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Li-Yau type gradient estimates and Harnack 
inequalities by stochastic analysis 

Marc Arnaudon and Anton Thalmaier 

Abstract. 

In this paper we use methods from Stochastic Analysis to establish 
Li-Yau type estimates for positive solutions of the heat equation. In 
particular, we want to emphasize that Stochastic Analysis provides nat
ural tools to derive local estimates in the sense that the gradient bound 
at given point depends only on universal constants and the geometry 
of the Riemannian manifold locally about this point. 

§1. Introduction 

The effect of curvature on the behaviour of the heat flow on a Rie
mannian manifold is a classical problem. Ricci curvature manifests itself 
most directly in gradient formulas for solutions of heat equation. 

Gradient estimates for positive solutions of the heat equation serve 
as infinitesimal versions of Harnack inequalities: by· integrating along 
curves on the manifold local gradient estimates may be turned into local 
Harnack type inequalities. 

Solutions to the heat equation 

(1.1) 
a 1 
-u= -Au at 2 

on a Riemannian manifold M are well understood in probabilistic terms. 
For instance, if u = u(x, t) denotes the minimal solution to (1.1), then 
a straightforward calculation using Ito's calculus leads to the stochastic 
representation of u as 

(1.2) u(x, t) = lE (1{t<C:(x)} f(Xt(x))] 
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where f = u( ·, 0) is the initial condition in (1.1), X, ( x) denotes a Brow
nian motion on M, starting from x at time 0, and ({x) its lifetime. 

It is a remarkable fact that exact stochastic representation formu
las for the derivative of solutions to the heat equation can be given, 
expressing the gradient '\lu of u in terms of Ricci curvature. 

The following ·typical example for such a Bismut type derivative 
formula is taken from [11]. 

Theorem 1.1 (Stochastic representation of the gradient). Let D 
be a relatively compact open domain in a complete Riemannian mani
fold M, and let u = u(x, t) be a solution of the heat equation (1.1) on 
D x [0, T] which is continuous on jj x [0, T]. Then, for any v E TxM 
and xED, 

where: 

(1) X = X.(x) is a Brownian motion on M, starting at x, and 
T = T(x) 1\ T where 

T(x) = inf{t > 0: Xt(x) ¢ D} 

is the first exit time from D; the stochastic integral is taken 
with respect to the Brownian motion B in TxM, related to X by 
the Stratonovich equation dBt = //f: 18Xt, where // t: TxM -+ 

Tx. M denotes the stochastic parallel transport along X. 
(2) The process Q takes values in the group of linear automor

phisms of TxM and is defined by the pathwise covariant ordi
nary differential equation, 

dQt = -~ Ric;;.(Qt) dt, Qo = idT.,M, 

where Ric;;. = //i 1 o Rict o !It (a linear transformation of 
TxM}, and (Ric~u,w) = Ricz(u,w) for any u,w E TzM, 
zEM. 

(3) Finally, ft may be any adapted finite energy process taking val
ues in TxM such that £0 = v, £,.,. = 0 and 

(17 1Rtl2 dt) 112 E £1+"' for some c > 0. 

Formula (1.3) is valid for any solution u of the heat equation and 
does not require positivity of u. 
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Remark 1.2. Formula (1.3) is easily adapted to more specific sit
uations, for instance: 

(i) Let u = u(x, t) be a solution of the heat equation (1.1) on D x 
[O,T] such that ult=O = f and u(·,t)J&D = fJ&D. Then 

(vru( ·, T),, v) = -E [!(XT(x)) loT ( Q8 f 8 , dB8 J] , T = T(x) 1\ T. 

(ii) Let u = u(x, t) be a solution of the heat equation (1.1) on 
D x [0, T] such that ult=O = f and u( ·, t) J&D = 0. Then 

Such formulas are interesting by several means. For instance, on a 
complete Riemannian manifold M, starting from the minimal solution 
to the heat equation 

(1.4) u(x, T) = E [ 1{T<((x)} f(XT(x))] 

with bounded initial conditions u( ·, 0) = J, since for arbitrarily small 
T > 0 Brownian motion explores the whole manifold M, we observe that 
the global structure ofM enters in formula (1.4); lower Ricci bounds may 
fail and thus "Brownian motion may travel arbitrarily fast". Neverthe
less, looking at the formula for the gradient vru(-, T), and taking into 
account that 

u(XT(x), T- T) = E:7,. [1{T<((x)} f(XT(x))] , 

we see that Eq. (1.3) reads as 

(vru(·,T),,v) = -E [1{T<((x)}f(XT(x)) loT (Qsfs,dBsJ] 

where T = T( x) 1\ T and T( x) the first exit time of X. ( x) from an ar
bitrarily small chosen neighbourhood of x. In other words, as far as 
the gradient at (x, T) is concerned, Ricci curvature of M matters only 
locally about the point x. 

No derivative of the heat equation appears in the right-hand side of 
Eq. (1.3), thus gradient formulas are well suitable for estimates, see [11]. 
Such inequalities easily allow to bound vru in terms of some uniform 
norm ofu. 

For positive solutions of the heat equation however one wants to do 
better: typically one seeks for pointwise estimates which allow (modulo 
additional terms if necessary) to control vru( ·, T), by u(x, T). 
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Theorem 1.3 (Classical Li-Yau estimate [8]). Let M be complete 
Riemannian manifold and assume that Ric~ -k where k ~ 0. Let u be 
a strictly positive solution of 

and let a > 1. Then 

a 1 
-u = -~u ·on M x JR.+ at 2 

(1.5) c:uJ r (x, T)- a ~u (x, T) ::; c(n, a) [k + ~] . 
If Ric ~ 0, i.e. k = 0, then the choice a = 1 is possible. 

It is a surprising fact which has been noticed by many people that 
no straightforward way to pass from Bismut type derivative formulas to 
Li-Yau type gradient estimates seems to exist. 

Li-Yau type inequalities for positive solutions u of the heat equa
tion aim at estimating Vlogu rather than Vu. This adds an interesting 
non-linearity to the problem which is better to deal with in terms of 
submartingales and Bismut type inequalities than in terms of martin
gales which are the underlying concept for Bismut formulas. This point 
of view has been worked out in [1] for local estimates in the elliptic case 
of positive harmonic functions. Such estimates in global form, i.e., for 
positive harmonic functions on Riemannian manifolds, are due to S.T. 
Yau [12]; local versions have been established by Cheng and Yau [6]. 

In this paper we pursue the approach via submartingales to study 
the parabolic case. Even if it is meanwhile quite standard to obtain Li
Yau type estimates in global form via analytic methods, local versions 
require often completely new arguments [5, 9, 10, 13]. 

In this paper we derive various submartingales which lead to the 
wanted estimates in a surprisingly simple way. 

§2. Basic formulas related to positive solutions of the heat 
equation and some elementary submartingales 

The following formulas for solutions of the heat equation on a Rie
mannian manifold depend on the fact that the solutions are strictly 
positive. 

Lemma 2.1. Let M be a Riemannian manifold (not necessarily 
complete) and let u = u(x, t) be a positive solution of the heat equation 

(2:1). 
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on M x [0, T]. Then the following equalities hold: 

(2.2) (~ll- Ot) (logu) = -~ 1:~! 2 , 

( 1 ) 1jV'uj2 
(2.3) 2L\.- Ot (ulogu) = 2-u-, 

(2.4) (~L\.- Ot) jV'uj2 = ~ IHessu- V'u 0 V'u 12 + Ric(V'u, V'u). 
2 u u u u 

Proof. All three equalities are easily checked by direct calculation. 
Q.E.D. 

Eq. (2.4) in Lemma 2.1 gives raise to some inequalities frequently 
used in the sequel and crucial for our approach. Most of our results are 
based on the following observation. 

Corollary 2.2. Let M be a Riemannian manifold of dimension n 
(not necessarily complete) and let u = u(x, t) be a positive solution of 
the heat equation (2.1). Then we have: 

(2.5) (~L\. _ Ot) IV'ui2 ;::: __!_ (L\.u _ jV'ul2) 2 + Ric(V'u, V'u). 
2 u nu u u 

If Ric;::: -k on M for some k;::: 0, then 

(2.6) (~L\.- Ot) jV'uj2 ;=:: __!_ (L\.u- jV'uj2) 2- k jV'uj2' 
2 u nu u u 

and in particular, 

(2.7) (~L\. - Ot) jV'uj2 ;::: -k jV'uj2. 
2 u u 

Proof This is a direct consequence of Eq. (2.4). Q.E.D. 

Lemma 2.3. Let M be a Riemannian manifold (not necessarily 
complete) and let u(x, t) = Ptf(x) be a positive solution of the heat 
equation 

(2.8) 
{) 1 
-u = -L\.u 
8t 2 

on M x [0, T]. For any Brownian motion X on M, the process 

(2.9) m; := IV' ::~tp2 (Xt) exp,{ -1,t Ric(Xr) dr}, 
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where Ric( x) denotes the smallest eigenvalue. of the Ricci curvature at the 
point x, is a local submartingale (up to its natural lifetime). Furthermore 

(2.10) m; := (logPr-d)(Xt) + ~ lt I v~~~11 2 
(Xs) ds 

(2.11) 3 ( ) 1 {t IV Pr-sfl 2 ( ) 
mt := Pr-d log Pr-tf (Xt) - 2 Jo Pr-sf Xs ds 

are local martingales (up to their respective lifetimes). 

Proof. The first claim is a consequence of (2.5); the second part 
comes from Eqs. (2.2) and (2.3). Q.E.D. 

Lemma 2.4. Let M be a Riemannian manifold and u(x, t) = Ptf(x) 
be a positive solution of the heat equation (2.8) on Mx [0, T]. IfRic ~ -k 
for some k ~ 0, then for any Brownian motion X on M, the process 

T- t IVPr-t/12 ( ) 
(2.12) Nt := 2(1 + k(T _ t)) Pr-tf (Xt)+ Pr-tflogPr-tf (Xt) 

is a local submartingale (up to its lifetime). 

Proof. The proof follows from Ito's formula using inequality (2.7), 
along with Eq~ (2.3). Q.E.D. 

§3. Global gradient estimates 

In this section we explain how submartingales related to positive 
solutions of the heat equation can be turned into gradient estimates. 
The resulting estimates of this section are classical inequalities; our focus 
lies on the stochastic approach. 

The main problem in the subsequent sections will then be to use 
methods of Stochastic Analysis to derive localized versions of the bounds. 
The following gradient estimates follow immediately from Lemma 2.4. 

Theorem 3.1 (Entropy estimate). Let u(x, t) = Ptf(x) be a pos
itive solution of the heat equation on a compact manifold M. Assume 
that Ric~ -k for some k ~ 0. Then 

(3.1) I ~112 (x) ~ 2 (~ + k) Pr (Pr;(x) log Pr;(x)) (x). 

Proof. Indeed if M is compact, then the local submartingale Nt in 
(2.12) is a true submartingale. Let 

T-t 
h(t) = 2(1 + k(T- t)). 
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Then, evaluating JE[No] :::; JE[Nr], we obtain 

IY'Prfl2 
h(O) Pr f (x) + Pr f(x) log Pr f(x) :::; Pr(f log f)(x), 

or in other words, 

IY'Prfl2 1 ( f ) 
PrJ (x):::; h(O) Pr flog Prf(x) (x). 

Dividing through Pr f ( x) completes the proof. Q.E.D. 

Corollary 3.2. Keeping notation and assumptions of Theorem 3.1 
we observe that, for any r5 > 0, 

IV' Pr f(x)l :::; ; 0 ( ~ + k) Pr f(x) 

(3.2) + r5 [Pr (flog f) (x)- Pr f(x) log Pr f(x)]. 

Proof. Indeed with h(O) = T/(2 + 2kT), we conclude from (3.1) 
that 

IY'Prfl ~ ( f f ) 
Pr f (x) :::; V 2fh(O) 28 Pr Pr f(x) log Pr f(x) (x) 

:::; 21r5 ( ~ + k) + r5 Pr (Prj ( x) log Prj ( x) ) ( x). 

Q.E.D. 

Corollary 3.3 (Hamilton [7]). Let M be a compact Riemannian 
manifold such that Ric 2:: -k throughout M for some k 2:: 0. Suppose 
that u(x, t) is a positive solution of the heat equation (2.8) on M x [0, T], 
and let A:= supMx[O,T] u. Then 

(3.3) IY'ul 2 ( 1 ) A ~(x, T):::; 2 T + k log u(x, T)" 

In particular, if Ric 2:: 0 then 

(3.4) IY'ul ( T) < _1_ A 
u x, - Tl/2 2log u(x, T) . 

Proof. The proof of (3.3) is an application of Theorem 3.1, along 
with the observation that Prf*(x) = 1 when f is normalized as f* := 

f / Pr f(x) for fixed x. Q.E.D. 
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Remark 3.4. In the proofs above compactness of the manifold has 
only been used to assure that the local submartingale (2.12) is a true 
submartingale. The results extend to bounded positive solution of the 
heat equation on complete manifolds with lower Ricci bounds. Indeed, 
u(x, t) = Ptf(x) may be assumed to be bounded away from 0 (otherwise 
one may first pass to u* := u +sand let s > 0 tend to 0 in the obtained 
estimate). The term (T- t) j\7Pr-tfl 2 may be bounded by Bismut's 
formula, see [11]. 

We now turn to the classical Li-Yau estimate (1.5). Let M be a given 
complete Riemannian manifold of dimension n such that Ric ;::: -k for 
some k ;::: 0. Suppose that u is a positive solution to the heat equation 
(2.8) on M x [0, T]. Starting from (2.6) in Corollary 2.2 we have 

(3.5) (~~-at) jVuj2 2: ~ (~u- j\7uj2) 2- k 1Vuj2' 
2 u nu u u 

and thus 

(3.6) ( 1 ) 1Vul2 1 2 -~-8t --2: -q -kq-k~u, 
2 u nu 

where 
1Vul2 1Vul2 

q := -- - ~u = -- - 2 Btu. 
u u 

Fixing x E M, let X = X ( x) be a Brownian motion on M starting at x. 
Our first goal is to investigate the process 

( 1Vul2 ) ht --(Xt, T- t) 
U t?':O 

where ht = £f for some adapted continuous real-valued process ft with 
absolutely continuous paths such that £0 = 1 and fr = 0. 

Let qt = q(Xt, T- t), Ut = u(Xt, T- t) and (~u)t = ~u(Xt, T- t). 
Using (3.6) we find (modulo differentials of local martingales) 

(3.7) d ( ht l\7:1 2 (Xt, T- t)) 
(3.8) :::: [htqt + :~t qz- kqtht + (ht- kht) (~u)t] dt. 

Minimizing the term 
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as a quadratic function of qt, we find 

Thus, integrating (3.7) from 0 toT and taking expectations, we obtain 
(3.9) 

IV:I2 (x,T):::; E [loT ( n (ht ~~ht)2 Ut + (kht- ht)(~u)t) dt] 

Theorem 3.5 (Li-Yau inequality for Ric ~ 0). Let M be a complete 
Riemannian manifold of dimension n such that Ric~ 0. Let u = u(x, t) 
be a positive bounded solution of the heat equation (2.8) on M x [0, T]. 
Then, for each x E D, 

where (ft) is an adapted continuous real-valued process ft with absolutely 
continuous paths such that £o = 1 and £T = 0. 

In particular, with the choice ft := (T- t)jT, we obtain 

1Vul2 (x T) - ~u (x T) < !:_ 
u 2 ' u ' - T · 

which is the classical estimate of Li-Yau. 

Proof. By (3.7) we have 

(3.11) 

First note that ~u is a solution of the heat equation as well, hence ( ~u )t 
a local martingale. In particular, 

where ~ stands for equality modulo differentials of local martingales, 
and hence 

E [loT ht (~u)t dt] = -ho (~u)o = -~u(x, T). 
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Thus (3.11) shows that 

IV~I 2 (x, T)- t:..u (x, T)::; nE [ rT c; Ut dt] = nE [ rT c; dt. ur]. 
u u Jo uo Jo uo 

Q.E.D. 

Remarks 3.6. (i) Using (3.9), Theorem 3.5 is easily extended to 
the case of a lower Ricci bound. For local versions of the Li-Yau's esti
mate one could try to modify the process Rt in such a way that Rt already 
vanishes as soon as the Brownian motion Xt reaches the boundary of D. 
We shall not pursue this approach here, but rather adopt an even simpler 
argument in the next section which leads to the local estimate. 

(ii) Of particular interest are localized versions of the entropy esti
mates (3.1) and (3.2). Such estimates lead to Harnack inequalities and 
heat kernel bounds, valid on arbitrary manifolds without bounded geom
etry, see [2, 3]. Results in this direction will be worked out elsewhere [4]. 

§4. Local Li-Yau type inequalities 

Our main task of the remaining sections will be to localize the ar
guments of Section 3 to cover local solutions of the heat equation on 
bounded domains. We start with the Li-Yau estimate. 

Assumption 1. Let M be a complete Riemannian manifold of di
mension n, and D C M be a relatively compact open subset of M with 
nonempty smooth boundary. Furthermore let 

(4.1) k := inf{Ricx(v,v): v E TxM, !vi= 1, xED} 

be a lower bound for the Ricci curvature on the domain D. Finally let 
<p E C 2 (D) with <p > 0 in D and ri8D = 0. 

Assumption 2. Assume that u = u(x, t) is a solution of the heat 
equation (2.8) on D x [0, T] which is positive and continuous on D x [0, T]. 
For xED let X(x) be a Brownian motion on M starting at x at time 0. 
Denote by T(x) its first exit time of D. 

Now, for fixed x and t E [0, T 1\ T(x)[, consider the process 

(4.2) 

where cl, 02 > 0 are constants which will be specified later. 
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Let ht be the solution of 

(4.3) ho = 1; 

in other words, 

ht=exp{-1t (r~r + ~2 (~:(x)) +ak)dr}. 

Then, letting 

qt = ( l\7:1 2 
- b.u) (Xt, T- t), 

we find (modulo differentials of local martingales) 

(4.4) d(htqt) 2:: [ht:L + (ht- kht) qt- kht(b.u)t] dt. 

Thus letting 

(4.5) St := htqt + nutht = ht (qt- nutYt), t E [0, T 1\ T(x)[, 

we get (modulo differentials of local martingales) 

dSt = d(htqt)- nut d(htYt) + n d[u, h]t 

2:: [ht:L + (ht- kht) qt- kht(b.u)t] dt 

+nut ht~2 dt 

- nutht [C1 (T- t)-2 + C2 c'P(Xt) ~-4 (Xt)] dt 

- nC2 ht d[u, ~-2 (X(x))]t 

where the bracket [ ·, ·] stands for quadratic covariation on the space of 
continuous semimartingales and where 

(4.6) 

On the other hand, denoting again 

(4.7) 

and 

(4.8) 

Ut = u(T- t, ·)(Xt), 

V'ut = \i'u(T- t, ·)(Xt) 
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we have for any a > 0, 

-nC2 ht d[u, 'P-2 (Xt)]t 

= nC2 ht2'P-3 (Xt)(\lut, V'tp(Xt)) dt 

~ -2nC2 ht'P-3 (Xt)IY'utiiY''P(Xt)l dt 

= -2nC2 ht ('P-1(Xt) (anut)- 112 IY'utl) 

x ((anut) 112 ('P- 2 IY''PI)(Xt)) dt 

~ ( -a-1C2 ht'P-2(Xt)(qt + ~ut)- C2 an2utht'P-4 IY''PI 2(Xt)) dt 

~ ( -a-1ht(lt- ak)(qt + ~ut)- C2 an2utht'P-4 IY''PI 2(Xt)) dt 

= ( ( a- 1ht + kht) (qt + ~ut)- C2 an2utht'P-4 IY''PI 2(Xt)) dt. 

Hence letting, for a> 0, 

(4.9) 

we get 

where 

dSa,t ~ [ ht :L + (1 + a-1) ht Qt] dt 

+ htY?nut dt 

- nutht [ C1 (T- t)-2 + C2 C.p,a,n 'P-4 (Xt)] dt 

Minimizing the first line on the right hand side, we find 

( 4 (1+a-1 ) 2 ) 
dSa,t ~ ht l';;2 nUt - 4 dt 

-nut ht [ C1 (T- t)-2 + C2 C<p,a,n 'P-4(Xt)] dt. 

Putting things together, we arrive at the following result. 

Lemma 4.1. We keep notation and assumptions from above. As
sume that a > 1 and let 

(4.11) 
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and 

C2 ~ C2(rp,a,n) 

(4.12) 
:= 4- (1! a-1 )2 s~p { (3 + an)jY"rpl2- rp!lrp }· 

Then Sa,t is a local submartingale on [0, T /\ r(x)[. 

Proof. Using 

(4.13) 

we get 

Thus, under condition (4.11) and (4.12), the right-hand side is nonneg
ative. Q.E.D. 

Theorem 4.2 (Li-Yau inequality; local version). We keep the as
sumptions from above. Let u = u(x, t) be a solution of the heat equation 
on D x [0, T] which is positive and continuous on D x [0, T]. 

For any a E ]1, oo[, we have 

(4.14) i'Vuol2 (1 _ 1) !luo nC1(a) nC2(rp,a,n) k 
--2- - +a -- ~ T + 2( ) + na , 

Uo Uo rp X 

where k is a lower Ricci bound on the domain D, and where C1 (a) and 
C2(rp, a, n) are specified in (4.11), resp. (4.12). The function rp is as in 
Assumption 1. 

Recall that uo = u(·,T) and !luo = !lu(·,T) according to (4.7), 
resp. (4.8) 

Proof. Let 

Consider 
S01.,t = ht (qt- a- 1 flut- nutYt). 

We assume that Sa,o > 0 and let Ta be the first hitting time of 0 by S 01 ,t. 

Then clearly T01 < T J\ r(x), since 

qt- a- 1 flut- nutYt 
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converges to -oo as t tends toT 1\ T(x). 
Let 

K := _max (q- a~ 1~u) and m = min u. 
Dx[O,T] f>x[O,T] 

Then, for t E [0, Ta], we have Bt 2: 0, which implies yt ::;· Kjnm. From 
this we easily prove that on [0, Tal, the process Ba,t is a submartingale 
with bounded local characteristics. As a consequence, we have 

Since Ba,r" := 0, this contradicts the assumption Ba,o > 0. Hence we 
must have Ba,o ::; 0, which is the desired inequality. Q.E.D. 

Remark 4.3. In the case of a global solution of the heat equation on 
a compact manifold, we can take cp as a constant and then C2(a, cp, n) = 
0. If moreover k = 0, then one .can take C2 = 0 and C1 = 1, and Bt 
is a local submartingale. This recovers one more time the usual Li-Yau 
estimate 

(4.15) 
1Vuoi2 ~uo n -----<-. 
u~ uo -r 

A similar reasoning applies for global solutions on complete Riemannian 
manifolds with a lower Ricci curvature bound. 

§5. Li-Yau inequality withlower order term 

We keep Assumption 1 and 2 of Section 4 as standing assumptions 
for the rest of the paper and study now the process 

(5.1) 

where 

with constants cl, c2, c3 > 0 to be specified later. 
Let 

(5.2) c'P =sup {3IVcpl2 - cp~cp}. 
D 
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Then we have 

> [ q'f _nut ( 01 + 02 Ocp + ~ jjiV1ul,,2 )] dt 
- nUt (T- t)2 <p4(Xt) n U .Dx[O,T] 

- 202 nut IIIV1ul11- llcpV7cpll; <p-4 (Xt) dt 
U Dx[O,Tj 

~ [ :L -nut ( (T ~1 t)2 + <p4~~t) 
x ( Ocp + 2111:uiii.Dx[O,T] llcpV1cpllv)) l dt 

-nut ~ IIIV1ul,,~ dt, 
n U Dx[O,Tj 

where ll·llnx(O,T] denotes the uniform norm on D x [0, T]. 

Lemma 5.1. Let 

(5.3) 

01 = 1, 02 = Ocp + 2111V1ul11- llcpV1cpllv and 
U Dx[O,Tj 

03 = ~ IIIV7ulll v;; u Dx[O,T] 

with ll·llnx(o,T] the uniform norm on jj x [0, T] and ll·llv the uniform 
norm on D. Then on {Si ~ 0}, the process s: has nonnegative drift. 

Proof. We have 

Consequently, under condition (5.3), 

and the right-hand side is nonnegativeon {Si 2: 0}. Q.E.D. 

Similarly to Theorem 4.2, we obtain the following result. 
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Theorem 5.2 (Local Li-Yau inequality with lower order term). 
We keep the notation from above, as well as Assumption 1 and 2 from 
Section 4. Let u = u(x, t) be a solution of the heat equation on D x (0, T] 
which is positive and continuous on fJ x (0, T]. Then 

l\7u~l 2 ~ .6.uo :::; '!!:_ + ~C"' + (.;:;;:k + 2n ll~\7cpiiD) lll\7ulll . 
u0 Uo T cp (x) cp (x) . U Dx[O,T] 

§6. Local gradient estimates of Hamilton type 

We keep Assumptions 1 and 2 of Section 4 and study now the process 

(6.1) 

where 
c1 c2 

Zt = (T- t) + cp2(Xt) + C3 

for some constants cl, c2, c3 > 0. 
Assume that 0 < u :::; e-3 (this assumption will be removed in 

Theorem 6.1 through replacing u by e-3 u/lluii.Dx[O,Tj)· Let ccp(x) again 
be given by (4.6). Then, denoting 

l\7ul2 
g(t,x) = --(t,x) and 9t = g(T- t,Xt), 

u 

and using the fact that 

\7 (u(1-logu)2) = (log2 u- 1)\7u 

and 

we get 

1 
dSt ;:::: - k 2 9t dt 

- Ut(1 -logut)2 ( cl (T- t? + c2 Ccp(Xt)cp-4 (Xt)) dt 

1 
- 2logut 2 9tZt dt 

- 202(1-logut)(l +logut)cp-3 (Xt) ('\Jut, \7cp(Xt)) dt. 
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Now from u :::; e-3 we get 

-2logut 2: 3(1-logut)/2. 

This together with 11 +log UtI :::; 1 - log Ut yields (modulo differentials 
of local martingales) 

dSt 2: (1-logut){ [ (~zt- k) ~ gt 

- Ut(1-logut) (C1(T- t) 2 + C2ccp(Xt)<p-4 (Xt))] dt 

- C2 [(1-logut) 2J2<p-2(Xt) l\7<p(Xt)l yUi <p-1(Xt) ~] dt} 

2: (1-logut){ [ (~zt- k) ~ gt 

- Ut(1-logut) (C1(T- t? + C2ccp(Xt)<p-4 (Xt))] dt 

- [(1 -logut?ut 4C2<p-4 (Xt) l\7<p(Xt)l2 + ~gtC2<p-2 (Xt)] dt} 

[ 1 2 2: (1 -logut) (Zt- k) 2 gt- Ut(1-logut) 

x ( c1 (T- t) 2 + c2 ( ccp(Xt) + 41\7 <t?(XtW) <p-4 (Xt)) J dt. 

Letting 

we get 

dSt 2: (1-logut) [czt- k)~ gt- ut(1-logut)2(Zt- k) 2 J dt 

2: (1-logut)(Zt- k) [~ gt- Ut(1-logut)2 Zt] dt. 

This proves that St has nonnegative drift on {St 2: 0}. On the other 
hand, St converges to -oo as t---+ T 1\ T(x). 

Similarly to Theorem 4.2, we obtain the following result. 
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Theorem 6.1 (Local Li-Yau inequality of Hamilton type). We keep 
the assumptions as above. Assume that u is a solution of the heat equa
tion on D x [0, T] which is positive and continuous on D x [0, T]. Then 

I 
V'uo 1

2 
::::; 2 (I_+ supv {7JV'c,ol2 - cpllcp} + k) (4 +log llullnx[O,TJ) 2 

~ r ~w ~ 

where cp is as above. 

§7. Explicit upper bounds 

The estimates in TheoremS 4.2, 5.2 and 6.1 have been given in terms 
of a function cp E C2 (D) such that cp > 0 in D and cpJ8D = 0. To specify 
the constants an explicit choice for cp has to be done. 

We fix xED and let lix == p(x, 8D) where p denotes the Riemannian 
distance. We replace D by the ball B = B(x, lix) and consider on B 

(7.1) ( ) 7rp(x, y) 
cp y = COS 28x . 

Clearly cp(x) = 1, cp is nonnegative and bounded by 1, and cp vanishes 
on8B. 

It is proven in [11] that 

(7.2) 

where by convention /lcp-2 = 0 at points where cp-2 is not differen
tiable. Moreover, since the time spent by Xt on the cut-locus of x is 
a.s. zero, the differential of the brackets [cp(Xt), Ut] may be taken as 0 at 
points where cp-2 is not differentiable. As a consequence, all estimates 
in Theorems 4.2, 5.2 and 6.1 remain valid with cp defined by (7.1). 

We are now going to derive explicit expressions for the constants. 
To this end we observe that 

From [11], we get 

which gives for any !3 > 0, 

fl 1r2 (1 + f3)n k 
- 'P::::; M; + 4/3. 
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This yields 

{71\7 12 - ~ } < 7r2 [(1 + (J)n + 7] }5_ 
sup cp cp cp - 462 + 4(3 . 

D X 

Finally we replace o: by a= 1 + o:- 1 to obtain from Theorems 4.2, 5.2 
and 6.1 the following explicit upper bounds. 

Theorem 7.1 (Local Li-Yau inequalities with explicit constants). 
Let u be a solution of the heat equation on D x [0, T] where D is a 
relatively compact open subset of a Riemannian manifold M. Assume 
that u is positive and continuous on D x [0, T]. Furthermore let k be a 
lower bound for the Ricci curvature on the domain D. 

Fix xED and let a E ]1, 2[. For any (3 > 0 we have 

I
V'uol2 -a~uo < 4n + 7r2n[(l+(J+~)n+3] 
uo uo - (4- a2 )T (4- a2 )J,; 

+ ( (4 - 1
a 2 )(3 +a~ 1) nk, 

I 
\luo 12 _ ~uo < !?:_ + n1r2 [(1 + (J)n + 3] + nk 
uo uo - T 46,; 4(3 

+ ~ IIIVulll + n1r IIIVulll 
U Dx[O,T] ll"x U Dx[O,T] 

and 

I 
\luo 12 < 2 (2_ 7r2 [(I +(J)n + 7] (~ 1) k) 
uo - T + 45; + 4(3 + 

X ( 4 +log lluii~:[O,T]) 2 

where n denotes the dimension of M and ll"x the Riemannian distance of 
x to the boundary of D. Recall that u0 = u( ·, T) and ~u0 = ~u( ·, T). 



48 M. Arnaudon and A. Thalmaier 

References 

[ 1] M. Arnaudon, B. K. Driver and A. Thalmaier, Gradient estimates for posi
tive harmonic functions by stochastic analysis, Stochastic Process. Appl., 
117 (2007), 202-220. 

[ 2] M. Arnaudon, A. Thalmaier and F.-Y. Wang, Harnack inequality and heat 
kernel estimates on manifolds with curvature unbounded below, Bull. Sci. 
Math., 130 (2006), 223-233. 

[ 3] M. Arnaudon, A. Thalmaier and F.-Y. Wang, Gradient estimate and Har
nack inequality on non-compact Riemannian manifolds, preprint. 

[ 4] M. Arnaudon, A. Thalmaier and F.-Y. Wang, Gradient-entropy estimates 
on Riemannian manifolds, preprint. 

[ 5] D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau para
bolic inequality, Rev. Mat. lberoam., 22 (2006), 683-702. 

[ 6] S. Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds 
and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 
333-354. 

[ 7] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. 
Anal. Geom., 1 (1993), 113-126. 

[ 8] P. Li and S.-T. Yau, On the parabolic kernel of the Schr6dinger operator, 
Acta Math., 156 (1986), 153-201. 

[ 9] L. Ni, The entropy formula for linear heat equation, J. Geom. Anal., 14 
(2004), 87-100. 

[10] P. Souplet and Qi S. Zhang, Sharp gradient estimate and Yau's Liouville 
theorem for the heat equation on noncompact manifolds, Bull. London 
Math. Soc., 38 (2006), 1045-1053. 

[11] A. Thalmaier and F.-Y. Wang, Gradient estimates for harmonic functions 
on regular domains in Riemannian manifolds, J. Funct. Anal., 155 (1998), 
109-124. 

[12] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. 
Pure Appl. Math., 28 (1975), 201-228. 

[13] Qi S. Zhang, Some gradient estimates for the heat equation on domains and 
for an equation by Perelman, Int. Math. Res. Not., 2006 (2006), Art. ID 
92314, 39 pp. 

Marc Arnaudon 
Laboratoire de Mathematiques et Applications (CNRS: UMR6086) 
Universite de Poitiers, Teleport 2 - BP 30179 
F-86962 Futuroscope Chasseneuil Cedex 
Prance 

Anton Thalmaier 
Unite de Recherche en Mathematiques, Universite du Luxembourg 
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg 
Grand-Duchy of Luxembourg 

E-mail address: arnaudon~ath. uni v-poi tier.s. fr 
anton.thalmaier@uni.lu 




