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Well-posedness of the Cauchy problem for the 
Maxwell-Dirac system in one space dimension 

Mamoru Okamoto 

Abstract. 

We determine the range of Sobolev regularity for the Maxwell­
Dirac system in 1 + 1 space time dimensions to be well-posed locally. 
The well-posedness follows from the null form estimates. Outside the 
range for the well-posedness, we show either the flow map is not con­
tinuous or not twice differentiable at zero. 

§1. Introduction 

In this note, we study the Cauchy problem of the Maxwell-Dirac 
(M-D) system in 1 + 1 dimensions; 

(1) 

(2) 

(3) 

(4) 

( -ia~-"8'" + mf3)7/J = A'"a'"'l/J, 

DA'" = -(a'"'lj;, 7/J), 

8'" A'"= 0, 

7/J(O) = 7/Jo, A'"(O) =a'", 8tA'"(O) =a'" 

where 80 = 8t, 81 = ox, D = -of+ 8~, (·, ·) denotes the usual inner 
product in <C2 , 'ljJ = 7/J(t,x) is a <C2 valued unknown function, A'" = 
A'"(t, x) are real valued unknown functions, and m is a nonnegative 
constant. We are concerned with the Minkowski space with the metric 
g~"v = diag(1, -1) and the summation convention is used for summing 

over repeated indices. Thus a~-"8'" = L~=O a~-"8'", where a~" given a0 = 
h, a= a 1 = 1'01'\ and f3 = 1'0 , where J2 denotes the identity matrix of 
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size 2. We take the matrices 'Y~-' as follows 

0 (0 1) 1 ( 0 
'Y = 1 0 ' 'Y = -1 

The constraint (3) is the Lorenz gauge condition. The M-D system 
describes an electron self-interacting with its own electromagnetic field. 
The system in 1 + 1 dimensions is the prototype model in the quantum 
field theory. 

In the one dimensional case, the equations (2) and (3) require the 
initial data to satisfy the following two compatibility conditions: 

(5) 8xa1(x) = l'l/lo(x)l 2 + a;ao(x), ao(x) = 8xa1(x). 

The Lorenz gauge condition (3) restricts the behavior of the solutions at 
the spatial infinity, though wave equations have finite speed propagation. 
Indeed, if Oxao and a1 vanish at x = ±oo, then (5) implies that 

I: l'l/lol 2 = ll'l/lolli2 = 0, 

which excludes the nontrivial case, this was pointed out in [19]. It is a 
difficulty of the one dimensional case. Let f be a real valued function in 
C00 (lR) satisfying the following assumption 

Co 2 
f(x) = 2 x on lxl::::; 5' co 3 

f(x) = sgnx · 2 on lxl 2 5' 

eo : = II 'l/lo II i2 . In this note, we consider the case s 2 0 and the initial 
data a1 - f vanishing at ±oo. This condition for the initial data a1 of 
the spatial infinity does not unnatural condition physically. Replacing 
A1(t,x) with A1(t,x) +tf(x), we rewrite (1)-(4) as follows. 

(6) 

(7) 

(8) 

(9) 

( -ioP81-' + m(3)'lj! = Al-'a~-''lj! + tfa'lj!, 

DA~-' = -(a~-''l/1, 'l/1) - p,ta;f, 
8~-' A~-'= -taxf, 

'l/1(0) = 'l/lo, A~-'(0) =a~-', 8tA~-t(O) = ao. 

The initial datum 'l/lo, a~-', and a~-' of the Cauchy problem will be 
taken in a Sobolev space H 8 = H 8 (JR) defined by the norm lluiiH• := 

II osull£2' where 0 := (1 + 1·1 2 ) 112 and u denotes the Fourier transform 
of u. For 1 + n dimensions, the M-D system with m = 0 is invariant 
under the scaling 
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hence the scaling invariant data space is 

where ifB (JRn) denotes a homogeneous Sobolev space. One does not 
expect the well-posedness below this regularity. 

There are not many results on the 1 + 1 dimensional case unlike the 
higher dimensional case. Chadam [5] obtained the global existence of 
solution in H 1 (JR) x H 1 (JR) x L2(JR). In the case m = 0, Huh [12] proved 
the global well-posedness in L2(1R) x Cb(JR) x Cb(JR). Note that the wave 
data a!-' and a!-' are taken in the same space Cb(JR) and 8tAp, E Cb(JR) is 
not proved in [12]. Usually, we assume that the regularity of a!-' is one 
derivative less than a!-', and for the well-posedness, we have to prove the 
solution stays in the same space as the initial data, which is called the 
"persistency". Recently, the well-posedness for the M-D system in 1 + 3 
and 1 + 2 dimensions has intensively been studied by D'Ancona, Foschi 
and Selberg [7] and D'Ancona and Selberg [9] (see also [6]). Especially, 
the three dimensional result obtained by D'Ancona, Foschi, and Selberg 
[7] is optimal with respect to the scaling except for the critical case 
L2(JR3) X Hl/2((JR3). 

We describe two new ingredients of the proof by D'Ancona, Foschi, 
and Selberg [7] and the difference between the higher dimensional and 
the one dimensional cases. The first one is they have uncovered an 
additional null form in the Dirac equation. We here explain null forms 
and null form estimates. In the 3-dimension case, the quadratic forms 
in first derivatives 

3 

Qo(f,g) = -8tf8tg + L8jf8jg, 
j=l 

are said to be null forms. The space-time estimates for null forms were 
first proved in Klainerman and Machedon [13]. They were used to im­
prove the classical local existence theorem for nonlinear wave equations 
with the null forms. Using the classical method, i.e., energy estimates 
and the embedding theorems, one can prove that the M-D system in 1 +3 
dimensions is locally well-posed in H 2(JR3) x H 3(JR3). Roughly speaking, 
the use of the Strichartz inequality allows us to improve classical local 
existence theorems by 1/2 derivative. However, the Strichartz inequality 
method does not take into account the special structure of the nonlin­
earities that come up in the equations. Using the null form estimates, 
Bournaveas [3] proved local well-posed in H 112+"'(JR3) x Hl+"'(JR3) for 
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c > 0. D'Ancona, Foschi, and Selberg [6], [7] have uncovered the full 
null structure which can not be seen directly. The null structure found 
in [6], [7] is not the usual bilinear null structure that may be seen in 
bilinear terms of each individual component equation of a system. But 
one can find the special property depends on the structure of the sys­
tem as a whole. Hence, they call it system null structure. In the 1 + 1 
dimensional case, we can find the system null structure by employing 
the argument in [7]. Thus, our task is to prove the one dimensional null 
form estimates. 

The second one is the fact that the M-D system in Lorenz gauge with 
space being 3-dimension or 2-dimension can be rewritten the system of 
the fields (B, E) and the spinor '1/J, instead of the potentials AJ.L and the 
spinor '1/J. In this case, the worst part of AJ.L, that has no better structure, 
can be neglected. The observation plays a crucial role in the proof of 
[7] and [9]. On the other hand, in 1 + 1 dimensions the electromagnetic 
fields (B, E) are not necessarily converted to the potential fields AJ.L 
decaying near the spatial infinity. We directly consider the system of 
the potentials AJ.L and the spinor '1/J, and we must estimate the worst 
part of Aw 

Theorem 1. If s > 0, s :::::; r :::::; min(2s + 1/2, s + 1), r > 1/2, and 
(s,r) =/= (1/2,3/2), then (6)-(9) is locally well-posed in H 8 x Hr. 

In the proof of Theorem 1, we will pick out the worst part. The 
many restrictions in Theorem 1 comes from this part. Thus, we may 
suppose the well-posedness is broken by this part. We analyze this part 
in details and obtain the following theorems, which say Theorem 1 is 
optimal. 

Theorem 2. Suppose 0:::::; s < 1/2, r > max(2s + 1/2, 1/2). Then 
there exist sequences {UN} C S(JR.) and tN '\c 0 such that lluN IIH· ---+ 0, 
as N---+ oo, and the corresponding solution ('1/JN,AJ.L,N) to (6)-(7) with 
initial data ( ( u6" ) , 0, 0) satisfies 

IIAo,N(tN)IIw---+ oo, as N---+ oo. 

Remark 1. The ill-posedness appearing in Theorem 2 is referred 
to as norm inflation. It says that the flow map of (6)-(9) fails to be 
continuous at 0, and fails to be bounded in a neighborhood of 0. 

Theorem 3. Suppose r < s or r > s + 1 or r :::::; 1/2 or s = 1/2, 
r ::;:: 3/2. Then for any T > 0, the flow map of (6)-(9), as a map 
from the unit ball centered at 0 in H 8 X Hr X Hr-l to C([-T, T]; H 8 ) x 
(C([-T, T]; Hr) n C1 ([-T, T]; Hr-l )), fails to be C2 . 
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Remark 2. If m = 0, we can prove the norm inflation at (s, r) = 
(0,1/2). 

Remark 3. Theorem 3 does not imply the ill-posedness but pre­
cludes proofs of the well-posedness by the contraction argument. Indeed, 
if the contraction argument works, the flow map proves to be coo in most 
cases. 

§2. Local well-posedness 

As in [7], we decompose AI-' as follows: 

A~-'= W(t)[a~-',a~-'] + A~h.- p,(tf- W(t)[O,f]), 

A~h. = -D- 1 (a~-'~' ~). 

Here we use the notations W(t)[a, b] and o-1 F for the solution of the 
homogeneous wave equation with initial data a, b and the solution of 
the inhomogeneous wave equations Du = F with vanishing data at time 
t = 0, respectively. According to the linear part of the system, we define 
the following function spaces. 

Definition 1. For s, b E JR., the function space X~b is the comple­
tion of the Schwartz space S(JRH1 ) with respect to the norm 

where u( T, ~) denotes the time-space Fourier transform of u( t, X). The 
function spaces Hs,b and 1-ls,b are the completion of S(JR1+1 ) with respect 
to the norm 

lluiiH 8 ·b := ll(~)s(ITI-IWbull£2 , r,t; 

llui!J-u,b := lluiiHs,b + IIDtuiiHs-t,b, 

respectively. 

These spaces are introduced by Bourgain [2] and Klainerman and 
Machedon [14]. 

Remark 4. For b > 1/2, we have x~b '---t C(JR; H 8 ) and 1-ls,b '---t 

C(JR; H 8 ) n C1 (1R; Hs-1 ). 

By a standard argument, the problem obtaining closed estimates 
for the iterates reduces to proving the nonlinear estimates. Thus, for 
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example, we need to show that 

where ±0, ±1, ±2, ±3, and ±4 denotes independent signs. We omit the 
detail for the proof this estimate. Since the null structure plays crucial 
role in the proof, we only consider the null form estimates. 

We define the null structure 

e . - e( . ) - { 1, ejek < 0, 
Jk- e1 ,ek -

0, ejek > 0. 

In higher dimensions, eij denotes the angle between ei and ej (see 
[7], [9]). The following Proposition is the 1-dimensional null form es­
timates. 

Propositon 1. Suppose so,s1,s2 E IR, bo,b1,b2 2: 0. We define 
A:= bo + b1 + b2, B = min(bo, b1, b2), and s =so+ s1 + s2). If 

so+ s1 2: 0, so+ s2 2: 0, A > 1/2, 

s1 + s2 +A > 1/2, s +A > 1, 

s1 + s2 + B 2: 0, s + B 2: 1/2, 

we then have 

where 

F[IJ3e, 2 (u1, u2)](Xo) = J J 8(X1, X2)u1(X1)u2(X2)dJL!{0 • 

If the bilinear form has no null structure, the following estimate 
holds. 

Propositon 2. Suppose so, s1, s2 E IR, bo, b1, b2 2: 0, and bo + b1 + 
b2 > 1/2. If 

so+ s1 + s2 2: max( so, s1, s2), so+ s1 + s2 2: 1/2 

and we do not allow both to be equalities, we then have 

Remark 5. By the null structure, Proposition 1 permits s0 + s1 + 
s2 < 1/2, while Proposition 2 requires s0 + s1 + s2 > 1/2. Roughly 
speaking, in Proposition 1, we can replace Sj by Sj + bj. 
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§3. Ill-posedness 

Let Sm and W be the free evolution operator of the massive Dirac 
equation and wave equation, respectively. We set 

where XA is the characteristic function of A. Then we have 

We split the proof into four steps and omit the details. 

Step 1. We now prove 

fort~ 1/N. Thus the desired result holds provided uo,N is replaced by 
Sm(t)'l/Jo,N, where 'l/Jo,N = (uJ" ). 

Step 2. When 0 < 8 < 1/2 and 28 + 1/2 < r < min(148/11 + 
19/22,148/3 + 1/2), we prove 

Step 3. We obtain IIAo,N(t)llw ~ tNa, ifO < 8 < 1/2 and 28+1/2 < 
r < min(148/11 + 19/22,148/3 + 1/2), and t ~ 1/N. 

Step 4. When 0::::; 8 < 1/2 and r > 28+1/2, we have IIAo,N(t)llw ~ 
CtNc\ for some a> 0 and t ~ 1/N. 
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