Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 359–367

Allen–Cahn equation as a long-time modulation to a reaction-diffusion system

Thomas Bellsky

Abstract.

We examine a two-component reaction-diffusion system on the real axis with quadratic nonlinearity. Using semigroup estimates, we obtain a solution to our nonlinear system for long-time. For appropriate initial data, we show that a slowly-varying, scaled solution of the Allen–Cahn equation will estimate the solution of our nonlinear system for long-time. We additionally extend this work to \mathbb{R}^d .

§1. Introduction

Modulation equations approximate the dynamics of an original system in an attracting set. Modulation equations are essential in understanding complicated systems near the threshold of instability [2].

This paper expands results of [3], sharpening an assumption on the nonlinearity, and producing sharper stability estimates. These results are also in a more general function space.

We study the following reaction-diffusion system:

- (1.1a) $\partial_t u_1 = \epsilon^2 u_1 + \partial_x^2 u_1 + g(u),$
- (1.1b) $\partial_t u_2 = -\nu u_2 + \partial_x^2 u_2 + h(u),$

where $0 < \epsilon \ll 1$, $\nu > 0$, $t \ge 0$, $x \in \mathbb{R}$, $u(x,t) = (u_1(x,t), u_2(x,t))^T \in \mathbb{R}^2$, and the nonlinearities h(u) and g(u) satisfy,

(1.2)
$$(g(u), h(u)) = u^T \left(\begin{pmatrix} 0 & c_{12} \\ c_{21} & c_{22} \end{pmatrix}, \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \right) u + O(||u||^3),$$

for c_{12} , c_{21} , c_{22} , d_{11} , d_{12} , d_{21} , and d_{22} constant.

Received December 15, 2011.

Revised February 28, 2013.

²⁰¹⁰ Mathematics Subject Classification. 35B35, 35B40, 35K57.

Key words and phrases. Allen-Cahn, modulation equation, reactiondiffusion.

\S **2.** Semigroup estimates

First, we analyze only the linear components of the system (1.1). For the u_1 component, we solve $\partial_t \phi = \mathcal{L}_1 \phi = \epsilon^2 \phi + \partial_x^2 \phi$. A solution to this is $\phi = S_1(t)\phi(0)$, where $S_1(t) = e^{\mathcal{L}_1 t}$. For the u_2 component, we solve $\partial_t \phi = \mathcal{L}_2 \phi = -\nu \phi + \partial_x^2 \phi$, where $\phi = S_2(t)\phi(0)$, for $S_2(t) = e^{\mathcal{L}_2 t}$. We have the following semigroup estimates.

Proposition 2.1. There exists C > 0 independent of ϵ and t > 0 such that for any $\phi \in L^1$,

(2.1)
$$||S_1(t)\phi||_{H^1} \leq Ce^{\epsilon^2 t} \left(t^{-1/4} + t^{-3/4}\right) ||\phi||_{L^1},$$

(2.2)
$$||S_2(t)\phi||_{H^1} \leq Ce^{-\nu t} \left(t^{-1/4} + t^{-3/4}\right) ||\phi||_{L^1}.$$

Also for any $\phi \in H^1$,

(2.3)
$$||S_1(t)\phi||_{H^1} \le e^{\epsilon^2 t} ||\phi||_{H^1},$$

(2.4)
$$||S_2(t)\phi||_{H^1} \le e^{-\nu t} ||\phi||_{H^1}.$$

Sketch of Proof. For (2.1) and (2.2), L^2 to L^1 estimates are used. The proofs of (2.3) and (2.4) are standard. Q.E.D.

$\S 3.$ Reduction of long-time dynamics

If $v = (v_1, v_2)^T$ solves (1.1) absent the nonlinear terms, we can apply (2.3) and (2.4) to v for $t \in [0, T_0/\epsilon^2]$ for fixed $T_0 = 0(1)$. If the initial data is $O(\epsilon^{\alpha})$ in H^1 norm, then at $t = T_0/\epsilon^2$, v has the representation:

(3.1)
$$v(x, T_0/\epsilon^2) = (A(x), B(x))^T$$
,

where $||A(x)||_{H^1} = O(\epsilon^{\alpha})$ and $||B(x)||_{H^1} = O(\epsilon^{\alpha} e^{-C/\epsilon^2})$. This linear reduction is close to the correct representation for a solution to (1.1). But now the u_2 component is forced by the nonlinearity, so it is not exponentially decaying. We formalize this with the following theorem:

Theorem 3.1. Fix $C_0 > 0$, then there exists T_0 , $C_f > C_0$, and $\epsilon_0 > 0$ such that for all $\epsilon \in (0, \epsilon_0)$ the following holds: let $||u_0||_{H^1} \leq C_0 \epsilon$ where $u_0 = (u_1(x, 0), u_2(x, 0))^T$, then the solution u of (1.1) at a time $t = T_0/\epsilon^2$ can be written as

(3.2)
$$u(x,T_0/\epsilon^2) = \left(\epsilon A(x),\epsilon^2 B(x)\right)^T,$$

where $||A||_{H^1} \leq C_f$ and $||B||_{H^1} \leq C_f$.

360

Proof. From (1.2) we observe for u small,

(3.3)
$$|g(u)| \le C \left(|u_1 u_2| + |u_2^2| \right) + O(||u||^3),$$

(3.4)
$$|h(u)| \le C||u||^2 + O(||u||^3).$$

For (1.1a), we solve for u_1 by variation of constants and apply the H^1 norm to $u_1(x,t)$ and the semigroup estimates (2.1) and (2.3),

$$||u_{1}(x,t)||_{H^{1}} \leq ||S_{1}(t)u_{1}(0)||_{H^{1}} + ||\int_{0}^{t} S_{1}(t-s)g(u(s))ds||_{H^{1}}$$

(3.5)
$$\leq C\epsilon e^{\epsilon^{2}t} + C\int_{0}^{t} \psi_{1}(t-s)||g(u(s))||_{L^{1}}ds,$$

where we define $\psi_1(t) = e^{\epsilon^2 t} \left(t^{-1/4} + t^{-3/4} \right)$. Substituting (3.3) above, we estimate $\left| \left| |u_1 u_2| + |u_2|^2 \right| \right|_{L^1}$ with Holder's and Young's Inequality and $\left| \left| \left| u \right|^3 \right| \right|_{L^1}$ with the Sobolev Embedding Theorem,

(3.6)
$$\left| \left| |u_1 u_2| + |u_2|^2 \right| \right|_{L^1} \leq C(||u_2||_{H^1}^{3/2} + ||u||_{H^1}^3),$$

(3.7)
$$\left| \left| ||u||^3 \right| \right|_{L^1} \leq C ||u||_{L^3}^3 \leq C ||u||_{H^1}^3.$$

Applying the above to (3.5), we have

(3.8)
$$||u_1(x,t)||_{H^1} \le C\epsilon e^{\epsilon^2 t} + C \int_0^t \psi_1(t-s)(||u_2(s)||_{H^1}^{3/2} + M(\tau)^3) ds,$$

where we define $M_1(\tau) = \sup_{\substack{t \leq \tau \\ t \leq \tau}} ||u_1(t)||_{H^1}$, $M_2(\tau) = \sup_{\substack{t \leq \tau \\ t \leq \tau}} ||u_2(t)||_{H^1}$, and $M = M_1 + M_2$, for $\tau \leq T_0/\epsilon^2$. We solve for u_2 in (1.1a) by variation of constants and apply the H^1 norm to $u_2(x, t)$ and the semigroup estimates (2.2) and (2.4),

(3.9)
$$\begin{aligned} ||u_{2}(x,t)||_{H^{1}} &\leq \left| \left| S_{2}(t)u_{2}(0) + \int_{0}^{t} S_{2}(t-s)h(u(s))ds \right| \right|_{H^{1}} \\ &\leq C\epsilon e^{-\nu t} + \int_{0}^{t} \psi_{2}(t-s)||h(u(s))||_{L^{1}}ds \\ &\leq C(\epsilon e^{-\nu t} + M(\tau)^{2}), \end{aligned}$$

where $\psi_2(t) = e^{-\nu t} (t^{-1/4} + t^{-3/4})$. Of note, we omit an $M(\tau)^3$ from (3.9) since it does not have a leading order contribution. This $M(\tau)^3$ term would result in a $M(\tau)^{9/2}$ in the subsequent equation (3.10) below, but we again omit this term since it does not have a leading order

contribution. We substitute (3.9) into (3.8) and apply the sup:

$$M_1 \leq C \sup_{t \leq \tau} \left(\epsilon e^{\epsilon^2 t} + C \int_0^t \psi_1(t-s) (\epsilon^{3/2} e^{-3\nu s/2} + M(\tau)^3) ds \right)$$
$$\leq C \left(\epsilon + \epsilon^{3/2} \int_0^\tau \psi_1(\tau-s) e^{-3\nu s/2} ds \right)$$
$$(3.10) \qquad \leq C (\epsilon + \epsilon^{-3/2} M^3),$$

since $\int_0^{\tau} \psi_1(\tau - s) ds \le C \epsilon^{-3/2}$. Applying the sup to (3.9) we have:

$$(3.11) M_2 \le C(\epsilon + M^2).$$

Summing (3.11) and (3.10) implies $M \leq C_f(\epsilon + M^2 + \epsilon^{-3/2}M^3)$, where $C_f > C_0$. We take the corresponding equality and define

(3.12)
$$w(M) \equiv C_f(\epsilon + M^2 + \epsilon^{-3/2}M^3) - M.$$

At leading order, w(M) has two positive roots at $C_f \epsilon$ and $\epsilon^{3/4}/\sqrt{C_f}$. Depending on the size of the initial data, either $M < C_f \epsilon$ or $M(0) > \epsilon^{3/4}/\sqrt{C_f}$ for long-time. From an assumption of Theorem 3.1, $M(0) \leq C_0 \epsilon$, so $M < C_f \epsilon$. Applying this to (3.9), we have

(3.13)
$$||u_2(x, T_0/\epsilon^2)||_{H^1} \le C_f \epsilon^2$$

Using the above estimate in (3.10), it follows that

(3.14)
$$||u_1(x, T_0/\epsilon^2)||_{H^1} \le C_f \epsilon.$$

To finish the proof, we define

(3.15)
$$\epsilon A(x) = u_1(x, T_0/\epsilon^2),$$

(3.16) $\epsilon^2 B(x) = u_2(x, T_0/\epsilon^2).$

Q.E.D.

Remark 3.1. We can extend Theorem 3.1 to the case when the first component of the nonlinearity g(u) is controlled by $C(|u_1u_2| + |u_2|^2) + O(||u||^{\beta})$, for $\beta \geq 5/2$.

§4. Approximation by the Allen–Cahn equation

Motivated by Theorem 3.1, for $A, B \in \mathbb{R}$, we make the ansatz $u = (\epsilon A(X,T), \epsilon^2 B(X,T))^T$, for $X = \epsilon x$ and $T = \epsilon^2 t$. Formally, plugging this into (1.1),

(4.1) $\partial_T A = \partial_X^2 A + A + \epsilon^{-3} g((\epsilon A, \epsilon^2 B)),$

(4.2)
$$\epsilon^2 \partial_T B = -\nu B + \epsilon^2 \partial_X^2 B + \epsilon^{-2} h((\epsilon A, \epsilon^2 B)).$$

Using the information about g and h from (1.2), we have:

(4.3)
$$g((\epsilon A, \epsilon^2 B)) = (c_{21} + c_{12})\epsilon^3 AB + c_{111}\epsilon^3 A^3 + O(\epsilon^4),$$

(4.4) $h((\epsilon A, \epsilon^2 B)) = d_{11}\epsilon^2 A^2 + O(\epsilon^3),$

where c_{111} is the first entry in the 3-tensor of the cubic part of g. Plugging these into (4.1) and (4.2), at leading order we have,

(4.5)
$$\partial_T A = \partial_X^2 A + A + (c_{21} + c_{12})AB + c_{111}A^3,$$

(4.6)
$$0 = -\nu B + d_{11}A^2.$$

With the second line, we express B in terms of A, where $B = d_{11}A^2/\nu$. Substituting this into the system above, we have the Allen–Cahn system:

(4.7)
$$\partial_T A = \partial_X^2 A + A + \gamma A^3,$$

where $\gamma = d_{11}(c_{21} + c_{12})/\nu + c_{111}$. To begin a rigorous reduction, we define the ansatz to our nonlinear system (1.1) as

(4.8)
$$\Phi_{\epsilon}[A_0](x,t) = \begin{pmatrix} \epsilon A(\epsilon x, \epsilon^2 t) \\ \epsilon^2 B(\epsilon x, \epsilon^2 t) \end{pmatrix},$$

where A solves (4.7), $A|_{t=0} = A_0$ is the initial data, and $B = d_{11}A^2/\nu$. The function Φ_{ϵ} maps the initial data forward, both scaling space and time. We define the following residuals for $v = (v_1, v_2)^T$ where $v_1, v_2 \in$ $H^1((0, T_0); L^2(\mathbb{R})) \cap L^2((0, T_0); H^2(\mathbb{R}))$:

(4.9)
$$Res_1(v) = -\partial_t v_1 + \epsilon^2 v_1 + \partial_x^2 v_1 + g(v_1, v_2),$$

(4.10)
$$Res_2(v) = -\partial_t v_2 - \nu v_2 + \partial_x^2 v_2 + h(v_1, v_2).$$

The next proposition details bounds on these residuals for our ansatz.

Proposition 4.1. Define $\Phi_{\epsilon}[A_0]$ by (4.8) where A solves (4.7) and $\sup_{T \in [0,T_0]} ||A(T)||_{H^2} < \infty$, then we have the following estimates:

(4.11)
$$\sup_{t \in [0, T_0/\epsilon^2]} ||Res_1(\Phi_{\epsilon}[A_0])||_{H^1} \le C\epsilon^4,$$

(4.12)
$$\sup_{t \in [0, T_0/\epsilon^2]} ||Res_2(\Phi_{\epsilon}[A_0])||_{H^1} \le C\epsilon^3.$$

The above follows from A solving (4.7), $B = d_{11}A^2/\nu$, and using the given expansions of g and h above.

The following theorem is our main result.

Theorem 4.1. For all K, d > 0, there exists C_1, ϵ_0 , and $T_0 > 0$ such that for all $\epsilon \in (0, \epsilon_0)$, the following holds: let A be a solution of Allen–Cahn with $\sup_{t \in [0,T_0]} ||A(t)||_{H^2} \leq K$, and $u_0 = (u_1(0), u_2(0))^T \in H^1$ an initial condition for (1.1) with

(4.13)
$$||u_1(0) - \epsilon A(\epsilon x, 0)||_{H^1} \le d\epsilon^2,$$

(4.14)
$$||u_2(0) - \epsilon^2 B(\epsilon x, 0)||_{H^1} \le d\epsilon^3,$$

then there exists a unique solution u of (1.1) with $u|_{t=0} = u_0$ such that

(4.15)
$$\sup_{t \in [0, T_0/\epsilon^2]} ||u_1(t) - \epsilon A(\epsilon x, \epsilon^2 t)||_{H^1} \leq C_1 \epsilon^2,$$

(4.16)
$$\sup_{t \in [0, T_0/\epsilon^2]} ||u_2(t) - \epsilon^2 B(\epsilon x, \epsilon^2 t)||_{H^1} \le C_1 \epsilon^3.$$

Proof. We define the error of $\Phi_{\epsilon}[A_0]$ as a solution of (1.1) as $R = (R_1, R_2)^T = (\epsilon^{-2} (u_1 - \epsilon A(\epsilon x, \epsilon^2 t)), \epsilon^{-3} (u_2 - \epsilon^2 B(\epsilon x, \epsilon^2 t)))^T$. Plugging these errors into (1.1), we have the following system,

(4.17)
$$\partial_t R_1 = \epsilon^2 R_1 + \partial_x^2 R_1 + N_1(u),$$

(4.18)
$$\partial_t R_2 = -\nu R_2 + \partial_x^2 R_2 + N_2(u).$$

Lemma 4.1. The following H_1 bounds on N_1 and N_2 hold:

$$(4.19) \qquad ||N_1(u)||_{H^1} \le C\epsilon^2 (||R||_{H^1} + \epsilon ||R||_{H^1}^2) + C\epsilon^2,$$

$$(4.20) ||N_2(u)||_{H^1} \le C(||R_1||_{H^1} + \epsilon ||R_2||_{H^1} + \epsilon ||R||_{H^1}^2) + C.$$

Proof. We now sketch some of the proof. We substitute for $N_1(u)$ using (4.17) and the form of R above, so

$$||N_{1}(u)||_{H^{1}} = ||\frac{1}{\epsilon^{2}} \left(\left(\epsilon^{2} + \partial_{x}^{2} - \partial_{t} \right) (\epsilon A) + g \left(\epsilon^{2} R_{1} + \epsilon A, \epsilon^{3} R_{2} + \epsilon^{2} B \right) \right) ||_{H^{1}}$$

$$= ||\frac{1}{\epsilon^{2}} \left(Res_{1}(\Phi_{\epsilon}(A)) + G(g) \right) ||_{H^{1}}$$

$$(4.21) \qquad \leq C_{Res_{1}} \epsilon^{2} + \frac{1}{\epsilon^{2}} ||G(g)||_{H^{1}},$$

where we define

(4.22)
$$G(g) \equiv g(\epsilon^2 R_1 + \epsilon A, \epsilon^3 R_2 + \epsilon^2 B) - g(\epsilon A, \epsilon^2 B).$$

Using our knowledge about g to thoroughly analyze the differences contained in G, we arrive at the following estimate:

$$||G(g)||_{H^1} = ||g(\epsilon^2 R_1 + \epsilon A, \epsilon^3 R_2 + \epsilon^2 B) - g(\epsilon A, \epsilon^2 B)||_{H^1}$$

(4.23)
$$\leq C\epsilon^4 (||R_1||_{H^1} + ||R_2||_{H^1} + \epsilon (||R_1||_{H^1} + ||R_2||_{H^1})^2),$$

from which we conclude the first estimate in this lemma. Here, we use the fact that $||W^2||_{H^1} \leq ||W||_{H^1}^2$, since $W \in L^\infty$ for any $W \in H^1$, which follows from the Sobolev Embedding Theorem. The estimate on N_2 follows similarly, by examining the difference of two h terms. Q.E.D.

For (4.17) and (4.18) we solve by variation of constants,

(4.24)
$$R_1(t) = S_1(t)R_1(0) + \int_0^t S_1(t-s)N_1(u(s))ds,$$

(4.25)
$$R_2(t) = S_2(t)R_2(0) + \int_0^t S_2(t-s)N_2(u(s))ds.$$

We define $\tilde{M}_1(\tau) = \sup_{t \leq \tau} ||R_1(t)||_{H^1}$, $\tilde{M}_2(\tau) = \sup_{t \leq \tau} ||R_2(t)||_{H^1}$, and $\tilde{M}(\tau) = \tilde{M}_1(\tau) + \tilde{M}_2(\tau)$ for $\tau \leq T_0/\epsilon^2$. We apply $\sup_{t < \tau}$ to (4.24) and (4.25),

(4.26)
$$\tilde{M}_1(\tau) \leq C e^{T_0} + C T_0 e^{T_0} (\tilde{M}_1(\tau) + \tilde{M}_2(\tau) + \epsilon \tilde{M}(\tau)^2),$$

(4.27)
$$\tilde{M}_2(\tau) \leq C + C(\tilde{M}_1(\tau) + \epsilon \tilde{M}_2(\tau) + \epsilon \tilde{M}(\tau)^2 + C).$$

Picking ϵ_0 small enough such that $C\epsilon \leq 1/2$, it follows that

(4.28)
$$\tilde{M}_2(\tau) \le C + C \left(\tilde{M}_1(\tau) + \epsilon (\tilde{M}_1(\tau) + \tilde{M}_2(\tau))^2 \right).$$

Plugging the above bound into (4.26) and picking $T_0 > 0$ small enough so that $CT_0e^{T_0} \leq 1/2$, we arrive at the following estimate:

(4.29)
$$\tilde{M}_1(\tau) \le C + C(\epsilon(\tilde{M}_1(\tau) + \tilde{M}_2(\tau))^2).$$

Substituting (4.29) into (4.28), we have

(4.30)
$$\tilde{M}_2(\tau) \le C + C(\epsilon(\tilde{M}_1(\tau) + \tilde{M}_2(\tau))^2).$$

Finally, we sum (4.29) and (4.30), so $\tilde{M} \leq C_1(1 + \epsilon \tilde{M}^2)$, where $C_1 \geq 2d$. With this inequality, we solve the corresponding equality,

(4.31)
$$\tilde{w}(\tilde{M}) = C_1(1 + \epsilon \tilde{M}^2) - \tilde{M}.$$

At leading order, the roots are $\tilde{M} = C_1$ and $\tilde{M} = 1/(C_1\epsilon)$. Similar to Theorem 3.1, initial data bounds imply $\tilde{M}(0) \leq 2d$, so $\tilde{M} \leq C_1$. Q.E.D.

§5. Higher spatial dimensions

We must change spaces for our results to hold for $x \in \mathbb{R}^d$. We need the new space to control L^{∞} , so we require kp > d. The obvious space is the Sobolev space H^k , with k > d/2. We want p = 2 to maintain Plancherel's Theorem and other befitting properties of the Fourier transform in L^2 . In H^k , for k > 2/d, we still have L^q controlled for q > p, which is needed in the proof of Theorem 3.1.

We require new L^1 semigroup estimates; otherwise the proof of Theorem 3.1 will fail. Short and long-time estimates are necessary to avoid integrating near 0. With the next estimate replacing (2.1), the results of this paper will follow for $x \in \mathbb{R}^d$:

(5.1)
$$||S_1(t)\phi||_{H^k} \le C \frac{e^{\epsilon^2 t}}{(t+1)^{d/2-1/4}} (||\phi||_{H^k} + ||\phi||_{L^1}).$$

§6. Conclusion

This work demonstrates new results showing that a scaled solution of the Allen–Cahn system accurately approximates a solution to the nonlinear reaction-diffusion system (1.1) for long-time. We build on previous results by providing a sharper representation of the nonlinear term g, which leads to sharper estimates. For Theorem 4.1, we are sharper to a higher order of ϵ in the assumption and result with respect to the second component. We also work in a more general function space.

366

Acknowledgments. The author is grateful for superb guidance from Keith S. Promislow.

References

- L. Hörmander, The Analysis of Linear Partial Differential Operators 14, Springer-Verlag, 1985.
- [2] G. Schneider, A new estimate for the Ginzburg–Landau approximation on the real axis, J. Nonlinear Sci., 4 (1994), 23–34.
- [3] G. Schneider, Bifurcation theory for dissipative systems on unbounded cylindrical domains—An introduction to the mathematical theory of modulation equations, ZAMM Z. Angew. Math. Mech., 81 (2001), 507–522.

Department of Mathematics & Statistics University of Maine Orono, ME 04469 U.S.A. E-mail address: thomas.bellsky@maine.edu