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Differential characters and the Steenrod squares 

Kiyonori Gomi 

Abstract. 

The groups of differential characters of Cheeger and Simons admit 
a natural multiplicative structure. The map given by the squares of 
degree 2k differential characters reduces to a homomorphism of ordi­
nary cohomology groups. We prove that the homomorphism factors 
through the Steenrod squaring operation of degree 2k. A simple ap­
plication shows that five-dimensional Chern-Simons theory for pairs of 
B-fields is S£(2, Z)-invariant on spin manifolds. 

§1. Introduction 

The group of Differential characters, introduced by Cheeger and Si­
mons [1], is a certain refinement of ordinary cohomology involving infor­
mation of differential forms. From the beginning, differential characters 
enjoy numerous applications to geometry, topology and mathematical 
physics. 

We recall the definition here: let X be a smooth manifold. We de­
note the group of singular p-chains with coefficients in Z by Cp(X) = 
Cp(X; Z), and singular p-cycles by Zp(X) c Cp(X). A differential char­
acter of degree£ is defined to be a homomorphism X : Ze(X) -+ IR./Z 
such that there exists a differential(£+ 1)-form w satisfying x(8r) = fr w 
mod Z for all T E CH1 (X). The group of differential characters of de­
gree£ is denoted by fie(X, IR./Z). 

It is known [1] that there is a bilinear map on differential characters: 

The bilinear map U, which we call the cup product, is associative. The 
cup product is also graded commutative in the sense that X1 U X2 

( -1)(£1 +l)(i2 +l)X2 U X1 for Xi E jjei (X, IR./Z). 
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Now we consider the quadratic map 

i/ : fit(X, TR..j'll) ----t fi2H 1 (X, TR..j'll) 

defined by i/(x) = xux. If we take an even integer£= 2k, then ij2k gives 
rise to a homomorphism by the graded commutativity. Moreover, ij2 k 

descends to give the following homomorphism of ordinary cohomology 
(see Lemma 3.8): 

q2k: H 2k+ 1(X;7l) 0'll2 ----t Hom(H4k+l(X;7l),7l2)· 

In the case of k = 0 and X = S1 , an explicit formula of the cup product 
in [1]leads to q0 = 1, so that q2k is non-trivial in general. 

The homomorphism q2 has a relationship with the 5-dimensional 
topological field theory with Chern-Simons action studied by Witten in 
[10]. To be more precise, we assume for a moment that X is a compact 
oriented 5-dimensional manifold. We take BRR x BNs = H2(X, TR..j'll) x 
H2 (X, TR../'ll) to be the space of fields (modulo gauge transformation), 
and consider the action functional Ics : BRR x BNs -. TR../'ll given by 
Ics(BRR, ENs) = -(BRRUBNs)(X). Notice that S£(2, 'll) acts on BRRX 
BNs in the standard manner, however, Ics is not generally invariant 
under the action. This is the point q2 appears: Ics has the SL(2, 'll)­
invariance if and only if q2 = 0. In the case where X is the direct 
product of a 4-dimensional spin manifold and S1 , it is shown [10] that 
Ics acquires the SL(2, 'll)-invariance on a certain subgroup in BRRXBNs· 

In the present paper, we prove generally that the homomorphism 
q2k factors through the Steenrod squaring operation ([9], see [7, 8]): 

Sq2k: H2k+l(X;7l2) ----t H4k+l(X;7l2)· 

Let L and 1r be the homomorphisms in the universal coefficients theorems: 

0-. H 2k+l(X;7l) 0'll2 ~ H 2k+l(X;'ll2)-. Tor(H2k+2(X;'ll),'ll2)-. 0, 

0 -.Ext(H4k(X; 'll), 'll2) -.H4k+ 1 (X; 'll2) ~Hom(H4k+l(X; 'll), 'll2) -.o. 
The main result of this paper is: 

Theorem 1. q2k = 1r o Sq2k o L. 

As a consequence, we can immediately see that the Chern-Simons 
action Ics has the S£(2, 'll)-invariance for a compact 5-dimensional spin 
manifold X. 

As the group of differential characters refines ordinary cohomology 
theory, the notion of generalized differential cohomology [6] refines gen­
eralized cohomology theory involving information of differential forms. 
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For differential (twisted) K-theory, a quantity similar to q2 k is shown 
to be generally non-trivial [5]. It may be interesting to establish coun­
terparts of Theorem 1 in generalized differential cohomology theories, 
which should be answered in a future work. 

The present paper is organized as follows. In Section 2, we review 
the cup product on ordinary cohomology and the Steenrod squaring 
operations. We also review homotopies between the cup product on co­
homology with coefficients in JR. and the wedge product of differential 
forms. Such a homotopy is used in defining the cup product of dif­
ferential characters. In Section 3, we describe the group of differential 
characters as a cohomology of a cochain complex, and introduce the cup 
product. After a study of the graded commutativity of the cup product, 
we prove Theorem 1. 

§2. The cup product on ordinary cohomology 

2.1. The cup product 

Let X be a topological space. We denote by Cp(X) = Cp(X; Z) 
the group of singular p-chains on X, and by 8 : Cp(X) -+ Cp-1(X) 
the boundary operator. The subgroup of cycles in Cp(X) is denoted by 
Zp(X) as usual. 

We write C. (X) for the singular chain complex, and C. (X)®zC. (X) 
for the chain complex obtained by the tensor product. Both chain com­
plexes are augmented over the &::-module Z. We introduce a chain map 

T: C.(X) 161z C.(X)-+ C.(X) 161z C.(X) 

by T(a1 161 az) = ( -1)1u,llu2 1az 161 a-1. 
By the method of acyclic models ([3], see [4, 8]), we have: 

Lemma 2.1. There exists a sequence {D;k::o of functorial homo­
morphisms Di: C.(X)-+ C.(X) 161z C.(X) raising the degree by i such 
that: 

Do is a chain map preserving the augmentations; 
8Di- (-1)tDi8 = Di-1 + (-1)tTD;-1 fori~ 1. 

If { Di} and { Da are as above, then there exists a sequence { Ei h::::o of 
functorial homomorphisms Ei : C.(X) -+ C.(X) 161z C.(X) raising the 
degree by i such that: 

(c) Eo = 0; . . 
(d) D~-Di=Ei+(-1)tTEi+8Ei+1+(-l)'Ei+18 fori~O. 

Proof. We follow [8] (Chapter 5, Section 9). Let R = Z[t]/(t2 - 1) 
be the group ring of 2::2 = Z/22::. We define a chain complex (F., 8) 
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over R as follows. For i 2: 0, Fi = R(ei) is the free R-module of rank 
1 generated by ei. For i < 0, we put Fi = 0. The boundary operator 
8: Fi---+ Fi_ 1 is 8(ei) = (1 + ( -1)it)ei_1 . We make Z into an R-module 
by letting t E R act as the identity. Note that F* is augmented over 
the R-module Z. The R-module structure on F* makes F* ®z: C* (X) 
into a chain complex over R. We also make C*(X) ®z; C*(X) into a 
chain complex over R by letting t E R act as T. Both of these chain 
complexes are augmented over the R-module Z. Now, by means of 
the method of acyclic models, there exists a functorial chain map D : 
F* ®z; C*(X) ---+ C*(X) ®z C*(X) preserving the augmentations, and 
such chain maps D and D' are naturally chain homotopic. Then D 
gives the sequence { Di}i>O of functorial homomorphisms Di : C* (X) ---+ 
C*(X) ®z; C*(X) stated in the lemma by setting D(ei 0 a) = Di(a). 
Similarly, a natural chain homotopy E between D and D' gives {Ei}i>O 
by setting E(ei 0 a)= Ei+ 1 (a). Q.E.D. 

Let A be either Z, Z2 orR We denote by (CP(X; A),6) the singular 
co chain complex with coefficients in A. Let { Di} be a sequence of nmc­
torial homomorphisms in Lemma 2.1. Using the natural multiplicative 
structure on A, we define a homomorphism of A-modules 

u: CP(X; A) ®A CP(X; A)---> cp+q(x; A) 

by f U g = D 0(f 0 g). Since Do : C*(X) ---+ C*(X) ::>9z: C*(X) gives a 
diagonal approximation ([8]), U induces the cup product on H*(X; A). 

For later convenience, we let { Di h::::o be the sequence of functo­
rial homomorphisms Di : C*(X; A) ®A C*(X; A) ---+ C*(X; A) given by 
Di(f ®g) = DJ(f 0 g). By definition, Di lowers the degree by i, and 
satisfies 

Di6- (-1)i6Di = Di- 1 + (-1)iDi- 1T, 

where T: C*(X; A)®AC*(X; A)---+ C*(X; A)®AC*(X; A) is the cochain 
map given by T(f ®g) = (-1)1fll9lg 0 f. 

2.2. The Steenrod squaring operations 

Recall that the Steenrod squaring operations [7, 8, 9] are the additive 
cohomology operations 

characterized by the following axioms: 

(a) Sq0 = 1, 
(b) SqP(c) = c U c forcE HP(X; Z2 ), 

(c) Sq2 (c) = 0 forcE HP(X;Z2 ) with i > p, 
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(d) Sqi(cu c') = Li=J+i' Sqi(c) U Sqj' (c') for c,c' E H*(X;Z2). 

We follow [8] to realize the Steenrod squaring operations: let { Di h::::o 
be as in Lemma 2.1, and {Dih>o the associated sequence of functorial 
homomorphisms Di : CP(X; Z2) ®z2 Cq(X; Z2) -t CP+q-i(X; Z2). For 
i 2: 0 we define homomorphisms Sq i : CP (X; Z2) -t CP+i (X; Z2) by 

S i(c) = { . 0 i > p, 
q DP-•(c®c) i-.5,p. 

These homomorphisms induce the Steenrod squaring operations Sqi 
HP(X; Z2) -t HP+i(X; Z2). 

2.3. The cup product and the wedge product 

Let X be a smooth manifold. The integration on singular simplices 
gives a functorial cochain map from the de Rham complex (O*(X), d) to 
( C* (X; lR), 8). As is well-known, there exists a homotopy between the 
wedge product WI 1\ w2 and the cup product WI U w2 . In other words, 
the diagram: 

O*(X) ®JR n*(X) ~ O*(X) 

1 1 
C*(X; JR) ®JR C*(X; JR) -------+ C*(X; JR) 

u 

is commutative up to a homotopy. In this subsection, we review such 
a homotopy, since it will be used in defining the cup product on the 
groups of differential characters (Definition 3.4). 

Lemma 2.2. There exists a sequence {Bi}i>O of functorial homo­
morphisms Bi : n*(X) ®JR O*(X) -t C*(X; JR) lowering the degree by i 
such that: 

B 0 =0· 
a/\(3-'au(J = B~d(a®f3)-t-8BI(a®(3) fora,(J E O*(X); 
-D' = B' + ( -1)'B'T + B•+Id + ( -1)'8B•+l fori 2: 1. 

Proof. The proof is almost the same as that of Lemma 2.1: we put 
R' = JR[t]/(t2 - 1), and regard lR as an R'-module by letting t E R' 
act as the identity. We define a cochain complex (P*, 8) over R' as 
follows. For i 2: 0, pi = R' (ei) is the free R' -module of rank 1. For 
i < 0, we put pi = 0. The coboundary operator 8 : pi -t pi+I is 
8(ei) = (1- (-1)it)ei+l. Then we have two cochain complexes P* ®JR 
C*(X;IR) and O*(X) ®JR O*(X) over R'. We define functorial cochain 
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maps W, U: O*(X) ®JR O*(X)----> F* ®JR C*(X; IR) by 

W(o: ® (3) = (1 + t)e0 ® (o: A (3), 

U(o: ® (3) = L (ei ® Di(o: ® (3) + tei ® DiT(o: ® (3)). 
i2':0 

We now appeal to the method of acyclic models. (In particular, Theo­
rem 7B in [4] suits the present case.) Then there exists a natural cochain 
homotopy B between Wand U. Because B is an R'-module homomor­
phism, we have the following expression: 

B(o: ® (3) = L (ei ® Bi+1 (o: ® (3) + tei ® Bi+lT(o: ® (3)). 
i2':0 

We can easily verify that the sequence of homomorphisms {Bi} above 
has the properties stated in the present lemma. Q.E.D. 

§3. Differential characters 

3.1. Cohomology presentation 

We realize the group of differential characters as a cohomology group 
([2, 6]). 

Definition 3.1. Let X be a smooth manifold. For a positive integer 
p, we define ( 6 (p) *,d) to be the following co chain complex: 

C(p)q = { cq(X; z) x cq- 1 (X;JR), q < p, 
cq(x; z) x cq- 1 (X; JR) x nq(x), q?. p, 

d(b, f)= { (8b, -b- 8!), (b, f) E t;'(P):~_} < p- 1, 
(8b, -b- 8J, 0), (b, f) E C(p) , 

d(c, h, w) = (8c, w- c- 8h, dw), (c,h,w) E C(p)q, q ?_p. 

We denote the cohomology group of this complex by H(p)q = H(p)q(X). 

The following lemma is easily shown. 

Lemma 3.2. For a positive integer p, we have the exact sequences: 

0 _____. HP- 1(X; IR/Z) ----> H(p)P(X) ~ oP(X)z----> 0, 

o _____. f!P- 1 (X)/W-1(X)z _____. H(p)P(X) ~ HP(X; Z) _____. o, 

where Oq(X)z is the group of closed integral q-forms. 
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As in Section 1, we denote by fit(x, IR/Z) the group of differential 
characters of degree£. 

Lemma 3.3. There is an isomorphism: 

fi(R + 1)HI(X) --+ fit(X, IR/Z). 

Proof For x E fi(£+1)i+I(X), let (c,h,w) E Z(£+1)HI be a rep­
resentative of x. Note that hE Ce(X;IR). We define a homomorphism 
x: Ze(X)--+ IR/Z by x(u) = (h,u) mod Z. Because (c,h,w) is a cocy­
cle, we have w = c + 8h. Hence x(8r) = fr w mod Z forTE CHI(X), 

so that x E fit(X, IR/Z). The assignment x ~ x gives rise to a well­
defined homomorphism ii(R + 1)l+l(X)--+ fit(X,IR/Z). It is known [1] 
that fit(X, IR/Z) fits into the exact sequences: 

0--+ He(X;IR/Z)--+ fit(X,IR/Z) ~ n~'+I(X)z--+ 0, 

0--+ nt(X)/Oe(X)z--+ fit(X,IR/Z) ~ HHI(X;Z)--+ 0. 

Comparing the exact sequences above with those in Lemma 3.2, we can 
see that the homomorphism is bijective. Q.E.D. 

In the remainder of this paper, we will mean by H(R + 1)~'+I(X) the 
group of differential characters fit(x, IR/Z). 

3.2. The cup product 

Now we introduce the cup product on H(p)P(X) ~ fiv-I(X,IR/Z). 
Recall that, by Lemma 2.2, we have a homotopy BI : 0P(X)0JR0q(X)--+ 
cv+q-l(X;JR) such thatw1Aw2-WIUW2 = B 1d(wi0W2)+8B1(wi0W2)· 

Definition 3.4. We define a homomorphism 

U: C(p)P 0z C(q)q ----+ C(p + q)v+q 

by setting 

(ci, h1, wr) U (c2, h2, w2) 

= (ci U c2, ( -1)Pci U h2 +hi U w2 + BI(wi 0 w2), w1 A w2). 

The cup product on differential characters is defined to be the induced 
homomorphism U: H(p)P(X) 0z H(q)q(X) --+ H(p + q)P+q(X). 

It is known [1] that the cup product is associative and graded com­
mutative: 

(XI U X2) U X3 =XI U (x2 U X3), 

XI U X2 = ( -1)P1 P2 X2 U XI, 
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where Xi E ii(pi)Pi (X). The graded commutativity will be shown in the 
next subsection. 

It would be worth while to describe an example due to Cheeger and 
Simons [1]. Notice that H(l)I(X) ~ H0 (X,ffi./Z) ~ c=(X,U(l)). We 
consider the case of X = SI. For f : SI -t U(l) we can find a map 
F : ffi. -t ffi. such that f(O) = exp(27rHF(O)). We define D..t E Z 
by F(O + 27r) = F(O) + D..t. Similarly, we introduce G : ffi. -t ffi. to 
g: SI -t U(l). Then the cup product f U g E fi(2) 2(X) ~ ifi(Sl, ffi./Z) 
is expressed as 

3.3. The graded commutativity of the cup product 
We here introduce an analogy of the sequence of homomorphisms 

{ Di }i~o to the co chain complex ( 6 (p) *, d). 

Definition 3.5. Let p, q,j5, ij be positive integers. 
(a) For a non-negative integer i, we define a homomorphism 

as follows: 

. 2" 
F 1 ((ci,hi,WI) 0 (c2,h2,w2)) = 

( -l)P D 2i-I(hi 0 h2) + ( -l)P D 2i(ci 0 h2) 

+ D 2i (hi 0 w2) + B2i+I (w1 0 w2), 
2+I F 1 ((ci,hi,WI) 0 (c2,h2,w2)) = 

( -l)P D 2i (hi 0 h2) - D 2i+I (hi 0 c2) 

- (-l)PD2i+l(w10h2)- B 2i+2(wi0w2), 

where n-I(hl 0 h2) = 0. When WI or w2 is irrelevant, we substitute 0 
for it. 

(b) We define a sequence· { Gi h>o of homomorphisms 

by setting 

Gi((ct, hi, WI) 0 (c2, h2, w2)) = 
(Di(ci 0 c2), Fi((ct, hi, wt) 0 (ct, h2, w2)), Wi(wi 0 w2)), 
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where Wi(wl0w2) = 0 fori> 0 and W0 (wl0w2) =WI l\w2. When wl 
or w2 is irrelevant, we substitute 0 for it. 

Proposition 3.6. The sequence of homomorphisms {Gih>o obeys 

(a) G04 = dG0 ;_ v • • • • 

(b) G'd- ( -1)'dG' = a•-l + ( -1)'G'-1T fori 2:: 1, 

where the cochain map T: C(p)P 0z C(q)ii-+ C(q)ii 0z C(p)P is defined 
by T(x1 0 x2) = ( -1)Piix2 0 x1. 

Proof. We can directly prove (a) by Lemma 2.2. The proof of (b) 
amounts to showing the following formulae: 

p2j _ p2jT = -D2j+l _ 8p2J+l + p2j+ld, 

p2J+l + p2j+lT = D2J+2 + 8p2J+2 + p2j+2d, 

wherej 2:: 0. We can show them by Lemma 2.1 and Lemma 2.2. Q.E.D. 

Since G0 : C(p)P 0;;z C(q)q-+ C(p + q)P+q induces the cup product, 
we have: 

Corollary 3. 7. The cup product is graded commutative. 

3.4. The main theorem 
Recall that we defined f/ : ii(.e + 1)l+1(X) ---+ H(2£ + 2)2l+2(X) 

by setting q'(x) =xU x. 

Lemma 3.8. Fork 2:: 0, the map q2k induces the homomorphism: 

q2k: H 2k+l(X; Z) 0 Z2 ---+ Hom(H4k+l(X; Z), Z2). 

Proof. Since the cup product is graded commutative, we have 

q2k(x+y) = xUx+xUy+yUx+yUy = xUx+yUy = q2k(x) +q2k(y). 

We focus on the exact sequences in Lemma 3.2. Clearly, we have 
81(q2k(x)) = 81(x) 1\ 81(x) = 0. For a E 0 2k(X)/02k(X);;z, we also 
have q2k(a) = ~d(o: 1\ a) = 0 in 0 4k+l(X)/04k+1(X)z. Hence the ho­
momorphism q2k descends to 

q2k : H 2k+1(M; Z) ---+ H 4k+1(M; ~/Z) ~ Hom(H4k+l (M; Z), ~/Z). 

Using again the graded commutativity, we have 2q2k(x) = 0, so that 
(q2k(x))(a) belongs to (~Z)/Z c ~/Z. The identification (~Z)/Z ~ 
Z/2Z gives 

q2k : H 2k+1(M; Z) ---+ Hom(H4k+l (M; Z), Z2). 

Because (q2k(2x))(a) = 2(q2k(x))(a) = 0, the q2k descends to give q2k. 

Q.E.D. 
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We are in the position of proving the main result: 

Theorem 3.9. q2k = 1r o Sq2k o ~. 

Proof. For any abelian group A, we have the natural injection 

So we will verify the coincidence of q2k and 1r o Sq2k o ~ regarding 
them as homomorphisms H 2k+ 1 (M; Z) -+ Hom(H4k+1 (X; Z), Z2 ). Let 
x = (c, h, w) be a cocycle in Z(2k + 1)2k+1 . Because any cochain with 
coefficients in ~ is divisible by 2, the following formula is derived from 
Proposition 3.6: 

Therefore we have the following expression of q2k: 

where a E Z4k+l (X). This expression of q2k coincides with that of 
1r o Sq2k o ~, by means of the realization of Sq2k in Section 2. Q.E.D. 

An example of q2k is given by taking X = 8 1 . Then Sq0 = 1 implies 
that q0 : Z2 -+ Z2 is the identity map. We can verify this example 
directly by using the formula at the end of Subsection 3.2. 

In general, for a compact oriented ( 4k + 1 )-dimensional smooth 
manifold X without boundary, the Steenrod squaring operation Sq2k 

is expressed as Sq2k(c) = v2k(X) U c for c E H 2k+ 1(X; Z2), where 
v2k(X) E H 2k(X; Z2) is the 2k-th Wu class of X, ([7, 8]). Note that, in 
this case, the evaluation of the fundamental class [X] E H4 k+l (X; Z) of 
X simplifies q2 k as 

Corollary 3.10. If X is a compact oriented (4k +I)-dimensional 
smooth manifold without boundary, then q2k has the expression: 

q2k(c) = (v2k(X) U ~(c), [X]). 

For example, when X is 5-dimensional and spin, we have v2 (X) = 
w2(X) = 0, so that q2 = 0. As is mentioned in Introduction, q2 is 
the obstruction to the SL(2, Z)-invariance of the Chern-Simons action 
functional Ics(ERR, ENs) for pairs of "E-fields" ERR, ENs E H(3)3 (X). 
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Thus, if X is spin, then Ics has the SL(2, Z)-invariance. In the case that 
X is the direct product of a compact oriented 4-dimensional manifold }.1 
and Sl, the SL(2, Z)-invariance was known by Witten [10] forB-fields 
corresponding to closed paths in H 2 (M; ~)/ H 2 (M; Z). This fact follows 
from our result, since X = M x S1 is spin. 
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