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On Fano varieties with large pseudo-index 

Jiun-Cheng Chen 

Abstract. 

Let X be a Fano variety with at worst isolated quotient singulari­
ties. Our result asserts that if C · (-Kx) > max{~ + 1, 2;'} for every 
curve C c X, then Px = 1. 

§1. Introduction 

We work over the field of complex numbers C. Let X be a smooth 
Fano variety of dimension n. The index r x is defined as 

rx = max{m E Nl- Kx = mL for some line bundle L}. 

The pseudo-index i x is defined as 

ix = min{m E NIC · ( -Kx) = m for some rational curve CCX}. 

Clearly, we have ix ;:::: rx. Denote by px the Picard number of X. In 
1988, Mukai [Mu88] proposed the following conjecture: 

Conjecture 1.1 (Mukai conjecture). Let X be a smooth Fano variety 
of dimension n. Then Px · (rx - 1) ~ n. 

A generalized version of this conjecture can be stated as follows: 

Conjecture 1.2 (Generalized Mukai conjecture). Let X be a smooth 
Fano variety of dimension n. Then (1) px · (ix -1) ~ n, and (2) equality 
holds if and only if X<:::::! (IP'ix-1 )Px. 
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For each integer k 2: 1, we can consider the following conjecture. 

Conjecture 1.3 (Generalized Mukai conjecturek)· Let X be a smooth 
Fano variety of dimension n. 

(1) Suppose that ix > ~ + 1. Then px :::; k- 1. 
(2) Suppose that ix 2: ~ + 1 and px = k. Then X~ (JP'·l;f. 

Clearly, Conjecture 1.3 for all k implies Conjecture 1.2. 
When k = 1, the first part of Conjecture 1.3 implies that if ix > n+ 1 

then px :::; 0. Since the Picard number of any projective variety is 
always at least 1, it implies that ix :::; n + 1 for any smooth Fano 
variety of dimension n. This consequence follows from Mori's famous 
bend and break result. The second part of Conjecture 1.3 follows from 
the characterization result of projective spaces by Cho, Miyaoka and 
Shepherd-Barron [CMSB02] and Kebekus [Ke01]. Fork= 2, Wisniewski 
[Wi90] proved that if ix > ~ + 1 then px = 1. 

For k = 3, there are related results due to Bonavero, Casagrande, 
Debarre and Druel [BCDD03], and Andreatta, Chierici, and Occhetta 
[AC004]. We state their precise results here. Bonavero, Casagrande, 
Debarre and Druel [BCDD03] proved Conjecture 1.2 in the following 
situations: (1) X has dimension 4, (2) X is a toric variety of pseudo­
index ix 2: ~ + 1 or of dimension at most 7. Andreatta, Chierici, and 
Occhetta [AC004] proved the generalized Mukai conjecture assuming 
either (1) ix 2: ~ + 1 and X has a fiber type extremal contraction, (2) 
ix 2: ~+ 1 and X has not small extremal contractions, or (3) dim X = 5. 

Now consider the case when X is not smooth. Even the k = 1 case, 
i.e. ix :::; n+ 1, is not known. When X has only quotient singularities or 
isolated LCIQ singularities, Tseng and I proved that ix:::; n+ 1 [CT09]. 
In the same paper, we also proved if X is log terminal and dim X = 3 
then ix :::; 3 + 1. 

In [CT07], we proved that (1) if X has at worst isolated LCIQ 
singularities and ix 2: n + 1 then X ~ IP'n, and (2) if X a normal<()!­
factorial Fano threefold and ix 2: 4 then X~ IP'3 . In [Ch06], we proved 
that if X has at worst quotient singularities and ix 2: n+ 1 then X ~ IP'n. 

In this note, we would like to study the k = 2 case when the variety 
X has only isolated quotient singularities. The following theorem is the 
main result of this note. 

Theorem 1.4. Let X be a Fano variety of dimension n with at 
worst isolated quotient singularities. If ix > max{~ + 1, 2;'}, then 
Px = 1. 

Consider a smooth Fano variety X. There are a lot of rational 
curves on X and this fact is important in studying the geometry of X. 
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The deformation theory of rational curves is well-known and has many 
important consequences. When X is not smooth, the situation is quite 
different. The dimension of deformations (of rational curves) tends to be 
smaller. It is also possible that all rational curves pass through a singular 
point. These obstacles make the study of deformations of rational curves 
on singular Fano varieties quite difficult. When X has only quotient 
singularities, one natural approach is to consider the covering stack X 
and study "rational curves" on the covering stack X. Pushing forward 
any family of curves on X to X yields a family of curves on X. If 
we can obtain a nice family of rational curves on X, we have a nice 
family of rational curves on X for free. Let g : C ---+ X be a rational 
curve. The lower bound on the dimension of the deformation space of 
g : C ---+ X can be computed as in the smooth case. Roughly speaking, 
the deformation theory does not see the twisted points on the target X. 
So far, everything seems work. But there are several difficulties for this 
approach. One problem is that when we have a curve g : C ---+ X it 
may not be possible to lift it tog : C---+ X. To get a lifting, one has to 
add twisted points on the source curve C [AV02]. Therefore, we have 
to study the deformations of twisted curves into X. Unfortunately, the 
presence of twisted points on the source curve will lower the dimension 
of the deformation space (due to the age terms, see Lemma 2.2 for the 
precise formula). The second bad news is that even if we start with a 
curve (without twisted points) g : C ---+ X, we may have to consider 
twisted points after applying bend and break to obtain curves of smaller 
degree. 

In [CT09] and [CT07], we developed several techniques to handle 
the problems caused by the presence of twisted points. One of our main 
results in [CT09] is that if we start with a curve (in an extremal ray) 
without twisted point then we can :find a twisted curve with at most 
one twisted point in the same extremal ray and bound the degree at the 
same time. Twisted curves with only one twisted point are good enough 
in many cases when we try to apply bend and break type arguments. 

The starting point of this work is a very naive dimension count. 
Suppose that px ~ 2. We can find two extremal classes a: and {3. 
Lemma 2.8 guarantees that we can find twisted curves h : C1---+ X and 
h : C2 ---+ X whose classes are a: and {3 respectively. For i = 1, 2, the 
twisted curve ci has at most one twisted point and ci . - K X :::; n + 1. For 
simplicity, assume both C1 and C2 do have one twisted point. Let V1 c X 
be the subset swept by the deformation of h(Cl) <::X and V2 C X the 
subset swept by the deformation of h(C2) C X. Since the twisted points 
on X are isolated, the image of the twisted point on C1 does not deform. 
Therefore every deformation of h ( C1) has to pass through the specified 
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point. Similarly, every deformation of h{C2) also has to pass through 
another specified point. Lemma 2.9 implies that these two sets should 
not intersect. It is easy to see dimV1 2:: ix -1 and dimV2 2:: ix -1. We 
"expect" them to intersect if 2ix- 2 -n > 0, i.e. ix > ~ + 1. Therefore, 
the assumption px ;:::: 2 is wrong whenever ix > ~ + 1. Of course, this 
"argument" is very problematic since we can have two disjoint divisors 
in a variety. 

To remedy this incomplete argument, we consider a covering family 
C --+ X of twisted stable maps. Note that there may be many twisted 
points on a general source curve Ct. 

We only sketch the argument for the worst case, i.e. the source 
curve Ct has at lease two twisted points. In general; the presence of 
twisted points on the source curve causes troubles. However, when Xsing 

is isolated, we can play the presence of many twisted points to our 
advantage via bend and break type arguments: the images of these 
twisted points can not move; Mori's bend and break result then implies 
this covering family will degenerate somewhere. 

Assume that Ct has at least 2 twisted points. Using a bend and 
break type argument, we can show that there is a family of unsplit 
curves such that the locus of this family contains at least a divisor (see 
Proposition 3.3 for more details). Denote this divisor by D. Once we 
have such a family of curves, we find an extremal contraction, denoted by 
</>:X--+ Y, whose exceptional set contains the divisor D. We will show 
that Y is a point. This contraction is either a divisorial contraction or a 
contraction of fiber type. The contraction </> : X --+ Y has the following 
property: C · D > 0 where C is any curve contracted by </> : X --+ Y. 

If the contraction </> : X --+ Y is divisorial, then the inequality 
C · D > 0 gives a contradiction by a standard argument. 

If the contraction is of fiber type and dim Y > 0, then we can find 
a closed subset Z c X such that dim Z > dim Y and Z --+ Y is finite. 
This is again a contradiction {see Lemma 3.1 for more details). 

The rest of this paper is organized as follows: In Section 2, we recall 
basic definitions on twisted curves and twisted stable maps. We also 
recall Lemma 7.1 from [AC004] in Section 2. The main theorem is 
proved in Section 3. 
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§2. Twisted curves 

We recall some basic facts on twisted curves in this section. All 
results in this section are not new; we recall these facts for the reader's 
convenience. 

Twisted curves appear naturally in compactifying stable maps into 
a proper Deligne~Mumford stack [AV02]. Roughly speaking, twisted 
curves are nodal curves having certain stack structures etale locally near 
nodes (and, for pointed curves, marked points). For the precise defini­
tion, see [AV02], Definition 4.1.2. 

Let C be a twisted curve and C its coarse moduli space. 
2.0.1. Nodes For a positive integer r, let Jlr denote the cyclic group 

of r-th roots of unity. Etale locally near a node, a twisted curve C is 
isomorphic to the stack quotient [U I Jlr] of the nodal curve U = { xy = 
f(t)} by the following action of Jlr: 

(x, Y) 1--t ((rX, (;1y), 

where (r is a primitive r-th root of unity. Etale locally near this node, 
the coarse curve C is isomorphic to the schematic quotient U I Jlr· 

2.0.2. Markings Etale locally near a marked point, C is isomorphic 
to the stack quotient [U I Jlr ]. Here U is a smooth curve with local coor­
dinate z defining the marked point, and the Jlr-action is defined by 

Near this marked point the coarse curve is the schematic quotient U I Jlr· 

2.1. Twisted stable maps 
Definition 2.1. A twisted n-pointed stable map of genus g and degree 

dover a scheme S consists of the following data (see [AV02], Definition 
4.3.1): 

c ___!_____. X 

~c 1 ~1 
c ______!___. X 

1 
s 

along with n closed substacks ~i C C such that 

(1) Cis a twisted nodal n-pointed curve overS (see [AV02], Defi­
nition 4.1.2), 
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(2) f : C --t X is representable, 
(3) :Ei is an etale gerbe over s, for i = 1, ... , n, and 
( 4) the map J : ( C, {pi}) --t X between coarse moduli spaces in­

duced from f is a stable n-pointed map of degree din the usual 
sense. 

A twisted map f : C --t X is stable if and only if for every irreducible 
component Ci c C, one of the following cases holds: 

(1) fie, is nonconstant, 
(2) Jlc, is constant, and ci is of genus at least 2, 
(3) fie, is constant, Ci is of genus 1, and there is at least one special 

points on ci' 
(4) !lei is constant, ci is of genus 0, and there are at least three 

special points on ci. 

In particular, a nonconstant representable morphism from a smooth 
twisted curve to X is stable. 

We say a twisted stable map C --t X is rational if the coarse moduli 
space C of C is rational. 

We will use the following two basic facts on twisted stable maps 
frequently in this note: 

(1) Let f: C --t X be a twisted stable map. Then the image of any 
twisted point on C has to be a twisted point on X. 

(2) Consider a family of rational twisted stable map F : C --t X over 
an irreducible projective scheme T. If this family does not degenerate, 
i.e. (i) Ct is irreducible for every t E T and (ii) Ft : Ct --t X is birational 
to its image for every t, then the number of twisted points on Ct is 
constant. 

Fix an ample <Ql-line bundle H on X. Let JC9 ,n(X, d) be the category 
of twisted n-pointed stable maps to X of genus g and degree d with 
respect to the pull-back of H. We will setH= -Kx when X is a Fano 
variety with at worst quotient singularities. It is known that JC9 ,n(X, d) 
is a proper Deligne-Mumford stack with projective coarse moduli space 
denoted by K 9 ,n(X, d) [AV02]. Let (3 E H 2 (X) be a homology class. 
The space of twisted n-pointed stable maps f : C --t X of genus g and 
homology class (no f)* [C] = (3 is denoted by JC9 ,n(X, (3). This stack is 
also proper [AV02]. 
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2.2. Morphism space from. a twisted curve to a Deligne­
Mumford stack 

In this paper, we use both the stack of twisted stable maps and 
the morphism space from C to X. Roughly speaking, an element in 
the morphism space M or( C, X) is a twisted stable map together with a 
parameterization on the source curve C. Let E c C be the set of twisted 
points and B C C a finite set of points (twisted or untwisted). Let 
f : C --t X be a representable morphism. When X is smooth, we have 
a lower bound on the dimension of Mor(C, X; fiB) near the morphism 
[f]. 

Lemma 2.2 (= [CT09) Lemma 4.4). 

C · Kx + n[x(Oc) 

Card(B)]- :2: age(f*Tx,x). 
xEE\B 

Remark 2.3. For each twisted point X E c, the contribution from 
the age term is strictly less than dim X= n [CT09). 

Consider 

T 

a family of twisted stable maps. We are not only interested in the dimen­
sion ofT but also the dimension of F(C). In general, information on the 
dimension of T (the parametric space) does not yield much information 
on the dimension of F(C) (the locus swept by the curves {Ctlt E T}). 
The main problem is that for any given point x there may be a positive 
dimensional family of curves passing through x. For a special class of 
curves, this problem disappears. 

Definition 2.4. Let C c X be a curve. We say C is unsplit if the 
homology class [C) E H2 (X) can not be written as a non-trivial positive 
integral sum of curve classes, i.e. if [C) = L.::=l ai[Ci) (ai E N>o) then 
k = 1 and [C1] = [C). 
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Definition 2.5. Let 

c~x 

T 

be a family of twisted stable maps. We say it is an unsplit family if Ft 
is birational to its image and (7roFt)(Ct) C X is unsplit for every t E T. 

When the family is unsplit, we have the following bound: 

Lemma 2.6. Let 

c F 
X -----7 

1rC 1 1r1 

c ~X 

al 
T 

be an unsplit family of twisted 1-pointed stable maps. Assume the image 
of the marked point is fixed. Let d = Ct · - Kx be the anti-canonical 
degree. Then 

dimF(C) 2:: d- 1. 

Proof. This lemma follows easily from Mori's bend and break, 
Lemma 2.2, Remark 2.3 and the fact that dimAut(IP1 , 0) = 2. Q.E.D. 

2.3. Covering stack and lifting 

We start with the notation of the covering stack X. 

Notation 2.7. Let X be a normal projective variety with at worst 
quotient singularities. Fix a natural number r E N>o such that rKx 
is Cartier. Fix a proper smooth Deligne-Mumford stack 1r : X ---+ X 
such that X is a coarse moduli space of X and 1r is an isomorphism over 
Xreg =X\ Xsing· Note that Kx = 1r* Kx and 

C·Kx =C·Kx 

for any (twisted) curve C---+ X with coarse curve C [CT09]. 
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Let C be a smooth irreducible curve and f: C---+ X a morphism. In 
general, it is not possible to "lift" the map f : C ---+ X to a map C ---+ X. 
However, we can endow an orbicurve structure on C and lift C---+ X to 
C---+ X (by Lemma 7.2.5 [AV02]). 

An arbitrary lifting is not very useful since the dimension lower 
bound obtained from Lemma 2.2 will be too small. One would like to 
have a lifting with as few twisted points as possible. We do not know 
how to achieve this goal in general. If the class of C c X is in an 
extremal ray, we are able to find a nice lifting as in the next lemma. 

Lemma 2.8 (Proposition 3.2 [CT07]). Notation as in Notation 2.7. 
Let R C NE(X) be any Kx-negative extremal ray. Then there exists 
a twisted rational curve f : C ---+ X such that (1) C has at most one 
twisted point, (2) the intersection number C · (-Kx):::; n+ 1, and (3) 
(1r o /)*[C] E R. 

2.4. Twisted curves with at most 1 twisted point 
Assume that X is a normal projective variety of dimension n with 

at worst isolated quotient singularities. Let f : C ---+ X be an unsplit 
twisted stable map of genus 0 and homology class a E H2(X). Assume 
that the source curve C has at most 1 twisted point. 

If C has one twisted point, denoted by oo E C, take an irreducible 
component M C 1Co,1 (X, a) which contains [/]. Take the universal 
family of twisted stable maps over M. Note that the image of oo is 
fixed since X has only isolated singularities. 

If C does not have any twisted point, i.e. C 9:! lP'1 , pick any point, 
denoted by oo again. Consider the curve f : C ---+ X with the marked 
point oo E C as an element of 1Co,1(X, a). We abuse the notation and 
still denote this element in 1Co,1 (X, a) by [f]. Consider an irreducible 
component M c 1Co,1(X, a, floc) which contains[/]. Take the universal 
family of twisted stable maps over M. 

In either case, we obtain a family of twisted stable maps such that 
the image of the marked point is fixed. 

2.5. Bounding Picard number 
Let X be a normal projective variety and 

v 
be a family of stable maps of genus 0 over an irreducible scheme V. 
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We denote by Locus(V) the image of C in X. Let p E X be a 
(closed) point. Define Locus(V)p := F(G-1 (G(F- 1 (p)))), i.e. the set 
of points x E X such that there is a vo E V satisfying x E F( Cv0 ) and 
p E F(Cv0 ). 

The following lemma is a special case of Lemma 5.1 in [AC004]. 

Lemma 2.9. Let X be a normal projective variety, p E X any point, 
and V an unsplit family of rational curves. Also assume that V is 
irreducible and projective. Then Locus(V)p is closed and every curve 
contained in Locus(V)p is numerically equivalent to J.LCv, where Cv is 
the class of F( Cv) for v E V general and J.L 2:: 0. 

2.6. Covering family of rational curves 
The following lemma is an easy consequence of Kawamata's famous 

result [Ka91]: 

Lemma 2.10. Let X be a Fano variety of dimension n with at worst 
quotient singularities. Then there is a covering family of rational curves 
with - Kx-degree at most 2n. 

We have the following stack version of Lemma 2.10. 

Lemma 2.11. Let X be a Fano variety of dimension n. Assume 
that X has at worst quotient singularities. Let X ---+ X be the smooth 
covering stack as in Notation 2.7. Then there is a covering family of 
twisted rational curves with -Kx-degree at most 2n. 

Proof. Let r be the natural number such that rKx is Cartier as 
in Notation 2.7 and d > 0 be any rational number such that rd E N>o· 
Consider the morphisms Ilk EN Ko,k (X, d) ---+ Ilk EN Ko,k (X, d) (forget­
ting the stack structures) and llkEN Ko,k(X, d) ---+ Ko, o(X, d) (forget­
ting marked points and then stabilizing). Note that the composition 
llkEN Ko,k(X, d) ---+ Ko, o(X, d) is surjective since we can always lift a 
stable map C ---+ X to X by adding suitable stack structures on finitely 
many points on C. Consider the universal family Fk, d: Uk, d---+ X over 
Ko,k(X, d). It follows that 

since X is covered by rational curves with degree at most 2n. Since X 
is Noetherian and irreducible, we have (1r o Fk, d)(Uk, d) = X for some 
(k,d). 

Since Ko,k(X, d) is a proper Deligne-Mumford stack with projective 
coarse moduli space, we can find an etale surjective morphism V ---+ 

Ko,k(X, d) such that Vis projective. 



On Fano varieties with large pseudo-index 205 

Pulling back the universal family of twisted stable maps over Ko,k (X, 
d) to V yields a covering family of twisted stable maps over V. 

Taking a suitable irreducible component of V, we obtain a covering 
family over an irreducible projective scheme. 

Q.E.D. 

§3. Proof of Theorem 1.4 

We will assume that X is a Fano variety of dimension n with at worst 
isolated quotient singularities throughout this section. Let 1r : X -+ X 
be the covering stack of X as in Notation 2.7. 

We start with the following important lemma. 

Lemma 3.1. Consider 

c F 
X -----> 

nc 1 nl 
c ___!_____.X 

al 
T 

an unsplit family of twisted stable maps over an irreducible projective 
scheme T. Assume that (1) the source curve Ct has at most 1 twisted 
point for a general t E T, (2) the image F(C) contains a divisor in X 
and (3) ix > ~ + 1. Then px = 1. 

Proof. First note that Ct has at most 1 twisted point for any t E T 
since the family is unsplit. Consider the closed subset V = F(C), the 
image of the family of twisted stable maps in X. Since V is the image 
of an irreducible scheme under a projective morphism, it is closed and 
irreducible. Endow the reduced scheme structure on V. If V = X, take 
D be any irreducible divisor on X. If V is a divisor, take D be any 
prime divisor contained in V. 

Pick a general t E T and consider the twisted stable map Ft : Ct -+ 

X. Set (3 = (1r oFt) *[Ct] = Ft *[Ct] E Hz(X). 
Recall that X is <Q)-factorial. Let E be any curve which intersects D 

but is not contained in D. It is clear that E-D> 0. Write [E] = 2::: ai[Ei] 
as a positive combination of extremal rays. We have Ei · D > 0 for some 
i. May assume that E1 · D > 0. Let a:= [E1]. By Lemma 2.8, we can 
find a twisted rational curve f : £ -+ X with at most one twisted point 
such that (1r o !)*[£] E llho a and£· f*( -Kx) ::::; n + 1. Note that f(£) 
is unsplit since ix > ~ + 1. 
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Note that £ · (1r o f)* D > 0 and therefore f(£) meets 1r-1 (D). 
Replacing a by the class ( 1r o f) ( £) if necessary (they are two classes 
in the same ray), we may assume that [(1r o !)(£)] = o: E H2(X). 

As in Section 2 .4, we can view f : £ -+ X as an element of Ko, 1 (X, o:). 
Consider an irreducible component [!] E M C Ko, 1 (X, o:) and its uni­
versal family of twisted 1-pointed stable maps as in Section 2.4. Denote 
by W1 the image of this family in X. Note that for this family of twisted 
1-pointed stable maps the image of the marked point is fixed. 

By Lemma 2.9, it follows that for any curve C c W1, its class [C] 
lies in lR;::o o:. We also have dim W1 ?: £ · (-Kx) -1 > ~ by Lemma 2.6. 

We proceed by showing that the classes o: and {3 lie in the same 
extremal ray. We then show that lR;::o o: is the only extremal ray. 

Divide into two cases: (1) the source curve Ct for a general t E T 
does have a twisted point, and (2) the source curve Ct for a general t E T 
does not have any twisted point, i.e. C = C is a scheme. 

Case (1): The source curve Ct has one twisted point. 
Note that D is covered by a family of rational curves through a 

specified point (the image of the twisted point). By Lemma 2.9 again, 
it follows that for any curve C CD, its class [C]lies in lR;::o {3. Consider 
W1 n D. Since the intersection is non-empty, any irreducible component 
of W1 n D has dimension at least dim W1 + dimD- n ?: 1. Therefore, we 
can find a curve 0 1 c D and 0 1 c W1. It follows that lR;::o o: = lR;::o {3. 

Case (2): The source curve Ct has no twisted point. 
Pick any to E T such that W1 meets (7roFt0 )(Ct0 ). Pick any point on 

Ct0 , say oo, and consider the morphism Ft0 : Ct0 -+ X with the marked 
point oo E Ct0 as a twisted 1-pointed stable map as in Section 2.4. 
We still denote this element by [Ft0 ]. Let M C Ko,1(X,f3,Ftaloo) be 
an irreducible component which contains [Ft0 ]. Consider the universal 
family of twisted 1-pointed stable maps over M and the image of this 
family in X. Denote the image by W2. Note that for any curve C c W2, 
we have [C] E lR>o {3 by Lemma 2.9. By Lemma 2.6, we have dimW2 ?: 
Cto · Ft~ (-K x) - 1 > ~. Since W1 n W2 is non-empty, it follows that 

dim(W1 n W2) ?: dimW1 + dimW2 - n ?: 1. 

Therefore we can find a curve 0 1 c W1 n W2 . Again, we have lR;::o o: = 

lR;::o {3. 

Consider the extremal ray lR;::o o: and the corresponding extremal 
contraction ¢a : X -+ Y. We will prove that Y is a point (and hence 
Px = 1). 
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Since lR~o a = lR~o {3, for every t E T the curve (no Ft)(Ct) is 
contracted by cPa· Therefore DC Exc(cf>a)· The morphism cPa is either 
a divisorial contraction or a contraction of fiber type. 

We first show that ¢a : X ---> Y can not be divisorial: Assume the 
contrary. Let A be a very ample divisor on Y and M a very ample 
divisor on X. Set 

C' D dim</>a.(D) L n-2 M 
:= ni=l i nj=dim</>a(D)+l j 

where Li's are the general members of J¢~AJ and Mj's the general mem­

bers of JMJ. Let S = n~!7_<l>a(D) Li nj;::fim</>a(D)+l Mj. Note that C' is 
contracted by cPa. Therefore, it is a (positive) multiple of a. Note that 
C' · D = (C')~ < 0 since C' is a contracted curve on the surfaceS. Thus 
a · D < 0. This gives a contradiction. 

Now we show that Y is a point. Assume by contradiction that 
dim Y > 0. Let y E Y be a general point. The fiber Xy is a smooth 
Fano variety. Note that Kx lxy is numerically equivalent to Kxy. By 
Mori's bend and break, there is a curve C' C Xy such that 

Note that 

C' · (-Kxy) = C' · (-Kx) > ~ + 1 

by our assumption. Combining these two inequalities yields dimXy > ~­
Thus dimY < n~ ~ = ~-

Let lR>o 'Y be an extremal ray which is not contracted by cPa. By 
Lemma 2.8, there is a twisted stable map g: £'--->X such that (1) £'has 
at most 1 twisted point, (2) the intersection number £' · (-Kx) :::; n + 1, 
and (3) ( 1r o g)*[£'] E JR~0 'Y· We may assume ( 1r o g)*[£'] = 'Y· 

Again, we view g : £' ---> X as an element of Ko, 1 (X, 'Y) as in Sec­
tion 2.4. Take an irreducible component M C K0 ,1 (X,'Y) which contains 
[g] and consider the universal family of twisted stable maps over M as 
in Section 2.4. Denote by W3 the image of this family in X. For this 
family of twisted 1-pointed stable maps, the image of the marked point 
oo is also fixed. 

Note that if C" c W 3 is any curve, then its class is a multiple of 
'Y by Lemma 2.9. By Lemma 2.6, we have dim W3 > ~ and hence 
dim W3 >dim Y. For any y E Y, consider the intersection W3 n Xy. 
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It is easy to see that that dim W3 n Xy < 1; otherwise, we would have 
lR>o a= lR>o 'Y· 

- It follo;.s that the morphism ¢a lws : w3 ---> y is finite to its image. 
This is absurd since dim W3 >dim Y. 

Q.E.D. 

Notation 3.2. Let 

T 

be a covering family of twisted stable maps over an irreducible and 
projective scheme T. Pushing forward to the coarse spaces, we have 

c~x 

T 

a covering family of stable maps into X. Let k be the number of twisted 
points on the source curve Ct for a general t E T. Let d = Ct · Ft (-Kx). 
By Lemma 2.11, we may assume that d:::; 2n. Choose a covering family 
with the smallest possible anti-canonical degree. We fix this covering 
family of anti-canonical degree d :::; 2n in Proposition 3.3 and Proposi­
tion 3.6. 

We proceed by dividing into two cases according to the number of 
twisted points on a general source curve: (1) k 2: 2, and (2) k = 0 or 
1. Proposition 3.3 takes care of the first case and Proposition 3.6 takes 
care of the second. 

Case (1): k 2: 2. 

Proposition 3.3. Let F : C ---+ X be the covering family of twisted 
stable maps as in Notation 3.2. Assume that Ct has at least two twisted 
points for a general t E T. Also assume that i x > max{~ + 1, 2;}. 

Then Px = 1. 

Remark 3.4. The condition ix > 2; implies that the domain curve 
Ct has at most two components which are not contracted. 

Proof. Let S c T be any projective curve. Consider the pull-back 
family of twisted stable maps Fls :Cis ---+ X. Suppose that the image 
of this family in X is two dimensional, i.e. the twisted curve deforms in 
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X. Recall that the images of twisted points are fixed in this family. By 
Mori's bend and break, this family has to degenerate. 

Let D C T be the loci where the domain curve is not irreducible. 
Consider (1r o F)(G-1 (D)) c X. 

Claim 3.5. The closed subset (1r o F)(G-1 (D)) has at least one 
component of codimension at most 1. 

Proof of Claim 3.5. Assume by contradiction that every compo­
nent of (1r o F)(G-1 (D)) has codimension at least 2. 

We can find a curve E c X such that E does not meet ( 1r o 
F)(G-1(D)) and E is not contained in the image of any fiber of C -+ 

T (by taking E the intersection of general ample divisors). Consider 
G((1roF)- 1 (E)) cT. We can find a (complete) curve E' c G-1 (G((1ro 
F)-1(E))) such that F(E') is not contained in the image of any fiber of 
C -+ T. Take E" := G(E') and consider the family FIE" : CE" --+ X. 
Note that the image of FIE" : CE" --+X is two dimensional. By Mori's 
bend and break, this family has to degenerate, and hence E' has to meet 
D. This gives a contradiction. Q.E.D. 

Continue the proof of Proposition 3.3. Let D be an irreducible 
divisor contained in (1r o F)(G- 1(D)). Consider possible degenerations 
of twisted stable maps. By degree reason, only two components of Ct are 
not contracted by Ft. Denote these two components by Cf and C'f. Note 
that (1r o Ft)(Cf) and (1r o Ft)(Cl) are unsplit. If c:, i = 1, 2, has two 
or more twisted points, then its image in X can not deform by Mori's 
bend and break argument. 

Since the locus of degenerate curves in X contains at least a divisor, 
it follows that at least one component of the domain curve, say Cf, 
will have at most one twisted point. Thus there is a family of twisted 
stable maps with at most one twisted point and its image in X contains 
at least· a divisor. We apply Lemma 3.1 and conclude the proof of 
Proposition 3.3. Q.E.D. 

Case (2): k :::; 1. 

Proposition 3.6. Let F : C --+ X be the covering family as in No­
tation 3.2. Assume that Ct has at most one twisted point for a general 
t E T. Also assume that ix > maxH + 1, 2; }. Then px = 1. 

Proof. We first prove the following daim: 

Claim 3. 7. For a very general point x E X, there is a twisted 
rational curve e through x such that ( 1) e has at most one twisted point, 
and {2} e has -Kx-degree at most n + 1. 
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Proof of Claim 3. 7. Note that there are only countably many un­
split classes ai E H2(X), i E I. Consider all possible twisted stable 
maps such that (1) the source curve is birational to its image, (2) the 
source curve has at least two twisted points, and (3) the class of the 
image is one of these ai 's. For each ai there are only finitely many such 
twisted stable maps thanks to Mori's bend and break. Delete the images 
of all such twisted stable maps and all twisted points from X. Denote 
the resulting set by U. 

Let x E U. Pick at E T such that x lies on the image of Ct (under the 
morphism Ft)· Note that xis the image of an ordinary point, denoted 
by 0 E Ct, since the image of a twisted point is a twisted point. If Ct 
has a twisted point, we denote it by oo. If C does not have any twisted 
point, pick any point on Ct- {0} whose image in X is not x. Also denote 
this point by oo E Ct. 

Suppose that Ct· Ft(-Kx) > n+ 1. Then 

dim[F.]Mor(Ct,X,Ftl{o,oo}) > 1 

by Lemma 2.2. 
By Mori's bend and break, the family F : C -+ X degenerates at 

some t' E T. By degree reason, there are only two components of Ct', 
say Cf, and C'f,, which are not contracted by Ft'. Note that since Ft' is a 
twisted stable map, every contracted component needs to have at least 
three special points (nodes or the original twisted point). It implies that 
the domain curve ct' has either two or three components. 

In the first case, the two components Cf, and C'f, intersect at a node 
which may be a new twisted point. In the second case, there are three 
components Cf,, C'f, and Cf,. The contracted component Cf, has three 
special points: the original twisted point oo and two nodes P1 = Cf, n Cf, 
and p2 = C'f, n Cf,. Note that P1 and p2 may be new twisted points. 
By this analysis, we can obtain a curve, say Ft' : Cf, -+ X, such that 
the image Ft'( Cf,) contains x and the source curve Cf, has at most two 
twisted points (the original twisted point oo and the possibly new twisted 
point at the node). We claim that Cf, can not have two twisted points: 
Suppose that Cf, does have two twisted points. The image of Cf, (under 
1r oFt') will be in X-U. This is not possible since x E U. 

Therefore we obtain a twisted rational curve through x with at most 
1 twisted point and of smaller anti-canonical degree. Repeat this bend 
and break process until the anti-canonical degree is at most n + 1. This 
concludes the proof of Claim 3.7. Q.E.D. 

Now we show that the covering family F : C -+ X has anti-canonical 
degree d :=:; n + 1. 
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Assume the contrary, i.e. d > n + 1. Let r E N be the natural 
number such that rKx is a Cartier divisor as in Notation 2.7. Note 
that r(C · -Kx) E N>o for any curve C C X. Let l be any rational 
number such that 0 < l ::::; n + 1 and rl E N>o· Consider JC0 ,1(X,l) 
and its universal family of twisted stable maps F1 : U1 -+X. The union 
U{tiO<l:Sn+l, rlEN}(noFz)(Ut) is a closed set since it is the union of finitely 
many closed set. It is clear that U{tiO<l:Sn+l, rlEN}(noFt)(Ut) =X since 
through any very general point x E X there is a twisted rational curve 
with at most 1 twisted point and of anti-canonical degree l ::::; n+ 1 < d by 
Claim 3. 7. Since X is Noetherian and irreducible, we have ( 1r o Fz) (U1) = 

X for some l. By the same argument in Lemma 2.11, we have a covering 
family of degree strictly less than d over an irreducible and projective 
scheme. This is not possible since our choice of the covering family 
F : C -+ X is of the smallest (anti-canonical) degree. Thus we have 
d:S;n+l. 

Note that d ::::; n + 1 implies that the covering family is unsplit by 
degree reason. Now apply Lemma 3.1 to conclude the proof. Q.E.D. 

Proof of Theorem 1.4. Theorem 1.4 now follows easily from Propo-
sition 3.3 and Proposition 3.6. Q.E.D. 

The statement 
. n 
zx > 2 + 1 =? Px = 1 

is equivalent to 

Px 2 2 =? ix ::::; ~ + 1. 

Under an extra assumption, we are able to prove the following: 

Proposition 3.8. Let X be a Fano variety with at worst isolated 
quotient singularities. Assume that px 2 2 and there is an extremal 
contraction ¢ : X -+ Y such that dim Exc( ¢) 2 n -1. Then i x ::::; ~ + 1. 

Proof. Assume the contrary that ix > ~+ 1. Divide into two cases: 
(1) the contraction¢ : X -+ Y is divisorial, and (2) the contraction is 
of fiber type. 

First consider the divisorial case. Let D = Exc( ¢) C X be the 
exceptional divisor, and IR;::o a be the contracted extremal ray. As in 
the proof of Lemma 3.1, we can find an extremal ray IR;::o (3 such that 
(3 · D > 0. Let g : C -+ X be a twisted stable map such that C has at most 
one twisted point and the twisted stable map g : C -+ X is birational to 
its image. We may also assume [(no g)(C)] = (3. Consider g: C-+ X as 
a twisted 1-pointed stable map of genus 0 with homology class (3. Let 
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[g] EM C K:o,l(X,fi,gloo) be an irreducible component. Considerits 
universal fantily of twisted !-pointed stable maps G :. U-+ X. Denote 
by W C X the image of this fantily in X. Note that dimW > ~ (by 
Lemma 2.6). Take an irreducible component of W' C W n D. We have 
dimW' > ~+(n-1)-n = ~-1. NotethatforanycurveC' c W' c W~, 
its class [C']lies in the ray lR?:o fi (by Lemma 2.9). 

Set Z = cf>(D) (with the reduced scheme structure). Consider c/>lv : 
D-+ ¢(D) = Z. By a similar argument as in the proof of Lemma 3.1, 
we have lR?:o fi =I= lR?:o a. 

It is easy to see that dim Z > 0: If dim Z = 0, then lR?:o a = lR?:o fi; 
a contradiction. Pick a general y E Z c Y and consider the fiber Xy. 
Since X has only isolated singularities, we may assume that Xy is smooth 
(and the morphism¢ is smooth near Xy)· Since the exceptional divisor 
D is covered by rational curves in the ray lR>oa, there is a rational 
twisted stable map h : IP'1 -+ Xy such that [(; o h)(IP'1 )] E JR?:0a. We 
may assume that h : IP'1 -+ Xy C X is birational to its image. If 
IP'1 ·h*( -Kx) > n+l, it is easy to see that dim Mor[hj(IP'\ X, hl{o,oo}) > 
1. Applying bend and break, we obtain a rational curve with smaller 
degree. Note that the resulting rational curve is still on Xy and its class 
is a multiple of a (since we start with a curve whose class is in the 
extremal ray lR>o a). Continuing this bend and break process, we may 
assume that h :-IP'1 -+ Xy c Xhas -Kx-degree at most n+ 1. Hence it 
is unsplit. 

As before, we can find an irreducible component [h] E M1 C K:o,l (X, 
a) and its universal fantily of twisted 1-pointed stable maps H: U1 -+ X. 
Denote by W1 its image in X. Note that W1 c Xy. Therefore, we have 
dimXy 2:: dimW1 > ~- Also note that cf>lw' : W' -+ Z is finite to its 
image. Therefore, we have dimZ 2:: dimW'. It follows that dimD = 
dimXy + dimZ > ~ + ~ - 1 = n - 1. This gives a contradiction. 

Now consider the fiber type contraction case. The proof is quite 
similar to the proof of the fiber type case in Lemma 3.1. Let lR?:ofi 
be an extremal ray not contracted by the morphism ¢. We can find 
a twisted 1-pointed stable map h : C ~ X of genus 0 and homology 
class fi. Let [h] E M2 C K:o,l(X,fi,hloo) be an irreducible component 
and H : U2 -+X its universal family of twisted 1-pointed stable maps. 
Denote by W2 the image of U2 in X. Let y E Y be a general point and 
Xy be the fiber. As in the proof of Lemma 3.1, we have dimXy > ~ 
and dimY = dimX- dimXy < ~- Note that dimW2 > ~ (Lemma 2.6) 
and the morphism ¢lw2 : W2-+ Y is finite to its image. Hence dimY 2:: 
dimW2 > ~- This gives a contradiction. 

Q.E.D. 
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