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Pontrjagin classes and higher torsion of sphere
bundles

Kiyoshi Igusa

Abstract.

By a classical result of Schafer and Kahn ([12], [6]), oriented topo-
logical sphere bundles have well defined rational Pontrjagin classes. In
the smooth case, we show that the corresponding Pontrjagin charac-
ter is proportional to the higher Franz-Reidemeister torsion invariant
in each degree when the fiber is even dimensional and we discuss the
relationship in the odd dimensional case.

This short paper is intended to answer a question about oriented
smooth sphere bundles that Shigeyuki Morita and Dieter Kotschick
asked me at the AIM (American Institute of Mathematics in Palo Alto)
conference in March, 2005 on the moduli space of curves, namely: Can
higher Franz-Reidemeister torsion be used to define Pontrjagin classes
for smooth oriented odd-dimensional sphere bundles?

If a smooth oriented sphere bundle £ — B has a section then the
vertical tangent bundle of E along the section can be used to define the
Pontrjagin classes and therefore the Pontrjagin character of the bundle
E. In the case when the fiber is an even dimensional sphere this Pontr-
jagin character is proportional to the higher Franz-Reidemeister torsion
invariant. Therefore, Morita and Kotschick pointed out to me that (the
appropriate scalar multiple of) this higher torsion invariant can be used
as a generalization of the Pontrjagin character and therefore defines Pon-
trjagin classes for all oriented even dimensional smooth sphere bundles.
In the case of an odd dimensional sphere bundle the analogous state-
ment is false by a construction of Hatcher. If there is a section of the
bundle, the higher Franz-Reidemeister torsion is equal to a multiple of
the Pontrjagin character plus an exotic term which measures how far the
bundle differs from the linear bundle given by the section. The question
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is: Can we specify this decomposition in general, even when there is no
section?

§1. Rational Pontrjagin classes

We recall that a Euclidean bundle is a fiber bundle with fiber R
and structure group Homeo(R", 0), the group of homeomorphisms of R”
preserving the basepoint 0 with the compact open topology. Euclidean
bundles are equivalent to topological microbundles by [7]. We recall the
following classical result.

Theorem 1.1 (Schafer[12], Kahn[6]). Oriented Euclidean bundles
over a finite cell complexes have natural and well defined rational Pon-
trjagin classes which agree, rationally, with the usual Pontrjagin classes
if the bundle is a vector bundle.

Corollary 1.2. Oriented topological sphere bundles over finite com-
plexes have well defined rational Pontrjagin classes.

Proof. The fiberwise open cone of a topological sphere bundle is a
Euclidean bundle. Q.E.D.

Lemma 1.3. If an n-dimensional Euclidean bundle E over a fi-
nite complex contains an embedded n-disk bundle associated to a vector
bundle V then E is fiberwise homeomorphic to V.

Proof. Since R™ is contractible, we can move the base point to the
center of the n-disk. This reduces the structure group of the bundle
to the subgroup of Homeo(R",0) which is orthogonal in a small neigh-
borhood of the origin. There is a deformation retraction of this group
to the orthogonal group O(n) by the one parameter family of contin-
uous automorphisms ¢ given by ¢.(f)(z) = $f(tz) if 0 < ¢t < 1 and

¢o(f) = Df(0) € O(n) is the derivative of f at 0. Q.E.D.

Corollary 1.4. If p : E — B is a smooth oriented sphere bundle
over a compact manifold B and s : B — FE is a section, then the rational
Pontrjagin classes of the sphere bundle E agree with the usual Pontrjagin
classes of the pull-back s*TVE of the vertical tangent bundle T'E of E.

Proof. The Euclidean bundle given by coning off each fiber of F
contains a linear disk bundle associated to the stabilization of s*TVE.
By the lemma, these bundles are homeomorphic. So, they have the same
rational Pontrjagin classes by the theorem. Q.E.D.
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We will combine the Pontrjagin classes of a vector bundle E into
the Pontrjagin character ph(E) =Y phy(E) where

phi(E) = (—1)Fchor(E ® C)

is, up to sign, the degree 4k part of the Chern character of the com-
plexification of E. Since ph(FE) is a polynomial with rational coefficients
in the Pontrjagin classes, oriented Euclidean bundles have well-defined
Pontrjagin characters. Also, it is well-known and easy to verify that the
Pontrjagin character determines the rational Pontrjagin classes.

We will denote the Pontrjagin character of an oriented topological
sphere bundle E by ph'°?(E).

§2. Higher torsion of sphere bundles

We recall the higher torsion invariants defined in [8], [3], [5], [4].
Given any smooth bundle p : £ — B where m; B acts trivially on the
rational homology of the fiber, there are higher torsion invariants

T (E) € H*(B;R)

called the higher Franz-Reidemeister (FR) torsion invariants of E which
are invariants of the smooth bundle but, in general, are not topological
invariants. Oriented smooth sphere bundles satisfy the trivial action
assumption and therefore have well-defined higher FR-torsion invariants.

For oriented smooth bundles E — B with closed even dimensional
fibers, the higher FR-torsion is proportional to generalized Miller-
Morita-Mumford classes Moy (E) which can be defined rationally in
terms of the Pontrjagin character as

My (E) = trj ((—i;@k—)!phk(T“EO € H*(B;Q)

where tr& . H*(E) — H*(B) is the transfer [2]. The coefficients are
chosen so that Mg (E) is equal to the usual Miller-Morita-Mumford
classes, also called tautological classes, for oriented surface bundles ([11],
[9], [10]).

Theorem 2.1. [3],[5] If E — B is an oriented smooth bundle with
closed even dimensional fibers so that m1 B acts trivially on the rational
homology of the fiber then

(=1)kC(2k + 1)
2(2k)!

C(2k+1)

B (ehe(T"E))

T H(E) = Moy (E) =

where ((s) =Y. - is the Riemann zeta function.
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Corollary 2.2. If p: E — B is an oriented smooth even dimen-
sional sphere bundle then

TRH(E) = 502k + Dphi(B)

In particular, THF(E) is a topological invariant.

Proof.  One of the basic properties of the transfer [2] is that the
composition

H (B;Q) ¥ BY(E;Q) 75 (B, Q)

is equal to multiplication by the Euler characteristic of the fiber which in
this case is 2. By naturality of ph!°? and Corollary 1.4, p*(pht°P(E)) =
ph'°P(p* E) = ph(TVE). Transferring down to H**(B) we get:

2ph20p(E) = t'f’g(phk(TvE)) = Zr%i—i__l_)Tzl‘;'cR(E)

proving the formula. Q.E.D.

For smooth oriented odd dimensional sphere bundles, the situation
is not so clear. If the bundle is linear then we have the formula:

Theorem 2.3. [3],[5] If E = S?"71(¢) is the S*"~-bundle associ-
ated to an SO(2n)-bundle £ over B then

—C(2k+1)

R (s () =

phi(§)

However, when the bundle is not linear, there is an exotic component
to the higher torsion. Hatcher gave a family of examples of such bundles.
The first example has the following properties (Theorem 6.4.2 in [3]).

Theorem 2.4 (Hatcher’s example). There is a smooth bundle E —
S* with fiber S'3 which has a section along which the vertical tangent
bundle is trivial but so that 7§ B(E) is equal to +24¢(5) times the gen-
erator of H*(S%).

§3. Exotic torsion

The difference between the two expressions in Theorem 2.3 can be
defined for all oriented smooth sphere bundles as follows.
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Definition 3.1. For any oriented smooth S™-bundle £ — B, we
define the exotic torsion 75, (E) € H**(B;R) by

C(2k +1)

5(E) = thR(E) - (-1 2

phi? (E)

Exotic torsion is zero for all smooth oriented even dimensional sphere
bundles by Corollary 2.2 and for all linear odd dimensional sphere bun-
dles by Theorem 2.3. Therefore, it measures the extent to which E is
not a linear bundle.

In [4], the general theory of higher torsion invariants is discussed.
But the following proposition tells us that exotic torsion does not fit into
this theory.

Proposition 3.2. FErotic torsion, as defined above, is not the re-
striction to sphere bundles of a higher torsion theory as defined in [4].

Proof. Higher torsion theories in degree 4k have an even and an odd
component, each of which is unique up to a scalar multiple. However,
exotic torsion is zero on all linear even and odd dimensional sphere
bundles. So, both even and odd components would be zero making it
identically zero if it were a higher torsion theory. Q.E.D.

This implies that exotic torsion is not an absolute higher torsion
theory. However, it might be an example of a relative theory. As 1
explained in my lecture at the conference in honor of Professor Morita,
there are different definitions of higher relative torsion, three of which
agree according to my joint work with Sebastian Goette.

84. Higher relative torsion

There are three definitions of relative smooth torsion: axiomatic
relative torsion, higher relative Franz-Reidemeister (FR) torsion and
. relative Dwyer-Weiss-Williams (DWW) torsion. The axiomatic relative
torsion is defined when we have a pair of smooth bundles £ — B,
E’ — B over the same base B with compact smooth manifold fibers
M, M’ and a fiber homotopy equivalence f : E — E’. le., f commutes
with the projection to B and induces a homotopy equivalence on fibers
M ~ M’. In this case we have “tangential” and “exotic” relative torsion
invariants 77 (f), 7% (f) € H**(B;R) which measure the extent to which
f is not a fiberwise diffeomorphism.

The tangential relative torsion measures the difference between the
vertical tangent bundles of E and E’. It is the push-down of the Chern
character of the difference bundle, i.e., it is the relative generalized
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Miller-Morita-Mumford class. The ezxotic relative torsion is indepen-
dent of the vertical tangent bundle. By an argument very similar to the
one given in [4], it follows that tangential and exotic relative torsion are
unique up to a scalar factor. This implies that exotic relative torsion is
proportional to higher relative FR torsion.

What Goette and I proved is that the exotic relative torsion is also
proportional to the relative Dwyer-Weiss-Williams torsion when the base
and fiber are closed oriented manifolds. This extends to the case of
arbitrary base spaces but the definitions become more complicated.

4.1. Dwyer-Weiss-Williams smoothing theory

Dwyer-Weiss-Williams smoothing theory works as follows. We take
a topological manifold bundle £ — B (with compact topological mani-
fold fiber M) together with a linear vertical tangent bundle VY E. This
is a vector bundle whose total space is homeomorphic to a neighborhood
of the diagonal AFE in the fiberwise product E xp E (the bundle over
B with fiber M x M). The question is: Given the pair (E,VVE), can
we find a smooth bundle W — B and a homeomorphism f: W — E
which commutes with the projection to B so that f is covered by a non-
singular linear isomorphism of vector bundles f:T'W — VFE so that
f is compatible with the exponential maps to W and E7 We call this a
fiberwise tangential smoothing of (E,VVE).

Let §§/ t(E, VVE) be the space of all fiberwise tangential smoothings
of (E,VYE). We want to know how many components this space has.
In their paper [1] Dwyer, Weiss and Williams give a computation of the
homotopy type of this space (and in particular of ) in the stable range.
Stabilization is given by taking the direct limit with respect to all linear
disk bundles D(€) over E. This gives a space

sSy/'(E,V'E) = lim SY"(D(¢), V'E ® €).

Theorem 4.1 (Dwyer-Weiss-Williams [1]). Assuming that this
space is nonempty, we have a homotopy equivalence

sSHUE, VVE) ~ T gH%(E)

where TpH”(E) is the space of sections of the bundle H*(E) over B
whose fiber is the zero space Q°°(M, ANH(x)) of the homology theory on
the fiber of E with coefficients in the stable h-cobordism space H(x).

This theorem is not stated in this way in their paper [1]. So, Bruce
Williams gave us (Goette and the author) handwritten notes proving
this statement. Excerpts were shown in my lecture. This theorem leads
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to the concept of the stable smooth structure class of an exotic smooth
structure. The idea is as follows.

First of all, this theorem implies that the set of stable tangential
smooth structures on (E,VVE) forms an abelian group since it is mg
of an infinite loop space. However, it would be more accurate to say
that it is an affine space which needs a choice of zero to become an
additive group. This choice is given by a fixed tangential smoothing Ej
of (E,VVE). Then, any other tangential smoothing E gives an element
of this group:

0(E, Eo) € mI'sH*(E)

We call §(E, Eqy) the relative stable smooth structure class of (E, Eg).

4.2. Results of Goette-I.

Sebastian Goette and I looked at the special case when both base
and fiber are closed manifolds. In this case we have the following results.
Details will appear elsewhere.

Theorem 4.2 (Goette-1). If the fiber M and base B of the bundle
E — B are closed oriented manifolds then

molsH”(E) © Q = @ Haim 5-1(E; Q).
k>0

We call the image of 5(E, Eo) in @.q Haim B4k (E; Q) the rela-
tive rational stable smooth structure class of (E, Ep) and denote it by
O(E, Ep). As a consequence of this calculation we can make the follow-
ing definition. Again, this is not the same as the definition given in [1]
but I claim that it is equivalent in the cases where both are defined.

Definition 4.3. Suppose that E, Ey are smooth bundles over B
which are tangentially fiberwise homeomorphic and suppose that the
fiber M and base B are closed oriented manifolds. Then the degree
4k relative Dwyer- Weiss-Williams torsion THWW (E, Ey) € H**(B;Q)
is defined to be the Poincaré dual of the image of the relative rational
stable smooth structure class 6(F, Ey) in Hyim p—4r(B; Q).

Theorem 4.4 (Goette-1). In the situation above, the relative DWW
torsion THWW(E, Eo) is a scalar multiple of the relative FR torsion
TQP,;R(E, Eo)

Corollary 4.5. Suppose that E — B is a smooth oriented sphere
bundle over a closed oriented manifold B. Suppose also that Ey —
B is a linear sphere bundle which is tangentially fiber homeomorphic
to E. Then the relative DWW torsion TRWW(E, Ey) € H*(B;Q) is
proportional to the exotic torsion 75, (E) € H*(B;R).
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Proof. Let cox € R be the proportionality constant between 72VW
and TQF,;R. Then

carti" W (B, Eo) = 737 (B, Eo) = a5 (E) — 135" (Ep)-

Since E and Ej are fiber homeomorphic, they have the same topological
Pontrjagin classes. Therefore, the difference between their higher FR-
torsions is equal to the difference between their exotic torsion invariants.
Since Ey is linear, its exotic torsion is zero. Therefore this difference is
equal to the exotic torsion of E as claimed. Q.E.D.

85. Questions

I will close with two questions, which arise from this correspondence
between higher FR torsion and higher Dwyer-Weiss-Williams torsion.

Question 5.1. For a smooth oriented S**~!-bundle p : E — B
where B is a smooth closed manifold, does there exist an “absolute
rational smooth structure class”

0(E) =Y _0k(E) € @ H* " 1(E;R)

so that
P«(0k(E)) = 131 (E)?

The answer to this question would be “Yes” if there were a unique
or canonical linear sphere bundle Ey which is tangentially fiber homeo-
morphic to E. Then we could define 8(E) to be §(E, Ey). If Ey does not
exist, perhaps we could define 8(F) to be the average value of 6(E, Ey)
using some canonically defined measure on the set of fiberwise smooth
structures on £ — B.

By the Gysin sequence

AN H4k+2n—1(E) LN H4k(B) e, H4k+2n(B) _p; H4k+2n(E) e

this question is almost the same as the question: Is 75, (E) Ue = 07
where e € H?"(B) is the Euler class of E. This condition is certainly a
necessary condition for the existence of §(E).

For even dimensional sphere bundles, 75, (E) = 0. So the analogous
conjecture would be that 6(E) exists and is equal to zero. In the relative
theory, 8(E, Ey) = 6(E, Ey) ® Q is the rational version of the integral
obstruction 5(E7 Ey) to fiberwise stable tangential diffeomorphism, i.e.,
0(E, Ey) = 0 if and only if E x DV is fiberwise diffeomorphic to Eg x DV
where E, Ey are tangentially homeomorphic smooth bundles. So, the
idea that 6(FE) might be trivial would be expressed as follows.
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Question 5.2. Are smooth oriented S?"-bundles E — B “stably
rationally rigid” in the sense that, for sufficiently large IV, the smooth
bundle E x DV — B is uniquely determined up to finite indeterminacy
by the underlying topological bundle of E?7
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