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The third smallest Salem number in automorphisms 
of K3 surfaces 

Keiji Oguiso 

Abstract. 

We realize the logarithm of the third smallest known Salem num­
ber as the topological entropy of a K3 surface automorphism with a 
Siegel disk and a pointwise fixed curve at the same time. We also show 
that the logarithm of the Lehmer number, the smallest known Salem 
number, is not realizable as the topological entropy of any Enriques sur­
face automorphism. These results are entirely inspired by McMullen's 
works and Mathematica programs. 

§1. Introduction 

The aim of this note is to remark the following two new phenomena 
in complex dymanics of automorphisms of compact complex surfaces. 
These results and their proofs are entirely inspired by impressive works 
of McMullen [Mc02-1], [Mc02-2], [Mc07], [GM02] and Mathematica pro­
grams. 

Theorem 1.1. There is a pair ( S, g) of a complex K3 surface S 
and its automorphism g such that: 

(1) S contains 8 smooth rational curves Ck {0 :::; k :::; 7) whose 
dual graph forms the Dynkin diagram E8 ( -1) and contains no other 
irreducible complete curve. In particular, S is of algebraic dimension 0; 

(2) The topological entropy h(g) is the logarithm of the third smallest 
known Salem number 

h(g) = log 1.200026523 ... ; 
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{3) The fixed point set Sg consists of one smooth rational curve (in 
Uk=oCk) and 8 isolated points, say Qi {1:::; i:::; 7) and Q. The 7 points 
Qi are in Uk=oCk, but Q is not in Uk=oCk; 

(4) g has a Siegel disk at Q and g has no Siegel disk at any other 
point; and 

{5) AutS =(g)~ Z. 

Theorem 1.2. There does not exist a pair (S, g) of a complex En­
riques surface S and its automorphism g such that 

h(g) = log 1.17628081. ... 

Here, the right hand side is the logarithm of the Lehmer number, i.e., 
the logarithm of the smallest known Salem number. 

We shall explain the terms in Theorems (1.1), (1.2) in Section 2. In 
the rest of the introduction, we shall remark a few differences between 
our results and some of preceding known results. 

In [Mc02-2], McMullen constructed the first examples of surface au­
tomorphisms with Siegel disks. They are K3 surface automorphisms 
arising from certain Salem numbers of degree 22, including the 9-th 
smallest known one. In his construction, the resulting K3 surfaces are 
of Picard number 0. So, they have no complete curve, whence, no point­
wise fixed curve as well. Theorem (1.1) tells us that it is also possible to 
have both a Siegel disk and a pointwise fixed curve, necessarily smooth 
rational, at the same time. 

Let S be a rational surface obtained by blowing up at n points 
on IP'2 and g be an automorphism of S. Then, g*(Ks) = Ks and g 
naturally acts on the orthogonal complement K-§ of the canonical class 
in H 2 (S, Z). The lattice K-} is isomorphic to the lattice En( -1), i.e., 
the lattice represented by the Dynkin diagram with n verices Sk (0 :::; 
k:::; n-1) of self-intersection -2 such that n-1 vertices s 1 , s2 , • · ·, sn- 1 

form Dynkin diagram of type An_1 ( -1) in this order and the remaining 
vertex s0 is joined to only the vertex s3 by a simple line. (See [Mc07], 
Section 2, Figure 2.) The lattice En( -1) is of signature (1, n- 1) when 
n 2: 10. Then, g naturally induces an orthogonal action g*IEn(-1) 
(after fixing a marking). By Nagata [Na61] (see also [Mc07], Theorem 
(12.4)), g*IEn( -1) is an element of the Weyl group W(En( -1)), i.e., 
the group generated by the reflections rk (0:::; k:::; n -1) corresponding 
to the vertices sk. The Weyl group W(En(-1)) has a special conjugacy 
class called the Coxeter class. It is the conjugacy class of the product 
(in any order in this case) of the reflections IT~;;;;~rk. McMullen ([Mc07], 
Theorem (1.1)) shows that, when n 2: 10, the Coxeter class is realized 
geometrically by a rational surface automorphism. That is, IT~;;;;~rk = 
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g*IEn( -1) (under a suitable marking) for an automorphism g of S with 
suitably chosen n blown up points. When n = 10, i.e., for E 10(-1), 
the characteristic polynomial of the Coxeter class is exactly the Lehmer 
polynimial, i.e., the minimal polynomial of the Lehmer number over Z. 
In this way, McMullen realized the logarithm of the Lehmer number 
as the topological entropy of some rational surface automorphisms with 
Kg ~ E 10(-1). Note that the Lehmer number is the smallest known 
Salem number. See [FGR99] and the home page quoted there, for the 
list of the smallest 4 7 known Salem numbers. Being also based on his 
preceding result [Mc02-1], Theorem (1.1), McMullen ([Mc07], Theorem 
(A.1)) also shows that the logarithm of the Lehmer number is in fact the 
minimal positive entropy of automorphisms of complex surfaces. So, the 
Lehmer number plays a very special role in automorphisms of compact 
complex surfaces. 

On the other hand, lattice E 10 ( -1) is also isomorphic to the free 
part of H 2 ( S, Z) of an Enriques surface S. So, it is natural to ask if the 
logarithm of the Lehmer number can also be realized as the topological 
entropy of an Enriques surface automorphism or not. Theorem (1.2) 
says that it is not. This may sound negative. However, I believe that 
such an impossibility result is also of its own interest. 
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§2. Salem numbers in automorphisms of compact Kahler sur­
faces 

In this section, we quickly review the terms in our Theorems (1.1), (1.2). 
As nothing is new, those who are familiar with these terms should skip 
this section. 
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(i) Salem number. Let us start by the definition. 

Definition 2.1. A Salem polynomial is a monic irreducible recip­
rocal polynomial <p(x) in Z[x] such that <p(x) = 0 has exactly two real 
roots a> 1 and 1/a off the unit circle 

8 1 := {z E <C iizi = 1}. 

It is then of even degree. A Salem number is the unique real root a > 
1. In other words, a Salem number of degree 2n is a real algebraic 
integer a > 1 whose Galois conjugates consist of 1/ a and 2n- 2 complex 
numbers on 8 1. 

Salem numbers of degree 2 are (m + vm2 - 4)/2 (3:::; mE Z). For 
a given integer n > 0, there are infinitely many Salem numbers of degree 
:::; 2n ([GM02], Theorem (1.6)). On the other hand, Salem numbers with 
bounded degree and bounded (Euclidean) norm are finite. That is, for 
given n > 0 and N > 0, Salem numbers a such that deg a < 2n and 
iai < N are finite. In fact, the elementary symmetric functions of the 
Galois conjugates of a are then bounded, so that the Salem polynomials 
of such Salem numbers are finite. So, it is in principle possible to list up 
all the Salem numbers with explicitly boundded norm and degree. In 
fact, there is a list of all Salem numbers of degree :::; 40 and norm < 1.3 
in the home page quoted by [FGR99], Page 168. The smallest five ones 
(of degree :::; 40) are: 

a 10 = 1.176280 ... , a1s = 1.188368 ... , 

a14 = 1.200026 ... , A14 = 1.202616 ... , 

Aw = 1.216391.. .. 

Their Salem polynomials are 

<p10 (x) = x10 + x9 - x7 - x6 - x5 - x4 - x3 + x + 1, 

'Pis(x) = x18_x17 +xi6_xi5_xi2+xu-xw+x9-x8+x7 -x6-x3+x2-x+1' 

'PI4(x) = x14- xu- xio + x7- x4- x3 + 1' 

<[>I4(x) = x14- x12- x7- x2 + 1' 

cf>w(x) = xio- x6- x5- x4 + 1. 

The smallest Salem number a 10 (in this range) is called the Lehmer 
number. This number is discovered by Lehmer [Le33], Page 477. Lehmer 
stated there that "We have not made an examination of all 10th degree 
symmetric polynomials but a rather intensive search has failed to reveal 



Salem numbers 335 

a better polynomial than <p10 (x). All efforts to find a better equation of 
degree 12 and 14 have been unsuccessful." Since then, it is conjectured 
that the Lehmer number is the smallest among all the Salem numbers. 
However, it is neither proved nor disproved so far. Also in this view, the 
result of McMullen [Mc07], Theorem (A.1) (quoted in the introduction) 
is very impressive. See also [GH01] and [Mc02-1] for other aspects. 

(ii) Topological entropy. Let X be a compact metric space with distance 
function d. Let g be a continuous self map of X. To make statement 
simple, we assume that g is surjective. The toplogical entropy is a mea­
sure of "how fast two orbits {gk(x)h2:o, {gk(y)}k2:0 spread out when 
k --. oo". For the precise definition, we introduce a new kind of distance 
dg,n for each n E Z>o ([KH95], Page 108): 

d9 ,n(x, y) :=max{ d(gk(x), gk(y)) I 0:::; k:::; n- 1}. 

d9 ,n(x,y) measures a distance between the orbit segments {gk(x)}~;;;;~, 
{gk(y)}~;;;;~. Let Bg,n(x, E) be the open ball with center x and ofradius 
E with respect to dg,n· We call such a ball (E,n)-ball. Let S(g,E,n) be 
the minimal number of (E, n)-balls that cover X. Then, "S(g, E, n) being 
larger" means that the orbit segments of two close points (uniformly 
with respect to the original distance d) spread faster in the range 0 :::; 
k::=;n-1. 

The topological entropy of g is the following value ([KH95], Page 108, 
formula (3.1.10)): 

( ) . . logS(g,E,n) 
h g := hm,_,o hmsupn->oo · 

n 

It is shown there that h(g) does not depend on the choice of the distance 
d giving rise to the same topology on X ([KH95], Page 109, Proposition 
(3.1.2)). By definition, h(g) = 0 if g is an automorphism of finite order. 

Let E be an elliptic curve and A = E x E be the product abelian 
surface. By definition, h(ta) = 0 for any translation automorphism 
ta(x) = x+a (a E A). Let M be a matrix in M2(Z) such that det M =1- 0. 
Then M gives rise to the endmorphism g of A: g(x) = Mx. Let o: and 
{J be the eigenvalues of M and reorder them so that lo:l 2:: lfJI. Then, 
according to the three cases 

( i) lo:l 2:: lfJI 2:: 1 , ( ii) lo:l 2:: 1 2:: lfJI , and (iii) 1 2:: lo:l 2:: lfJI , 

we have 

(i) h(g) =log lo:fJI2 , (ii) h(g) =log lo:l2 , and (iii) h(g) =log 1 = 0. 
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The reason is as follows. First, choose sufficiently small E > 0 and 
cover A by N mutually disjoint complex 2-dimensional <:-cubes (in the 
product metric) that are "parallel to" the two complex eigenvectors of 
M (Here we ignore small part of A in covering). Next, divide each of 
N <:-cubes into mutually disjoint (<:, n)-cubes with respect to the new 
distance dg,n· Then, according to the cases (i), (ii), (iii), the numbers of 
the resulting(<:, n)-cubes are approximately N ·Ja,BJ 2(n-l), N ·JaJ2(n-l), 

and N respectively. This implies the result. (See [KH95], Pages 121-
123, for more precise calculations). The values h(g) above coincide with 
the logarithm of the spectral radius of the action of g* I EB~=O H 2 k (A, Z). 
However, this is not accidental: 

Theorem 2.2. Let X be a compact Kiihler manifold of dimension 
n and let g : X -----+ X be a holomorphic surjective self map of X. Then 

h(g) = logp(g*J EBk=O H 2k(X,Z)). 

Here p(g*J EBk=O H 2k(X, Z)) is the spectral radius of the action of g* on 
the total cohomology ring of even degree. 

This is a fundamental theorem often attributed to Gromov and 
Yomdin. The explicit statement with full proof (using Yomdin's re­
sult) is found in Friedland's paper [Fr95], Theorem (2.1). Note that, 
in the proof, we only need the estimate by the spectral radius on the 
cohomology group of even degree. See also [DS04], Pages 315-316, for 
further discussions. As an immediate consequence, we obtain the fol­
lowing important 

Corollary 2.3. (1} h(g) is the logarithm of an algebraic integer. 
(2} h(gn) = nh(g) for a positive integer n. 

(iii} Toplogogical entropy of a surface automorphism. If dim X = 1, 
then by Theorem (2.2), h(g) =log (degg) and it is not so informative. 
Let us consider the case where X is a compact Kahler surface and g is 
an automorphism of X. 

The first important fact is the following result due to Cantat ([Ca99], 
Proposition 1 and its proof): 

Theorem 2.4. Let X be a compact Kiihler surface and g be an 
automorphism of X. Then, 

(1} h(g) =log p(g*JH1,1(S,JR)). Here p(g*JH1•1(S,JR)) is the spec­
tral radius of g*JH1•1 (S,JR). 

(2} Assume that h(g) > 0. Then X is isomorphic to either: 
(i} a rational surface with b2 (X) ;::: 11; 
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(ii) a 2-dimensional complex torus (or its blow up) 
{iii) a K3 surface (or its blow up); or 
(iv) an Enriques surface (or its blow up). 
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See eg. [BHPV04), Pages 244-246, for the classification of compact 
complex surfaces and the definition of surfaces above. Non-minimality 
in (i) is definitely essential. But non-minimal surfaces in (ii)-(iv) are not 
so essential. In fact, if X is not minimal in the class (ii)-(iv), then g de­
scends to an automorphism g of the minimal model (See eg. [BHPV04), 
Page 99, Claim). Moreover, h(g) = h(g). This follows from the fact that 
the exceptional set forms a negative definite sublattice of H 2(X, Z). So, 
surfaces having interesting automorphisms (in the view of topological 
entropy) are non-miminal rational surfaces, 2-dimensional complex tori, 
K3 surfaces and Enriques surfaces. 

Salem numbers naturally appear in the study of automorphisms of 
complex surfaces: 

Theorem 2.5. Let X be a compact Kahler surface and g be an 
automorphism of X. Then the characteristic polynomial ofg*IH2 (X,Z) 
is the product of cyclotomic polynomials and Salem polynomials. In the 
product, there are at most one Salem factor (counted with multiplicities) 
and possibly no cyclotomic factor or no Salem factor. In particular, 
if h(g) > 0, then Salem factor appears in the product and h(g) is the 
logarithm of that Salem number. 

This is due to McMullen [Mc02-2}, Theorem (3.2). The argument 
there is given for K3 surface automorphisms. But it is easily generalized 
to automorphisms of arbitrary compact Kahler surfaces. 

Proof. Consider the real Hodge decomposition of H 2 (X, Z): 

Here V is a vector subspace of H 2 (X, ~) such that 

The Kahler cone K(X) forms a strictly convex open cone of Hi'1 (X). 
Moreover, Hi' 1 (X) is of signature (1, h1•1(X) -1) and Vis positive defi­
nite (see eg. [BHPV04}, Page 143, Theorem (2.14)). As g is an automor­
phism, we have g*(V) = V, g*(Hi'1 (X)) = Hi'1 (X) and g*(K(X)) = 
K(X). As Vis positive definite, the eigenvalues of g*IV are of absolute 
value 1. As g* E O(H2(X,~)), it follows that detg*IH2(X,~) = ±1. 
Thus, the product of the eigenvalues of g*IHi'1(X) is of absolute value 1 
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as well. On the other hand, as g*IHi'1(X) preserves the strictly convex 
open cone JC(X), the spectral radius of g*IHi'1 (X) is given by a real 
eigenvalue, say a> 0, of g*IHi'1 (X) with eigenvector, say ry, in JC(X) 
(the closure of the Kahler cone). This is due to the (generalized) Perron­
Frobenious theorem ([Bi67], Page 274, Theorem). As the product of the 
eigenvalues is of absolute value 1, it follows that a ~ 1. If a = 1, then 
all the eigenvalues of g*IHi'\X) is also of absolute value 1. Hence, 
so are the eigenvalues of g* IH2 (X, JR.). As g* IH2(X, JR.) is defined over 
H 2 (X,Z), all the eigenvalues are then roots of unity by Kronecker's theo­
rem. Next consider the case where a > 1. Consider g-1 . Then 1/ a < 1 
is an eigenvalue of (g-1 )* 1Hi'1 (X). Then, again, by the generalized 
Perron-Frobenius theorem, the spectral radius of (g-1)*1Hi'1 (X) is a 
real eigenvalue, say {3, with eigenvector, say ry', in JC(X). Since 1/a < 1, 
we have {3 > 1. Thus, g*IHi'1(X) has an eigenvalue a':= 1/{3 with the 
same eigenvector ry'. Since a f=. a', the linear subspace H = JR(ry, ry') is 
2-dmensional. From 

(g*ry,g*ry) = a 2 (ry,ry), (g*ry',g*r/) = (a') 2 (r/,ry'), 

we obtain (rJ,rJ) = (ry',ry') = 0. Moreover, we have (ry,ry') > 0, because 
both vectors are in the closure of the Kahler cone JC(X) (and are linearly 
independent). Thus, His of signature (1, 1) and the orthogonal com­
plement V..L in Hi'1 (X) is negative definite. Thus, the remaining eigen­
values of g*IHi'1 (X), that coincide with the eigenvalues of g*IH..L, are 
of absolute value 1. In conclusion, g*IH2 (X,JR.) has two real eigenvalues 
a> 1, 0 <a'< 1 and the other eigenvalues are all of absolute value 1. 
Also, all these values are algebraic integers. This is because g* IH2 (X, JR.) 
is actually defined over H 2 (X, Z). This implies the result. Q.E.D. 

Finally we recall the notion of a Siegel disk (for simplicity only 2-
dimensional case). 

Definition 2.6. (1) Let Ll2 be a 2-dimensional unit disk with a 
linear coordinate system (z1, z2). A linear automorphism (written under 
the coordinate action) 

r( Z1 ) = ( P1 0 ) ( Z1 ) 
Z2 Op2 Z2 

is called an irrational rotation if IP1I = IP2I = 1, and P1 and P2 are 
multiplicatively independent, .in the sense that (mi. m2 ) = (0, 0) is the 
only integer solution to 
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(2) Let X be a complex analytic surface (not necessarily compact) 
and g be an automorphism of X. A domain U C X is called a Siegel 
disk of (8, g) if g(U) = U and (U, giU) is isomorphic to some irrational 
rotation (.L\2 , f). In other words, g has a Siegel disk if and only if there 
is a fixed point Pat which g can be locally analytically linearlized to an 
irrational rotation. 

The existence of a Siegel disk implies that there is no topologically 
dense orbit. The first examples of surface automorphisms with Siegel 
disks were discovered by McMullen ([Mc02-2], Theorem (1.1)) among 
K3 surfaces. The resulting K3 surfaces X are necessarily of algebraic 
dimension 0. This follows from the fact that the action on the space 
of holomorphic 2-forms is finite cyclic if the algebraic dimension =f. 0 
([Mc02-2], Theorem (3.5); see also [Og08], Theorem (2.4)). We also 
note that in this case NS(X) is negative definite (and vice versa), so 
that X contains at most finitely many irreducible complete curves and 
they are all smooth rational (if exist). This easily follows from the 
Riemann-Roch inequality for K3 surfaces (see eg. [BHPV04], Page 312, 
line 6, formula (2)). Later, McMullen ([Mc07], Theorem (10.1)) also 
found rational surface automorphisms with Siegel disks. In this case, 
the resulting surfaces are projective. In fact, they are blowups of lP'2 . 

In general, it is hard to see if a given action is locally analytically 
linearizable at the fixed point or not. The following criterion, which we 
only state in dimension 2, is again due to McMullen ([Mc02-2], Theorem 
(5.1)): 

Theorem 2. 7. Let cp be an automorphism of a germ of the origin 
0 of <C2 such that cp(O) = 0 and such that 

dcp* (0) = ( ~1 0 ) . 
P2 

Here dcp*(O) is the action on the cotangent space n~2(0) at 0 induced by 
the coordinate action cp*. (We prefer coordiante action as then every­
thing is covariant.) Assume that: 

{1) Pl and P2 are algebraic numbers; 
(2) IP1I = IP2I = 1; and 
{3) Pl and P2 are multiplicatively independent. 
Then cp has a Siegel disk at 0, i.e., there is a local coordinate (z1, z2) 

at 0 such that 



340 K. Oguiso 

This is a highly non-trivial result that involves very deep theorems: 
the Siegel-Sternberg theorem on analytic linearlization and the Baker­
Fel'dman theorem on transcendence of the logarithm of algebraic num­
bers. See [Mc02-2], Section 5 and the references therein for more details. 

§3. Proof of Theorem (1.1) 

Let us consider the Salem polynomial 

The third smallest Salem number 

0!14 = 1.200026 ... 

is the unique real root > 1 of rp14(x) = 0. The equation 4?14(x) = 0 has 
one more real root 1/a14. The other 12 roots, which we denote by 

f3k ' f3k (1 ::; k ::; 6) ' 

are on the unit circle S1 = {z E <C llzl = 1 }. Among these 12 roots on 
S 1 ' we choose two particular ones: 

8 := (31 := -(0.990398835230041...)- (0.31823945592693 ... )i' 

() := (32 := -(0.371932997164175 ... )- (0.92825957879273 ... )i. 

These approximate values are computed by Mathematica program, NSolve. 

In what follows, 8 and () always mean these two particular roots. 

The following theorem due to Gross and McMullen ([GM02], Theo­
rem 1.3) is essential for our construction: 

Theorem 3.1. Let rp(x) E Z[x] be an irreducible reciprocal poly­
nomial such that lrp(±1)1 = 1 and p, q be positive integers such that 
p = q (mod 8). Let JR.P+q be the real vector space with a symmetric bi­
linear from of signature (p, q). Assume that f E SO(JR.P+q) and the 
characteristic polynomial <I> f ( x) is rp( x). Then, there is an even uni­
modular lattice L C JR.P+q such that LR = JR.P+q and f(L) = L. In other 
words, f is realized as an automorphism of an even unimodular lattice 
of signature (p, q). 

We denote the K3 lattice by: 
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Here H is the unique even unimodular lattice of signature (1, 1) and 
Es ( -1) is the unique even unimodular negative definite lattice of rank 
8. As well known, the lattice A is isomorphic to the second cohomology 
lattice (H2 (S,Z), (*,**))of a K3 surface 8. Here(*,**) is the cup prod­
uct on H 2 (8, Z). (See eg. (BHPV04], Page 311, Proposition (3.3)(ii).) 
For a field K, we denote the K-vector space A ®z K by AK. A similar 
abbreviation will be applied to other lattices and vector spaces. 

Proposition 3.2. There are an automorphism F of the K3 lattice 
A and an element a of Ac such that: 

{1) <l>p(x) = (x- 1)8 · 'P14(x), where <l>p(x) is the characteristic 
polynomial ofF; 

(2) (a, a) = 0 and (a, a) > 0; and 
{3) F(a) = 8a. 

Proof. Our rp14(x) is an irreducible reciprocal polynomial in Z(x] 
with I'P14(±1)1 = 1. We apply Theorem (3.1) for 'P14(x), along the line 
of (GM02], Pages 270-271, Proof of Theorem 2.2. 

Let Vk (0 :<::; k :<::; 6) be the real vector space JR2 • We define symmetric 
bilinear forms Qk on vk (0 :<::; k :<::; 6) by 

Qo := ( ~ ~ ) , Q1 := 12 := ( ~ ~ ) , 

Qk := -12 := ( ~1 ~1 ) (k ~ 2). 

Then (Vo, Q0 ) is of signature (1, 1), (Vt, Q1) is positive definite and 
(Vk, Qk) (k ~ 2) are negative definite. Noticing I,Bkl = 1, we define 
fk E SO(Vk, Qk) (0 :<::; k :<::; 6) by 

fi = ( a14 0 ) f := ( Re,Bk -Im,Bk) (k > 1). 
0 0 1/a14 ' k Im,Bk Re,Bk -

Here a14, 1/a14, ,Bk, ,Bk (1 :<::; k :<::; 6) are the roots of rp14(x) = 0. The 
eigenvalues of fo are a 14 and 1/a14, and the eigenvalues of fk (k ~ 1) 
are ,Bk and ,Bk. Set . 

(V, Q) := (e7~=o Vi, e1~=oQi), f := e7Z=ofk · 

By construction, (V, Q) = JR3+11 , f E SO(JR3+11 ) and the characteristic 
polynomial off is rp14(x). Thus, by Theorem (3.1), there is an even 
unimodular lattice L c JR3+11 such that f(L) = L and L~ = JR3+11 . We 
have an isomorphism 

L ~ E8 (-1) e7 Hffi3 • 
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This is because the isomorphism class of an even indefinite unimodular 
lattice is uniquely determined by the signature ([Se73], Page 54, Theo­
rem 5). 

We can thus identify 

A= E8 ( -1) E9 L. 

Put F = idEs(-l) E9 f. Then FE SO(A) and the characteristic polyno­
mial ofF is 

<l>p(x) = (x- 1)8 · 4?14(x). 

It remains to find a E Ac that satisfies (2) and (3). Choose an 
eigenvector a E Ac of F with eigenvalue 6 = (31 . We shall show that 
this a satisfies (2) and (3). By definition, we have F(a) = Ja. As F is 
an automorphism of the lattice A, it follows that 

(a, a) = (F(a), F(a)) = 62 (a, a). 

Thus, (a, a) = 0 by 152 -1- 1. Taking the complex conjugate, we obtain 
that 

F(a) = "Ja, (a, a) = o. 
Note that 

a+a-l-0. 

This is because a and a are eigenvectors corresponding to eigenvalues. 
On the other hand, by the explicit form of F, we see that 

a, a E (V1)c C Lc C Ac. 

As Q1 is positive definite on V1 and a+ a is a real vector in V1 \ {0}, it 
follows that 

(a+a,a+a) > 0. 

As (a, a) = (a, a) = 0, this implies (a, a) > 0. Q.E.D. 

Remark 3.3. By changing the symmetric bilinear forms on V1 by 
-!2 and on V2 by h, we have an automorphism F' of the K3 lattice A 
and an element a' E Ac such that 

(1) <J>p,(x) = (x- 1)8 · 4?14(x); 
(2) (a', a')= 0 and (a', a')> 0; and 
(3) F'(a') = Ba' (Here we recall that B = fJ2). 

Theorem 3.4. There is a pair (S,g) of a K3 surface S and its 
automorphism g such that 

(1} g*as =bas; 
(2} The Neron-Severi lattice NS(S) is isomorphic to E 8 ( -1); and 
(3} g*INS(S) = idNs(S)· 
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See eg. [BHPV04], Page 308, line 4 for the definition of the Neron­
Severi lattice NS(S). 

Proof Let F and(]' be the same as in Proposition (3.2). Then, by 
Proposition (3.2) (2), the point [C(J'] belongs to the period domain of K3 
surfaces: 

n := {[C(J'J E lP'(Ac) 1 ((]', (]') = o, ((]', zr) > o}. 
Thus, we can apply the surjectivity of the period mapping for K3 surfaces 
(see eg. [BHPV04], Page 339, Corollary (14.2)) to get a K3 surface S 
and an isomorphism~ : H 2 (S,Z) ~A such that ~(C(Js) = C(J. Here 
H 0 (S, n~) = C(J8 . Define an automorphism fs of H 2 (S, Z) by 

fs:=~-loFo~. 

We want to find an automorphism g of S such that f s = g*. According to 
the global Torelli theorem for K3 surfaces (see eg. [BHPV04], Page 332, 
Theorem ( 11.1)), this follows if f s satisfies the following three properties 
(i)-(iii): 

(i) fs is an Hodge isometry; 
(ii) fs preserves the positive cone P(S), i.e., the connected compo­

nent of 
{x E H1 ' 1 (S,~) i(x,x) > 0} 

containing the Kahler classes of S; and 
(iii) fs preserves the set of classes represented by effective curves in 

NS(S). 

Let us check these properties. By definition of fs, we have fs E 

SO (H2 (S, Z)) and fs((Js) = 0(Js. This shows (i). Recall that the Salem 
number a 14 is real and an eigenvalue of F. So, a 14 is a real eigenvalue 
of fs as well. We can then choose a real eigenvector 17 E H 2 (S, ~) of fs 
with eigenvalue a14. By 

(17,(Js) = Us(17),f8((Js)) = a14o(17,(Js) 

and by a 1415 i=- 1, we have (17, (Js) = 0. As 17 is real, this implies that 
17 E H 1'1(S, ~). Moreover, by a14 > 1 and by 

(17, 11) = Us(11), !8(11)) = ai4(17, 11), 

we have (17, 17) = 0. Thus, 17 E aP(S) (the boundary of the positive 
cone) possibly after replacing 17 by -17. As fs(17) = a1417 with 17 i=- 0 and 
a 14 > 0, this implies (ii). 

It remains to check (iii). The C-linear extension of the lattice L ~ 
E 8 (-1) EB HEB3 (defined in the proof of Proposition (3.2)) contains(]'. 
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Moreover, as the characteristic polynomial of FIL = f, which is 'P14(x), 
is irreducible over Z, it follows that the lattice L is the minimal primitive 
lattice of A of which the ((:>linear extension contains a. Thus, the lattice 
~- 1 (L) is also the minimal primitive sublattice of H 2 (S,Z) of which 
the ((:>linear extension contains as. By definition of the transcendental 
lattice T(S) (See eg. [BHPV04], Page 308, line 5), we have then that 

T ( S) = ~ - 1 ( L) ~ Es ( -1) EB HEB3 . 

Recall that NS(S) = T(S)l_ in H 2 (S, Z) and Ll_ = E 8 ( -1) in A. Then 

NS(S) = ~- 1 (Lj_) = ~- 1 (Es(-1)) ~ Es(-1). 

Moreover, by F = idEs(- 1) EB f, it follows that 

fs(T(S)) = T(S), fs(NS(S)) = NS(S) and fsiNS(S) = idNs(s). 

So, the assertion (3) holds. 

Hence there is an automorphism g of S such that f s = g*. By the 
proof of (3), our (S, g) also satisfies the assertions (2) and (3) of Theorem 
(3.4). This completes the proof. Q.E.D. 

Remark 3.5. Starting from F' and a' in Remark (3.3) (instead of 
F and a in Proposition (3.2)), we also obtain a pair (S',g') of a K3 
surface S' and its automorphism g' such that 

(1) (g')*as' =Bas'; 
(2) NS(S') ~ E 8 ( -1); and 
(3) (g')*INS(S') = idNs(S'). 

In the rest, we shall show that the pair ( S, g) satisfies the requirement 
of Theorem ( 1.1) but the pair ( S', g') does not. 

Proposition 3.6. LetS be a K3 surface such that NS(S) ~ E 8 ( -1). 
Then, S contains 8 smooth rational curves Ck (0 :::; k :::; 7) and contains 
no other irreducible complete curve. Moreover, the dual graph of Ck 
(0:::; k:::; 7) is the same as the Dynkin diagram E 8 ( -1), i.e., (Ck) = -2, 
vertices C1, C2, · · ·, C7 form Dynkin diagram of Type A7 (-1) in this 
order and the vertex C0 is joined to only the vertex C3 by a simple line. 
(See [Mc07], Section 2, Figure 2. In the figure, set n = 7 and replace sk 
there by ck here.) 

Proof. We shall show Proposition (3.6) by dividing into four steps. 

Step 1. Let C be an irreducible complete curve on S. Then C ~ lP'1 . 

Proof. As NS(S) is even, negative definite and S is Kahler (see eg. 
[BHPV04], Page 144, Theorem (3.1) and Page 310 Proposition (3.3)(i)), 
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we have that 0 ¢ 0 and {02) s -2. Thus, for the arithmetic genus 
Pa(O), we have 

0 SPa(O) = {02)/2+ 1 s 0. 

Hence Pa ( 0) = 0. This implies 0 ~ JP'1 . Q.E.D. 

Step 2. N S { S) is genemted by the classes of irreducible complete curves. 
In particular, the number of irreducible complete curves on S is greater 
than or equal to 8. 

Proof. Let ei {0 s i s 7) be the basis of NS(S) corresponding to 
the 8 vertices of E8{-1). We have (en = -2. Let Ei E PieS be a 
representative of ei. Then by the Riemann-Roch formula and the Serre 
duality, we have 

Thus, for each i, either lEi I or 1- Ei I contains an effective curve. As the 
class of each irreducible component is also in NS(S), this implies the 
result. Q.E.D. 

Step 3. Let Ok {0 s k s m- 1) be mutually distinct irreducible complete 
curves on S. Then the classes [Ok] E NS(S) are linearly independent 
in NS(S). In particular, the number of irreducible complete curves on 
S is less than or equal to 8. 

Proof. If otherwise, there are subsets I and J of {0, 1, · · · , m- 1} such 
that I n J = 0 and 

Lai[Oi] = Lbj[Oj]· 
iEJ jEJ 

Here ai 2: 0 and bj 2: 0 and ai =I 0 for at least one ai. As NS(S) is 
negative definite, it follows that 

o > ((Lai[oi))2). 

iEJ 

On the other hand, we have that 

iEJ iEJ jEJ 

a contradiction. This implies the result. Q.E.D. 

Step 4. S contains 8 smooth mtional curves whose dual gmph forms 
Dynkin diagmm E8 ( -1) and contains no other irreducible complete curve. 

Proof. By Steps 2, 3, S contains exactly 8 irreduCible complete curves. 
We denote them by Ok (0 s k s 7). Again by Steps 2, 3, ([Ok))k=o form 
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a basis of N8(8) over z. By Step 1, each Ck is also a smooth rational 
curve. Thus (Cf) = -2. As N8(8) is negative definite, the dual graph 
of { ck H=o is then a disjoint union of Dynkin diagrams of type An ( -1)' 
Dm(-1), E6(-1), E7(-1), Es(-1), with 8 vertices in total. As N8(8) 
is unimodular and ([Ck]}k=0 forms a basis of N8(8) over Z, the only 
possible dual graph of {CkH=o is then Es(-1). In fact, the lattices 
associated with other Dynkin diagrams are of discriminant ~ 2. This 
completes the proof. Q.E.D. 

Let us return back to our (8,g) in Theorem (3.4). 8 has exactly 8 
smooth rational curves, say Ck (0 ~ k ~ 7), as described in Proposition 
(3.6), and no other irreducible complete curve. We set 89 := {x E 

8lg(x)=x}. 

Lemma 3.7. (1) g(Ck) = Ck for each Ck. 
(2) Put :Fe= 89 n (u~=oCk)· Then, 

Here PiJ is the intersection point of Ci and C1, and Pi is a point on 
Ci \ U#iCJ. Moreover, for each P E :Fe, the action dg*(P) of g* (the 
coordinate action of g) on the cotangent space 01(P) is diagonalized as 
follows: 

dg*(P) = ( ~ ~ ) for P E C, 

( 8-1 o ) dg*(P12) = 0 82 , 

( 8-2 o ) ( 15-1 
dg*(P1) = O 83 , dg*(Po) = O 

* ( 8-1 
dg (P45) = O o ) * ( 15-2 

82 ' dg ( p56) = 0 

( 8-3 
dg*(P67) = O o ) ( 8-4 

84 , dg*(P7) = O 

In particular, at any point P E :Fe, the eigenvalues of dg*(P) are not 
multiplicatively independent, so that g has no Siegel disk at P E :Fe. 

Proof. As g*IN8(8) = idNs(s), it follows that g(Ck) = Ck for each 
k. In particular g(PiJ) = PiJ· Thus giC3 = ide3 , as C3 ~ lP'1 and giC3 
fixes the three points C3 n C2, C3 nCo, C3 n C4 on C3. Then, dg*(P) 
is as claimed for p E c3' by g* as = 8a s. In particular' d(g I c2) * ( p23) 
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is the multiplication by o. Hence d(gjC2)*(P12) is the multiplication 
by o-1 (and gjC2 has no other fixed point), as C2 ~ JP>1. Thus, by 
g*as = oas again, it follows that d(gjCl)*(P12) is the multiplication 
by 82. Then, as C1 ~ JP>1, the automorphism gjC1 has one more fixed 
point, say, P 1, and d(gjCl)*(P1) is the multiplication by o-2. Then 
again by g*as = oas, one can diagonalize the action dg*(P1 ) as claimed. 
In this way, we figure out the set :Fe and the induced actions on the 
cotangent spaces as claimed. Note that, by definition, oa and ob (a, bE 
Z) are not multiplicatively independent. From this, the last statement 
follows. Q.E.D. 

Let us define the rational function 1'(x) E Q(x) by 

1 + x- x3 - x4 - x5 - x6 - x7 - x8 + x 10 + x 11 

1'( x) = ---,-1-+-x---x"""3 ---x-4.,--_-x-=s:-_-x""'6-_-x=-7 -+-x-:9::-+-x-=1-=-o-

We note that the denominator and the numerator are reciprocal of degree 
10 and of degree 11. Thus, 1'(x) is also written in the form 

( ) _ (x + 1)/l(x + ~) 
1' x - h(x + ~) ' 

where h(t) and h(t) are some polynomials of degree 5 with rational 
coefficients. 

Lemma 3.8. g has one more fixed point Q E 8\ Uk=oCk. Moreover, 
the action dg*(Q) is diagonalized as follows: 

dg*(Q) = ( E1 0 ) . 
0 E2 

Here E1 and E2 are the roots of the quadratic equation 

Their approximate values are 

E1 = -(0.8886 ... )- (0.45858 ... )i, E2 = -(0.94351...)- (0.33133 ... )i. 

Proof. As S contains no irreducible complete curve other than 
{ CkH=o• the fixed points outside ul;=0 Ck are all isolated and finite (if 
exist). Lett;::: 0 be the number of the fixed points off Uk=oCk, counted 
with multiplicities. 
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Let us determine t first. By the topological Lefschetz fixed point 
formula (see eg. [GMa93), Theorem (10.3)), we have that 

4 

Ln(F) = L(-1)ktr(g*jHk(8,Z)). 
F k=O 

Here the sum on the left hand side runs over all the irreducible com­
ponents of 89. For an isolated point P, n(P) is the multiplicity and 
for a fixed smooth curve C, the number n(C) is the topological Euler 
number of C if it is smooth, of multiplicity 1 (see ibid.). In our case, 
each irreducible component of Fe is smooth, of multiplicity 1 by the 
explicit description in Lemma (3.7). Thus, 

L n(F) ~ 7 + 2 + t = 9 + t. 
F 

Here 2 is the topological Euler number of the fixed curve C3 c::o lP'1 . On 
the other hand, using the fact that 8 is a K3 surface and the fact that 
the characteristic polynomial of g*jH2 (8,Z) is (x- 1)8rp14(x), we can 
calculate the right hand side as follows: 

4 

L( -1)ktr (g* jHk(8, Z)) = 1 + 1 + tr ((x- 1)8 rp14(x)) 
k=O 

= 1 + 1 + tr ((x- 1)8 ) + tr (rp14 (x)) = 1 + 1 + 8 + 0 = 10. 

Thus, 9 + t = 10 and t = 1. 

Hence the fixed point outside uL0 Ck is just one point with multi­
plicity 1. We denote this point by Q. Let E1 and E2 be the eigenvalues 
of dg*(Q). As Q is an isolated fixed point of multiplicity 1, we have 

Let us determine E1 and E2 • First of all, by g*us =bus, we have 

Next let us compute the sum E1 + E2 • For this aim, we want to apply 
an appropriate form of holomorphic Lefschetz fixed point formula. In 
our case, g has a fixed curve and g is of infinite order. So, we can not 
directly apply Atiyah-Bott's one [AB68] or Atiyah-Singer's one [AS68]. 
On the other hand, 89 is smooth and of multiplicity 1 at each irreducible 
component. Thus, we can apply Toledo-Tong's form of the holomorphic 
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Lefschetz fixed point formula {[TT78], the formula (*) at Page 519 or 
Theorem (4.10), applied toE= Os): 

2 

LL(F) = L(-1)ktr(g*IHk(Os)). 
F k=O 

Here the sum on the left hand side runs over all the irreducible compo­
nents of SY. The local contribution terms L(F) are calculated as follows 
{See ibid.). For an isolated point P, 

1 
L(P) = {1- a){1- (3) . 

Here a and f3 are the eigenvalues of dg*(P). For a smooth curve F for 
which g* IN* = >. on the conormal bundle N*, we have 

L(F) = L Td{F) · {ch{OF)-),. ch{N*)}-1 

= f( c1{F)). _1_. (1 _>._N*) = 1- Pa(F) .A· degN* 
} F 1 + 2 1 - ), + 1 - ), {1 - A) + {1 - A)2 

For our C3 ~ lP'1 , it is 

1 8·2 1+8 
L(C3 ) = {1- 8) + {1- 8)2 = (1- 8)2 • 

Thus, the left hand side for our (S,g) is: 

3 2 1 
L L(F) = {1- 8-1 ){1- 152) + {1- 8-2)(1- 83) + {1- 8-3){1- 84) 

F 

1 1 + 8 1 
+ {1- 8-4){1- 85 ) + {1 - 8)2 + {1- €1)(1- €2) . 

Let us compute the right hand side. g*IH2(0s) is the multiplication by 
8-1 . This is because H 2 (0s) is the Serre dual of H0(0~) = Ccrs and 
g*crs = 8crs. Thus 

Hence 

1 3 2 1 
1 + 6 = {1- 8-1)(1- 82) + {1- 8-2)(1- 153) + {1- 8-3)(1- 84) 
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1 1+t5 1 
+ (1- tS-4)(1- t55) + (1- t5)2 + (1- EI)(1- E2) 

By transposition, we can rewrite this equation in the following form: 

1 = J(t5). 
(1 - EI)(1 - E2) 

To get an explicit form of f ( t5), we regard as if t5 is an indeterminate 
element and use Mathematica program, Together. The result is: 

1 + t5 - t53 - &4 - t55 - t56 - t57 + t59 + &10 

J(t5) = (-1 + t5)2t5(1 + t5)(1 + t5 + t52)(1 + t5 + t52 + t53 + t54) 

Note that 

Then, by the formula above, we obtain that 

1 
E1 + E2 = 1 + t5- j(t5) . 

In order to simplify the right hand side, we again regard t5 as an inde­
terminate element and use Mathematica program, Together. The result 
is: 

1 
1 + t5- f(t5) = 'Y(t5). 

Here 'Y(x) is the rational function defined just before Lemma (3.8). Thus, 

Hence t:1 and t:2 are the roots of the quadratic equation 

as claimed. Now using Mathematica again, we can find approximate 
values of E1 and E2 as follows. First, by substituting 

t5 = ( -0.9903988352300419 ... )- (0.13823945592693967 ... )i 

into 'Y(t5) by Mathematica, we obtain 

'Y( t5) = (0.0548626217729844 ... ) - (0. 7899228027367716 ... )i . 

Our quadratic equation is then 

x2 - ( (0.0548626217729844 ... ) - (0. 7899228027367716 ... )i)x 
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+(( -0.9903988352300419 ... )- (0.13823945592693967 ... )i) = 0. 

Solving this equation by Mathematica program, NSolve, we obtain ap­
proximate values of E1 and E2 as claimed. They are certainly different 
and therefore dg*(Q) can be diagonalized. Q.E.D. 

Lemma 3.9. g has a Siegel disk at Q. 

Note that the diagonalization in Lemma (3.8) is just on the cotangent 
space level and far from local coordinate level. 

Proof. It suffices to check that E1 and E2 in Lemma (3.8) satisfy 
the conditions (1)-(3) in Theorem (2.7). 

(1) is clear as E1 and E2 are the roots of x2 -1( 8)x + 8 = 0, and both 
8 and 1( 8) are algebraic numbers. 

Let us check (2). Mathematica program, Abs applied to E1 and E2 

certainly indicates the result. However, to conclude that some value 
x is exactly 1, computation based on approximate values of x seems 
insufficient. Here is a safer argument. Consider 

E2 E2 
e ·- 1 e ·- 2 
1·- 8' 2.- 8" 

As 181 = 1, it suffices to show that hi= le2l = 1. We have e1e2 = 1 by 
E1E2 = 8. We also have 

_ (E1 + E2)2 - 2E1E2 _ /(8)2 _ 2 e1 + e2- 8 - 8 . 

Recall the second expression of 1(8) given just before Lemma (3.8): 

Then, e1 + e2 = k(8), where 

and e1 and e2 are the roots of the quadratic equation 

x 2 - k(8)x + 1 = 0. 

By the quadratic formula, we have 
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Here, k(8) is real, as 
1 -

8+8=8+8 

is real by 181 = 1. Thus, le1l = le2l = 1 if and only if lk(8)1 :::; 2 from the 
quadratic formula above. Substituting 

8 = -(0.9903 ... )- (0.3182 ... )i 

into k(8) by Mathematica, we have 

k(8) = /(;)2 
- 2 = -(1.3730 ... ) + (9.4799 ... X 10-17)i. 

Thus lk(8)1 < 2. 

We should remark that there appears an error term 

(9.4799 ... X 10-17)i 

in the above expression of k(8). However, this does not matter, because 
it is extremely small compared with the real part and we know that k(8) 
is certainly real. Hence the assertion (2) holds for our ~: 1 and 1:2. 

It remains to check (3) for our ~: 1 and E2. Suppose 

for (m, n) E Z2 • Note that 8 = (31 and () = (32 are Galois conjugate, 
as both are roots of 1t714(x) = 0 (and 1t714(x) is irreducible). Thus, by 
taking Galois conjugate, we have 

Here ~:i and E~ are the roots of the quadratic equation 

x 2 - 1( O)x + () = 0 . 

As 
() = -(0.371932997164175 ... )- (0.92825957879273 ... )i' 

we have 

1 (0) = (1.495690836752066 ... )- (2.210575209107991...)i, 

by Mathematica. Substituting these values into the quadratic equation 
above and using Mathematica program, NSolve, we find (up to order) 
that 

E~ = (0.25262 ... )- (0.37337 ... )i, E~ = (1.2430 ... )- (1.837 ... )i. 
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Clearly lt:~l > 1. Thus, from 

we conclude n = m. Substituting this into t:1t:2 = 1, we obtain 

Here 8 is not root of unity. This is because the Salem number a 14 > 1 
is a Galois conjugate of 8. Hence n = 0, and therefore, m = n = 0 by 
n = m. This shows (3). Q.E.D. 

Now the following Lemma completes the proof of Theorem (1.1): 

Lemma 3.10. Aut S = (g) ~ Z. 

Proof. As 8 is not a root of unity, g is of infinite order. So, it 
suffices to show that Aut Sis generated by g. Let f E Aut S. As the 
dual graph of the curves { Ck} k=o is the Dynkin diagram E8 ( -1) and it 
has no symmetry, we have f(Ck) = Ck (0::; k::; 7). Hence f*INS(S) = 
idNS(S)• as {Cklk=o generates NS(S). The natural representation of 
AutS on T(S) 

rr : Aut S ----+ O(Ts) 

is then injective, as so is on 0 (H2 (S,Z)) (see eg. [BHPV04], Page 333, 
Corollary (11.4)). Moreover, as NS(S) ~ E8 (-1) is negative definite, 
Imrr is isomorphic to Z. This is a special case of [Og08], Theorem 
(2.4). Hence, Aut S is isomorphic to Z as well. Let h be a generator of 
Aut S. By replacing h by h-1 if necessary, we can write g = hn for some 
positive integer n. Let cp(x) be the characteristic polynomial of h*IT(S). 
As N S ( S) is negative definite, cp( x) is again a Salem polynomial of degree 
14 ([Og08], Theorem (3.4)). Let /314 be the Salem number of cp(x). Then, 
by g = hn, we have 

. 0!14 = /314 ° 

On the other hand, a14 is the smallest Salem number of degree 14, as 
explained in Section 2. Hence n = 1, i.e., g =h. Q.E.D. 

Remark 3.11. Let us consider the pair (S',g') in Remark (3.5). 
Then, as Lemmas (3.7), (3.8), we have a similar description of the fixed 
point set: 

(S')g' = C~ U {P{, P{2 , P~,P~5 ,P~6 , P~7, Pn n {Q'}. 

However, g' has no Siegel disk. In fact, The eigenvalues of d(g')*(P') 
(P' E q), d(g')*(Pf), d(g')*(Pfi) are the same as the eigenvalues of 
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dg*(P) (P E C3), dg*(Pi) and dg*(Pij ), and they are not multiplicatively 
independent. The eigenvalues of d(g')*(Q') are t:i and E;. Here, t:i and 
E; are the numbers defined at the last part of the proof of Lemma (3.9). 
Then lt:;l > 1 as observed there. So, g' has no Siegel disk at Q', either. 

Remark 3.12. Recall (from Section 2 (i)) that 

<I>14(x) = x14 - x12 - x7 - x2 + 1 

is the Salem polynomial of the 4-th smallest known Salem number 

1<1>14(±1)1 
circle 

A14 = 1.20261.. .. 

1, and <I>14(x) = 0 has two particular roots on the unit 

8' := -(0.45829 ... )- (0.88799 ... )i' 

e' := -(0.96815 ... )- (0.25034 ... )i. 

Then, starting from 8' and arguing exactly in the same way as in The­
orem (1.1), we also obtain a K3 surface automorphism of topologi­
cal entropy log A14 , with one pointwise fixed smooth rational curve 
and a Siegel disk. The resulting action on the Siegel disk is given by 
diag (p1, P2), where 

Pl = -(0.29457 ... ) - (0.95562 ... )i, P2 = (0.98436 ... ) - (0.17614 ... )i. 

§4. Proof of Theorem {1.2) 

In this section, we shall prove Theorem (1.2). Let S be an Enriques 
surface and g be an autmorphism of S. Let us denote the free part of 
H 2 (S, Z) by L. Then, by [BHPV04], Page 339, Lemma (15.1) (iii), we 
have 

L ~ H ffi Es( -1) ~ E 10 ( -1). 

Here the last isomorphism comes from the fact that both H ffi E 8 ( -1) 
and Ew(-1) are even unimodular lattices of signature (1,9). In fact, 
we can then apply [Se73], Page 54, Theorem 5. We denote by L(2) the 
lattice such that L(2) =Las Z-module and 

(x, Y)L(2) := 2(x, Y)L 

for each x, y E L(2) = L. Note that g* is also an automorphism of the 
new lattice £(2). Then g* acts on the discriminant group 

A£(2) := L(2)* / L(2) ~ L/2L ~ JF~0 . 
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Let <I>9 .(x) be the characteristic polynomial of g*IAL(2). Then <I>9 .(x) E 

IF2[x]. More precisely, <I>9 • (x) is the mod 2 reduction of the characteristic 
polynomial <I>9 .(x) of g*IL = g*l£(2). 

Let 1r: S--+ S be the universal cover of S. Then Sis a K3 surface 
and 1r is of degree 2 (See eg. [BHPV04], Page 339, Lemma (15.1)(ii)). 
We denote by t the covering involution of 1r. Following [Nm85], Page 
203, line 6, we define 

By [Nm85], Proposition (2.3), we have 

M = n*(L) = £(2). 

Here the last equality is nothing but the following obvious relation 

(n*x,n*y)s = 2(x,y) 8 , 't/x,y E £. 

Let AM = M* I M and AN = N* IN be the discriminant groups of M 
and N. Note that 

AN ~ AM = AL(2) ~ IF~0 . 

Here the first isomorphism is given by the natural surjective morphisms: 

H 2(S,Z) --+M*IM; Xf---+ (x,*)modM, 

H 2(S,Z) --+N*IN; Xf---+ (x,*)modN. 

We note that these two morphisms are certainly surjective as H 2 (S, Z) 
is unimodular and both N and M are primitive. Then, it is an easy 
fact that the both kernels are NEB M. This is a special case of [Ni80], 
Corollary (1.5.2). 

Let g E Aut S be one of the two possible lifts of g on S. Then 
g o 1r = 1r o g and go t = tog. Thus, g* preserves both M and N. Hence, 
g* induces actions on M and N, and consequently, on the discriminant 
groups AM and AN. Moreover, under the isomorphism of discriminant 
groups above, we have 

Here the last equality follows from 1r o g = go 1r. Thus, the characteristic 
polynomial of g* IAN is the same as the characteristic polynomial <I>9 • (x) 
of g*IAL(2)· 

Lemma 4.1. No irreducible component of <I>9• (x) E IF2[x] is of de­
gree 5. 
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Proof. If <1?9• (x) would have an irreducible factor of degree 5, then 
the corresponding eigenvalues of ii*IAN would be elements of lFa2 \ lF2. 
Here 32 = 25 • As 

the order of g* IAN would then be divisible by 31. Thus, the order 
of ii*IN, which is actually finite (Lemma (4.2) below), would be also 
divisible by 31. However, this is impossible by the next a bit more 
precise Lemma (4.2). Q.E.D. 

Lemma 4.2. Under the same notations as in the proof of Lemma 
(4.1}, the order of ii*IN is finite, say, d. Let 

d = ITk=lP~k 

be the prime decomposition of d. Then each primary factor p~k belongs 
to 

{2,22,23,24,3,32,5,7,11,13}. 

Proof. As the lattice M = 7r* L is of signature (1, 9) with pure 
Hodge type (1, 1), the lattice N is of signature (2, 10) and N admits the 
following real Hodge decomposition: 

NR = QffiP. 

Here 
Q :=NUl n H 1•1 (S) , P := JR(Rea.s,lma.s), 

and as is a nowhere vanishing global holomorphic 2-form on S. As ii*IN 
preserves the Hodge decomposition, we have 

ii*IN E O(P) x O(Q). 

Here P is positive definite and Q is negative definite. Hence g* IN is 
diagonalizable and the eigenvalues are of absolute value 1. On the other 
hand, g* IN is defined over z. Thus, all the eigenvalues are roots of unity 
(Kronecker's theorem). Hence g*IN is of finite order, say, d. We denote 
the prime decomposition of d as in the statement. Then (g* IN)e with 
e = dfp~\ is of order p~k. As (g* IN)e is defined over Z, all primitive 
p~k-th roots of unity appear as eigenvalues of (g* IN)e. As easily seen, 
their cardinality is exactly p~k-1 (pk -1). As rankN = 12, this number 
can not exceed 12, that is, · 

p~k-l(pk - 1) ::; 12. 

Solving this inequality, we obtain the result. Q.E.D. 
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Now we are ready to complete the proof of Theorem {1.2). If h(g) 
would be the logarithm of the Lehmer number, then, as L is of rank 
10, the characteristic polynomial ~9• (x) of g*IL would be the Lehmer 
polynomial: 

cpw(x) = x 10 + x9 - x 7 - x 6 - x 5 - x 4 - x 3 + x + 1. 

However, this is impossible by Lemma {4.1) and the following: 

Lemma 4.3. Let cpw(x) E IF2 [x] be the mod 2 reduction of the 
Lehmer polynomial. Then the irreducible decomposition of cp10 (x) is: 

'1,010(x) = (x5 + x 3 + x2 + x + 1){x5 + x4 + x 3 + x2 + 1). 

Proof. This immediately follows from Mathematica program, Fac­
tor: 

Q.KD. 

This completes the proof of Theorem {1.2). 

Remark 4.4. The second, third, forth smallest known Salem num­
bers are of degree > 10. So, they can not be realized as the exponential 
of the topological entropy of an Enriques surface automorphism. Recall 
{from Section 2 {i)) that 

is the Salem polynomial of the fifth smallest known Salem number 

Aw = 1.216391.. .. 

Again by Mathematica program, Factor, applied to the mod 2 reduction 
~to(x) of ~w(x), we obtain the irreducible factorization: 

Thus, the fifth smallest known Salem number A10 can not be realized, 
either. In conclusion, none of the smallest five Salem numbers {listed in 
Section 2 (i)) can be realized as the exponential of the topological entropy 
of an Enriques surface automorphism. 

We conclude this note with the following natural, probably tractable, 
open problems relevant to our Theorems {1.1), {1.2) and a few remarks: 



358 K. Oguiso 

Question 4.5. (1) What is the smallest Salem n.umber that can be 
realized as the exponential of the topological entropy of a K3 surface 
automorphism? 

(2) Is there a surface automorphism having more than one Siegel 
disks at the same time? 

(3) What is the smallest Salem number that can be realized as the 
exponential of the topological entropy of an Enriques surface automor­
phism? 

( 4) What is the smallest Salem number that can be realized as the 
exponential of the topological entropy of an automorphism of a generic 
Enriques surface? 

(5) Are there compact hyperkahler manifolds (of dimension 2n) hav­
ing automorphisms with 2n-dimensional Siegel disks? 

Remark 4.6. Here are a few remarks about some of the questions 
above. 

For Question ( 1). As the Salem numbers in question are of degree 
:::; 22, we only need to see the realizability of 0:10 and O:ts, i.e., the first 
and second smallest Salem numbers1. 

For Question (4). The automorphism group of a generic Enriques 
surface is isomorphic to the 2-congruence subgroup o+(El0(-1))(2) of 
o+(E10(-1)). This is proved by [BP83], Theorem (3.4) and [Nm85], 
Theorem (5.10). (See also the precise meaning "generic" there.) Thus, 
this is also a purely group theoretical problem. 

For Question (5). In the terminology of [Be83], Page 759, TMoreme, 
a compact hyperkahler manifold of dimension 2n is a Ricci fiat compact 
Kahler manifold with Sp( n) holonomy and a Calabi-Yau manifold of 
dimension m 2: 3 is a Ricci fiat compact Kahler manifold with SU(m) 
holonomy. Let X be a Calabi-Yau manifold of dimension m 2: 3. Then 
X is projective ([Be83], Page 760, Proposition 1), and therefore, the 
action of Aut X on the space of holomorphic m-forms is finite cyclic 
([Ue75], Page 178, Proposition 14.5). So, Calabi-Yau manifolds of di­
mension m 2: 3 can not admit automorphisms with m-dimensional Siegel 
disks. For the same reason, compact hyperkahler manifolds having au­
tomorphisms with 2n-dimensional Siegel disks can not be projective as 
well. A bit more precisely, they are in fact of algebraic dimension 0 
([Og08], Theorem (2.4)). See also [Og09] for the explicit description of 

1Quite recently, McMullen has shown that the Lehmer number a 10 is real­
ized as the exponential of the topological entropy of a non-projective K3 surface 
automorphism. 



Salem numbers 359 

the topological entropy of automorphisms of compact hyperkahler man­
ifolds and [Zh08] for a more algero-geometric aspect of the topological 
entropy of automorphisms of higher dimensional manifolds. 
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