p(8b, x). The actions 

9S,D----> OutDerp(8b) and 9s,Du{x}----> Der!Jsr,,x 

are strict with respect to the weight filtrations W. and the relative weight 
filtrations M!'. 

Proof. Choose a pants decomposition 'Y of (8,D U {x}) such that 
each c E 'Y bounds a disk in U. Define M!' = M~. Theorem 9.2 and 
Proposition 8.8 implies that this is independent of the choice of 'Y· The 
strictness properties follow from Theorem 8.3. Q.E.D. 

For a handlebody U and x E U, denote 1r1 (U,x)un by :F(U,x) and 
its Lie algebra by f(U, x). 

Proposition 9.4. If 8 bounds the handlebody U and x E 8, then 

Mf/p(8,x) = p(8,x) and M~2p(8,x) = ker{p(8,x)----> f(U,x)}. 

Consequently, f(U, x) ~ Gr~1u p(8, x). 

Proof. This proof can be made in either the Galois category or the 
Hodge category, according to taste. Choose a pants decomposition 'Y 
of (8,x) as in the proof of Corollary 9.3 such that M~ = M!'. The 
relative weight filtration on p(8, x) arises from a degeneration of (8, x) 
to the stable rational curve Co whose underlying surface is (8/f', x). 
The degeneration12 can be chosen to be defined over Q as each of its 
components is a 3-pointed IP'1 . The inclusion of a nearby fiber Ct (the 
fiber over a first order smoothing of C0 ) into the total space of the local 
deformation X ----> llJJ induces the homomorphism 1r1 ( 8, x) ~ 1r1 ( Ct, x) ----> 
1r1 (C0 ,x) ~ 1r1 (U,x). This implies that the homomorphism p(8,x)----> 
f(U, x) is Galois equivariant and a morphism of mixed Hodge structures. 

12We shall denote the degeneration by X --> ][)), where ][)) is an analytic disk 
in the Hodge case and a formal disk SpecQ[[t]] in the Galois case. 
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Since the Galois action on the algebraic fundamental group of (Co, x) is 
trivial (resp., the MHS on f(U, x) is pure of weight 0 and type (0, 0)), 
it follows that f(U, x) is a trivial Galois module (resp., is also pure of 
weight 0 and type (0, 0)). Since p(S, x)-> f(U, x) is a morphism (Galois, 
Hodge), it is strict with respect to the weight filtration M;'. This and 
the strictness of the bracket ofp(S,x) with respect to both W. and M;' 
imply that 

Q.E.D. 

§10. Handlebody Groups 

Suppose that (S, D) is a stable decorated surface and that S is the 
boundary of a handlebody U. Define the handlebody group of (U, D) by 

Au,D = 71"o Difi+(U, D), 

where each diffeomorphism acts trivially on D.13 Griffiths [14], Suzuki 
[49], Luft [35], and Pitsch [43] have proved fundamental results about 
handle body groups and found generating sets of Au. For example, Grif
fiths [14] proved that homomorphisms 

Au,x-> Aut11"1(U,x) and Au-> Out11"1(U) 

are surjective. Luft proved that the kernels of each of these is generated 
by twists on imbedded disks (JD), 8JD)) ~ (U, 8).14 

Restriction to the boundary defines a homomorphism 

ru,D : Au,D -t r S,D 

It is straightforward to show that if D is a refinement of D, then ru jj 
and ru,D induce an isomorphism ' 

(5) r : ker{ Au,i5 -> Au,D} --=--. ker{r u,i5 -> ru,n }. 

13For a subgroup G of Aut D, one can also define A8 D as we did for mapping 
class groups. However, we shall not need such groups. 

14The twist on an imbedded disk is the isotopy class of a smoothing of the 

homeomorphism (rei0 , t),...... (rei(H2"t), t) of a tubular neighbourhood[]) x [0, 1] 
of[]) in U. Its restriction to S is the Dehn twist about the loop 8[]) in S. 
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For this reason, we will mainly restrict our attention to the cases where 
#D ~ 1. 

The following appears to be well-known to the experts. I am grateful 
to Alan Hatcher for communicating a proof. 

Proposition 10.1. If (S, D) is a stable surface, then the homo
morphism ru,D is injective. 

Sketch of Proof. By the isomorphism (5), it suffices to prove the 
result when Dis empty and g ~ 2 and when (g,n) is (0,3) and (1, 1). 

In genus 0 (with any number of points), the result follows directly 
from a result of Cerf [4]. The general case is proved by induction on 
g. Suppose g ~ 1. Suppose that 4> E Diff+ U is a diffeomorphism 
whose restriction to the boundary is isotopic to the identity. Then 4> 
is isotopic to a diffeomorphism whose restriction to S is the identity. 
We will assume that this is the case. Now choose an imbedded disk 
(lDl, 8lDl) C (U, S). Let (lDl', 8lDl') be a disk imbedded in (U, S) parallel to 
and disjoint from lDl. After altering 4> by an isotopy fixingS if necessary, 
we may assume that the restriction of 4> to ][]) is transverse to lDl'. Since 
U is an irreducible 3-manifold [28], ][])' U ¢(lDl) U A, where A C S is the 
annulus between 8][]) and 8lDl', bounds a 3-ball. We can then deform 4> by 
an isotopy fixing S so that the number of connected components of the 
complement in U of][])' U ¢(lDl) U A is reduced by one. We may therefore 
assume that ][])' U ¢(lDl) U A bounds a ball. By further modifying 4> by 
an isotopy fixing S, we may assume that 4> fixes ][]) pointwise. Now cut 
U apart along ][]) to obtain a diffeomorphism 4>' of a handlebody U' of 
genus one less whose restriction to 8U' is the identity. The result now 
follows by induction. Q.E.D. 

The handlebody group Au is bounded by the Oth term Mf! of the 
relative weight filtration. 

Lemma 10.2. If (S, D) is a stable decorated surface and S bounds 
the handlebody U, then the image of Au,D --+ 9s,D lies in Mf! 9s,D· 

Proof. The proof would be straightforward if Us,x --+ Derp(S,x) 
were injective. Since this is not known, we need a direct proof. As 
noted above, Luft [35] proved that ker{ Au,x --+ Aut 1r1 (U, x)} is gener
ated by twists on imbedded disks. If cis a simple closed curve in S that 
bounds an imbedded disk in U, then there is a pants decomposition 1 
of (S, D) that contains c where each c' E 1 bounds in U. It follows from 
Theorem 8.3 that that the Dehn twist on c lies in M'!2 9s,D := M2 2 9s,D· 

Thus, to prove the result, it suffices to show that there are elements 
of M 0 Au,x := Au,x n Mf/ 9s,x whose images in Aut 1r1 (U, x) generate 
Aut 1r1 (U, x). To do this, we use elements of Au,x closely related to 
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those used by Luft in [35]. That these generators lie in M!/ 9s,x follows 
from Propositions 8.12 and 8.13. 

Represent n 1 (U, x) as a free group (a1 , ... , a9 ), where each aj is a 
simple closed curve on the boundary of S. Note that the automorphisms 
conjugate to ¢2 E M 0 Au,x constructed in Section 8.2 can be used to in
vert any generators a1 of n 1 (U, x) while leaving the remaining generators 
fixed. The automorphism 1/J E A10 Au,x defined there can be used to de
fine an automorphism that fixes all but two of the generators a1 and ak 

and acts on them via 

Composing this with the first kind of automorphism, we see that there 
are elements of M 0 Au,x that transpose any two of the generators a1. We 
can therefore realize all permutations of the generators a1 by elements of 
MoAu,x· Finally, the elements ¢3 E M 0 Au,x realize the automorphism 
that fixes a1 when j > 2 and satisfies 

By a Theorem of Nielsen [41] ( cf. [35]) these automorphisms of n 1 (U, x) 
generate Aut n 1 (U, x). This completes the proof. Q.E.D. 

When #D 2: 1, the homomorphism fs,D-+ 9s,v is injective. 

Theorem 10.3. If (S, D) is a stable decorated surface that bounds 
the handlebody U, where #D = 1, then 

(i) Au,D = fs,D n M!/9s,v; 
(ii) ker{Au,D-+ Autn1(U,x)} = Au,v nMf!.2 9s,v; 

(iii) Au,v n Mf!.2Us,D is generated by opposite twists on disjoint 
bounding pairs of imbedded disks (][)) 1, (}][)) J) ~ ( U, S) (j = 1, 2) 
whose images avoid D. 

The second assertion is a consequence of a result of Griffith [14] and 
the third a restatement of a result of Pitsch [43, Prop. 6]. 

Proof. We prove the result when xis a point of S. The case where 
D is a non-zero tangent vector v E TxS follows as 9s,v -+ 9S,x is strict 
with respect to Mf and the kernel is central and generated by a Dehn 
twist on a curve that bounds a disk in U, and therefore lies in Mf!.2 . 

Proposition 9.4 combined with the fact that the homomorphisms 
n1(S,x)-+ P(S,x) and n1(U,x)-+ :F(U,x) are injective implies that 
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the commutative diagram 

1--____,...M!!2P(8,x) ---+P(8,x) -F(U,x)-. 1 

has exact rows. Since rs,x is a subgroup of Aut1r1(8,x), it follows that 
r s,x is a subgroup of Aut P(8, x) .. Consequently r s,x n Mfj Aut P(8, x) 
consists of those automorphisms of 1r1 (8, x) that preserve ker{ 1r1 (8, x) -+ 
1r1(U,x)}. By a result of Griffiths [14] this is Au,x, so that 

(6) r S,x n Mfj Aut P(8, X) = Au,x· 

Since P(8,x) = MfjP(8,x), and since 1r1(U,x)-+ F(U,x) is injective, 
the commutativity of the diagram above implies that 

(7) rs,x n M!!2 Aut P(8, x) ~ ker{Au,x-+ Aut 1r1(U, x)}. 

Since the homomorphism {Js,x-+ Derp(8, x) preserves the filtration M~, 
it follows that for all k we have 

(8) rs,x n Mf/9s,x ~ rs,x n Mf Aut P(8, x). 

Lemma 10.2 implies that Au,x ~ r S,x n Mf! 9s,x· The first assertion 
follows by combining this with the inclusions (6) and (8) with k = 0. 

By a result of Luft [35], the kernel of Au,x -+ Aut 1r1 (U, x) is gen
erated by Dehn twists on simple closed curves in 8 that bound a disk 
imbedded in U. But these lie in M!!29s,x by Theorem 8.3. Therefore 

ker{Au,x-+ Aut1r1(U,x)} ~ rs,x n M!!29S,x· 

The second assertion follows by combining this with the inclusions (7) 
and (8) with k = -2. 

The final assertion follows from this and a result of Pitsch [43, 
Prop. 6]. Q.E.D. 

Corollary 10.4. There is a natural injective homomorphism 

This homomorphism induces homomorphisms on the relative com
pletion of Aut+1r1(U,x) and Out+1r1(U,x). Surprisingly, these are not 
surjective. Equivalently, the injection in the previous corollary is not 
Zariski dense. 
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Proposition 10.5. If g 2:: 3, then the induced homomorphisms 

are not surjective. 

Sketch of Proof. Denote H 1 (S) by Hand H 1(U) by A. Denote the 
relative weight filtration M~ by M •. Denote the kernel of H---+ A by B. 
Then A = Gr~ H and B = Gr~2 H. Since Grl; !Js,x = .sp(H) ~ 8 2 H, 
it follows that 

Gr~ Grl; !Js,x ~A 0 B ~ End(A) ~ gt(A). 

There are natural .sp(H)-equivariant isomorphisms 

given by the Johnson homomorphism and general results in [18]. The 
exactness properties of Gr~ and Gr~ imply that there are gt(A)-equi
variant isomorphisms 

where lLm(A) denotes the mth graded quotient of the free Lie algebra 
generated by A. Moreover, the mapping IAn---+ Grg1 Us,x induces Mag
nus' isomorphism 

By [18, (10.1),§11], the second weight graded quotient of !Js,x is the 
sum of the Sp(H)-modules that corresponds to the partitions [2, 2] and 
[1, 1]. A straightforward linear algebra computation shows that, as 
gt(A)-modules, 

Gr~ Gr~2 !Js,x ~ B ®lL3(A) ~Hom( A, lL3(A)). 

Alternatively, it is isomorphic to the kernel of the natural surjection 
S2 A 2 H ---+ A 4 H minus a copy of the trivial representation. The image 
of [ian, ian] in this group is a quotient of 

Since S 2 A is a summand of Hom(A,JL3(A)) but not of this group, the 
homomorphism ian ---+ Gr~ us,xfW_3 is not surjective. The result fol
lows. Q.E.D. 
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This result shows that the relative weight filtration of 9s,x is not 
simply obtained by taking the Zariski closure of a filtration of r S,x· 

At first glance, this result appears to contradict Theorem 10.3. and 
the fact that the image of Ts,x --+ Us,x is Zariski dense. However, 
these results simply say that given n ;?: 1 and a ((£-rational element 
¢of MoUs,x/W-n, there exists 7/J E Ts,x and a positive integer m such 
that 

c/Jm = 7/J mod W_nUS,x· 

The previous two results imply that when n > 2, it is not always possible 
to choose 7/J to lie in Au,x = r S,x n Mo9 S,x 0 

Theorem 10.3 and Proposition 8.5 yield the following strengthening 
of Theorem 9.2. It says that the different ways of writing (S, x) as the 
boundary of a handle body is faithfully represented in the set of relative 
weight filtrations of fJs,x. 

Corollary 10.6. For two pants decompositions 1 1 and 12 of a stable 
decorated surface (S, D), where #D = 1, the following are equivalent: 

(i) 11 and 12 are connected by A-moves; 
(ii) U'' = Ur2; 

(iii) the associated relative weight filtrations M}' and M:2 of fJS,D 
are equal. 

Proof. Theorem 9.2 gives the equivalence of (i) and (ii). Proposi
tion 8.8 established that (i) implies (iii). It remains to prove that (iii) 
implies (ii). We will show that not (ii) implies not (iii). 

Set Uj = UrJ and AC1 = Mljj 0 There exists ¢ E r S,D that extends 
to a diffeomorphism¢: U1 --+ U2 . Then 

Au2 = ¢Au,¢- 1 and Mlj2 = Ad(¢)Mij'. 

If U1 # U2, then¢ tJ_ Au,. Theorem 10.3 implies that¢ tJ_ M(/'9s,D· We 
will prove the result by showing that ¢does not normalize A1(/'9s.D· 

Since 9s,D is connected, it suffices to prove the Lie algebra version: 
if X E fls,D and X tJ_ Afci;, fJs,D, then X does not normalize Af(/' fJS,D· 
But this follows directly from Proposition 8.5. Q.E.D. 

§11. Extending Diffeomorphisms to Handlebodies 

In this section we give an application to the problem of bounding 
the subset of elements of r s,D consisting of mapping classes that extend 
to some handlebody. Similar results have been obtained independently 
by Jamie Jorgensen [30]. 
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View Qs,D as a proalgebraic variety over Q, It is filtered by its 
weight filtration 

where w_lQS,D = Us,D and W_mQS,D is the mth term of the lower 
central series of Us,D· Recall from [18] that when g ~ 3 and m i= 2, 
Gr~m Us,D is isomorphic to the mth graded quotient of the lower central 
series of the Torelli group Ts,D tensored with Q. 

Write S as the boundary of a handle body U. · Then the set of el
ements of r s,D that extend across some handle body with boundary S 
is 

C ·- u ¢Au,D¢- 1 . 

¢Ers.D 

For all m ~ 1, set Cm = C n W_rnQS,D· Denote the Zariski closure of 
Cm in 9s,D by Xm. 

Theorem 11.1. If (S, D) is a stable decorated surface, then Xm is 
a proper subvariety of W_mQs,D for all 

when g = 3; 

when g = 4, 5, 6; 

when g ~ 7. 

In some sense, this theorem says that most elements of W -rnr s,D 
do not extend to any handle body. 

Denote the Zariski closure of Au,D in 9s,D by .Cu,D and its intersec
tion with W_mUs,D by w_rnLU,D· Since fs,D is Zariski dense in 9s,D, 
Crn is contained in the Zariski closure of the image of the map 

F: 9s,D x W_m.Cu,D--> 9s,D 

defined by F(g,>.) = g>.g- 1 . 

To prove the result we show that the image of Crn in Gr~rn 9s,D is 
contained in a proper subvariety. Since Au,D is contained in Mf/ 9s,D, 
W_m.Cu,D is a subgroup of Mf!W-rn9S,D· Consequently, the image of 
Crn in Gr~m 9s,D is contained in the Zariski closure of the image of the 
map 

Gr~ 9s,D X Mfj Gr~m 9s,D--> Gr~m 9s,D· 

induced by conjugation. 
The following is an immediate consequence of a theorem of Chevalley 

[5], which can be found in exercises 3.18 and 3.19 of [25, Chap. II, sect. 3]. 
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Lemma 11.2. Suppose that X is a quasi-projective variety over a 
field and that Y is a closed subvariety. If G x X -+ X is the action of 
an algebraic group on X, then the image G · Y of the restricted action 
G x Y -+ X is a constructable subset of X whose Zariski closure in X 
has dimension 

dim G · Y = dim Y + dim G - dim Gy 

where Gy = {g E G: g(Y) ~ Y}. D 

Recall that Crt 9s,D ~ Sp(H) where H = H1(S). We apply the 
Lemma to the adjoint action of G = Sp(H) on 

X= Cr~m 9s,D ~ Cr~m 9S,D where Y = M[/ Cr~m 9S,D· 

Proposition 8.5 implies that Gy = Mf/Sp(H). Applying the Lemma, 
and using the fact that sp(H) = M!j sp(H), we see that the codimension 
of the closure of the Sp(H) orbit of Mf/ Cr~m gs,D in Cr~m 9s,D satisfies 

codimSp(H) · Mf/ Cr~m9S,D 

= dimCr~m9s,v/MJ'- dimSp(H)/MoSp(H) 

~dim Cr~1 Cr~m 9s,D- dim Cr~1 sp(H). 

It remains to show this is positive for all m in the statement of the 
theorem. First, since Cr~ sp(H) is the symmetric square of a maximal 
isotropic subspace of H, it has dimension g(g + 1)/2. 

We use representation theory to find a lower bound for the other 
term. Each Crf; Cr~ gs,v is a Cr~ Crt 9s,v-module. Recall from 
the proof of Corollary 10.6 that Cr~ Crt gs,D is isomorphic to g[9 , so 
that its irreducible representations are given by Young diagrams with 
::; g rows. These are the same Young diagrams that parametrize the 
irreducible sp(H)-modules, where H = H 1(S). 

Proposition 11.3. If g ~ 3 and m > 1, then Cr~1 Cr~m 9s,D 
contains the g[9 -module corresponding to the partition [k, k] when m = 
2k and [k, k, 1] when m = 2k- 1. 

Proof. Results of Oda [42] and Asada-Nakamura [1] imply that if 
m > 0, then the Sp(H)-module Cr~m us,D contains the representation 
[k, k] when m = 2k and [k, k,1] when m = 2k -1. If we take Cr~ sp(H) 
to be positive roots of sp(H), then the highest weight vectors of each 
of these representations lies in Cr~1 Cr~m9S,D· Since g[9 is a subal
gebra of sp(H) with the same Cartan subalgebra, the g[9 -submodule 
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of Gr~1 Gr:::'m gs,D generated by v will correspond to the same parti
tion. Q.E.D. 

Using the formula [13, (6.4)], when k ::0: 2 we have: 

. (g- 1)(g + k- 1) Il~:6(g + j) 2 

d1m V[k,k) = k!(k + 1)! 

. (g- 1)(g- 2)(g + k ~ 1) Il~:6(g + j) 2 

d1m V[k,k,l] = (k _ 1)!(k + 2)! 

where V,x denotes the g(9 -module corresponding to the partition>.. These 
dimensions increase monotonically with k. The proof is completed by 
an elementary computation, which is left to the reader. 
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