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Allen-Cahn equation as a long-time modulation to a 
reaction-diffusion system 

Thomas Bellsky 

Abstract. 

We examine a two-component reaction-diffusion system on the real 
axis with quadratic nonlinearity. Using semigroup estimates, we obtain 
a solution to our nonlinear system for long-time. For appropriate initial 
data, we show that a slowly-varying, scaled solution of the Allen-Cahn 
equation will estimate the solution of our nonlinear system for long
time. We additionally extend this work to JRd. 

§1. Introduction 

Modulation equations approximate the dynamics of an original sys
tem in an attracting set. Modulation equations are essential in under
standing complicated systems near the threshold of instability [2]. 

This paper expands results of [3], sharpening an assumption on the 
nonlinearity, and producing sharper stability estimates. These results 
are also in a more general function space. 

We study the following reaction-diffusion system: 

(l.la) 

(l.lb) 

E2U1 + o;ul + g(u), 

-vu2 + a;u2 + h(u), 

where 0 < E «: 1, v > 0, t ~ 0, x E JR., u(x, t) = (u1(x, t), u2(x, t)f E 

JR.2 , and the nonlinearities h(u) and g(u) satisfy, 

(1.2) (g(u), h(u)) = uT ( ( c~1 ~~~ ) , ( ~~~ ~~~ ) ) u + O(lluW), 
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§2. Semigroup estimates 

First, we analyze only the linear components of the system (1.1). 
For the U1 component, we solve at¢ = .c1 ¢ = E2¢ +a;¢. A solution 
to this is¢= S1(t)¢(0), where S1(t) = e.c1t. For the u2 component, we 
solve at¢= .C2¢ = -v¢ +a;¢, where¢= S2(t)¢(0), for S2(t) = e.c2t. 
We have the following semigroup estimates. 

Proposition 2.1. There exists C > 0 independent of E and t > 0 
such that for any ¢ E £ 1 , 

(2.1) IIS1(t)¢11Hl 5.Cee2t (c1/4 +r3/4) ll¢11u, 

(2.2) IIS2(t)¢11Hl '5:_Ce-vt (r1/4 +C3/4) ll¢llu· 

Also for any ¢ E H 1 , 

(2.3) 

(2.4) 

JJ81(t)¢JIH1 '5:_ee2tllc/JIIH1, 

JJS2(t)¢JIH1 '5:_e-vtii¢11Hl. 

Sketch of Proof. For (2.1) and (2.2), £ 2 to £ 1 estimates are used. 
The proofs of (2.3) and (2.4) are standard. Q.E.D. 

§3. Reduction of long-time dynamics 

If v = ( v1, v2)T solves (1.1) absent the nonlinear terms, we can apply 
(2.3) and (2.4) to v fortE [0, T0 /E2] for fixed T0 = 0(1). If the initial 
data is 0 ( E"') in H 1 norm, then at t = T0 j E2 , v has the representation: 

(3.1) v(x, To/E2 ) = (A(x), B(x)f, 

where IJA(x)JIHl = O(E"') and IJB(x)Jiw = O(E"'e-Cfe\ This linear 
reduction is close to the correct representation for a solution to (1.1). 
But now the u2 component is forced by the nonlinearity, so it is not 
exponentially decaying. We formalize this with the following theorem: 

Theorem 3.1. Fix Co > 0, then there exists T0 , Ct > C0 , and 
Eo> 0 such that for all E E (0, Eo) the following holds: let JluoiiHl '5:. CoE 
where u0 = (u 1 (x,O),u2(x,o)f, then the solution u of (1.1) at a time 
t = T0 /E2 can be written as 

(3.2) 
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Proof. From (1.2) we observe for u small, 

(3.3) lg(u)l ~C (lu1u2l + luW + O(lluW), 

(3.4) lh(u)l ~CIIull 2 + O(llull3 ). 

For (l.la), we solve for u1 by variation of constants and apply the H 1 
norm to u1 (x, t) and the semigroup estimates (2.1) and (2.3), 

llu1(x, t)IIHl ~IISl(t)ul(O)IIHl +II lot S1(t- s)g(u(s))dsiiHl 

(3.5) ~CEe€2t +Clot 'l/JI(t- s)llg(u(s))lluds, 

where we define '1/JI(t) = e€2 t (r114 +r314 ). Substituting (3.3) above, 
we estimate lllu1 u2l + lu2l 2ll £1 with Holder's and Young's Inequality 
and ll11ull 3 llu with the Sobolev Embedding Theorem, 

(3.6) lllu1u2l + lu2l 2llu ~C(IIu2ll~; + lluii1:P), 

(3.7) lllluWIIu ~CIIullh ~ Cllull1-1· 

Applying the above to (3.5), we have 

(3.8) llu1(x, t)IIHl ~ CEe€2 t +Clot 'l/J1(t- s)(llu2(s)ll~; + M(r) 3 )ds, 

where we define M1(r) = supllu1(t)IIH1, M2(r) = supllu2(t)11Hl, and 
t~T t~T 

M = M1 + M2, forT~ T0 jE2 • We solve for u2 in (l.la) by variation of 
constants and apply the H 1 norm to u2 (x, t) and the semigroup estimates 
(2.2) and (2.4), 

llu2(x,t)IIH1 ~~~S2(t)u2(0)+ lot S2(t-s)h(u(s))dsiiH
1 

~CEe-vt +lot 'l/J2(t- s)llh(u(s))lluds 

(3.9) ~C(Ee-vt + M(r)2), 

where 'lj;2(t) = c"t (r1/4 + r 314 ). Of note, we omit an M(r)3 from 
(3.9) since it does not have a leading order contribution. This M(r)3 

term would result in a M( r)912 in the subsequent equation (3.10) be
low, but we again omit this term since it does not have a leading order 
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contribution. We substitute (3.9) into (3.8) and apply the sup: 
t~T 

M 1 :S:Csup (EeE2 t + C t 1/J!(t- s)(E312e-3vs/Z + M(T) 3)ds) 
t~T Jo 

:::;C ( E + E3/21T '1/h ( T- s )e-3vs/2ds) 

(3.10) :::;C(E + E-312 M 3), 

since J; 'lj;1 ( T - s )ds :::; Cc312. Applying the sup to (3.9) we have: 
t~T 

(3.11) 

Summing (3.11) and (3.10) implies M:::; Ct(E+M2 +c312M 3 ), where 
Ct > C0 . We take the corresponding equality and define 

At leading order, w(M) has two positive roots at CtE and E3/ 4 I y'Cf. 
Depending on the size of the initial data, either M < CJE or M(O) > 
E3/4 I y'Cf for long-time. From an assumption of Theorem 3.1, M(O) :::; 
CoE, so M < CtE· Applying this to (3.9), we have 

(3.13) 

Using the above estimate in (3.10), it follows that 

(3.14) 

To finish the proof, we define 

(3.15) 

(3.16) 

EA(x) =u1 (x, ToiE2), 

E2 B(x) =uz(x, ToiE2). 

Q.E.D. 

Remark 3.1. We can extend Theorem 3.1 to the case when the first 
component of the nonlinearity g(u) is controlled by C(lu1 u21 + lu212) + 
O(lluii 13 ), for (3 2: 512. 



Allen-Cahn equation as a long-time modulation 363 

§4. Approximation by the Allen-Cahn equation 

Motivated by Theorem 3.1, for A, BE JR, we make the ansatz u = 

(EA(X,T),E2B(X,T))r, for X= EX and T = E2t. Formally, plugging 
this into (1.1), 

(4.1) orA= alA+ A+ c 3g((EA, E2 B)), 

(4.2) E28rB = -vB + E2alB + c 2h((EA, E2 B)). 

Using the information about g and h from (1.2), we have: 

(4.3) g((EA, E2 B)) =(c2I + ci2)E3 AB + cmE3 A3 + 0(E4), 

(4.4) h((EA,E2 B)) =d11E2 A2 + 0(E3 ), 

where cui is the first entry in the 3-tensor of the cubic part of g. Plug
ging these into (4.1) and (4.2), at leading order we have, 

(4.5) orA =alA+ A+ (c2I + CI2)AB + cmA3 , 

(4.6) 0 =- vB + duA2. 

With the second line, we express Bin terms of A, where B = d11A2 jv. 
Substituting this into the system above, we have the Allen-Cahn system: 

(4.7) 

where"( = du(c2I + ci2)/v +cui· To begin a rigorous reduction, we 
define the ansatz to our nonlinear system (1.1) as 

(4.8) 

where A solves (4.7), Alt=O = A0 is the initial data, and B = duA2 jv. 
The function <I>. maps the initial data forward, both scaling space and 
time. We define the following residuals for v = (vi,v2)r where VI,v2 E 
HI ((0, T0 ); L2(JR)) n £ 2((0, T0 ); H 2(JR)): 

(4.9) Resi(v) = -OtVI + E2VI + a~VI + g(vi, v2), 
(4.10) Res2(v) = -OtV2- vv2 + 8~v2 + h(vb v2). 

The next proposition details bounds on these residuals for our ansatz. 
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Proposition 4.1. Define <I?E[Ao] by (4.8) where A solves (4.7) and 
sup IIA(T)IIH2 < oo, then we have the following estimates: 

TE[O,To] 

(4.11) 

(4.12) 

sup IIResl(<I?E[Ao])IIHl S CE4 , 
tE[O,To/E 2 ] 

sup 11Res2(<1?E[Ao])IIH1 S CE3 . 
tE[O,T0/E2 ] 

The above follows from A solving (4.7), B = d11 A2 jv, and using 
the given expansions of g and h above. 

The following theorem is our main result. 

Theorem 4.1. For all K, d > 0, there exists cl' Eo, and To > 0 
such that for all E E (0, Eo), the following holds: let A be a solution of 

Allen-Cahn with sup IIA(t)IIH2 S K, and uo = (u1(0),u2(0)f E H 1 

tE[O,To] 

an initial condition for ( 1.1) with 

( 4.13) 

( 4.14) 

llu1(0)- EA(Ex, O)IIHl SdE2, 

llu2(0)-E2B(Ex,O)IIH1 SdE3 , 

then there exists a unique solution u of (1.1) with ult=O = u0 such that 

(4.15) sup llu1(t)- EA(Ex, E2t)11Ht SC1E2, 
tE[O,To/E2 ] 

(4.16) sup llu2(t)- E2B(Ex,E2t)11Hl SC1E3 . 
tE[O,To/E2] 

Pmof. We define the error of <I?E[Ao] as a solution of (1.1) as R = 
T 

(R1 ,R2 )T = (c2 (u1 - EA(Ex,E2t)) ,c3 (u2 - E2B(Ex,E2t))) . Plug-
ging these errors into (1.1), we have the following system, 

( 4.17) 

(4.18) 
E2 R1 + fJ~R1 + N1(u), 

-vR2 + a;,R2 + N2(u). 

Lemma 4.1. The following H 1 bounds on N 1 and N 2 hold: 

(4.19) IIN1(u)IIH1 SCE2(IIRIIH1 + EIIRII~t) + CE2, 

(4.20) IIN2(u)IIH1 SC(IIR1IIH1 + EIIR2IIH1 + EIIRII~t) +C. 
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Proof. We now sketch some of the proof. We substitute for N 1 (u) 
using ( 4.17) and the form of R above, so 

where we define 

Using our knowledge about g to thoroughly analyze the differences con
tained in G, we arrive at the following estimate: 

IIG(g)IIHl =llg(t:2 Rl + EA, E3 R2 + E2 B)- g(t:A, E2 B)IIHl 

(4.23) ::=;Ct:4 (IIR111Hl + IIR211Hl + t:(IIRliiHl + IIR2IIH1)2), 

from which we conclude the first estimate in this lemma. Here, we use 
the fact that IIW2IIH1 ::; IIWII~1, since W E L00 for any W E Hl, 
which follows from the Sobolev Embedding Theorem. The estimate on 
N 2 follows similarly, by examining the difference of two h terms. Q.E.D. 

For (4.17) and (4.18) we solve by variation of constants, 

(4.24) R1(t) =S1(t)R1(0) +lot S1(t- s)N1(u(s))ds, 

(4.25) R2(t) =S2(t)R2(0) +lot S2(t- s)N2(u(s))ds. 

We define M1(T) = supjjR1(t)IIH1, M2(T) = supjjR2(t)IIH1, and M(T) = 
t~T t~T 

M1(T) + M2(T) forT::; T0jt:2. We apply sup to (4.24) and (4.25), 
t~T 

(4.26) M1(T) ::;CeTo + CToeT0 (Ml(T) + M2(T) + t:M(T)2), 

(4.27) M2(T) ::;c + C(M1(T) + EM2(T) + t:M(T)2 +c). 

Picking Eo small enough such that Ct: ::; 1/2, it follows that 
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Plugging the above bound into ( 4.26) and picking To > 0 small enough 
so that CT0 eTo :::; 1/2, we arrive at the following estimate: 

(4.29) 

Substituting ( 4.29) into ( 4.28), we have 

(4.30) 

Finally, we sum (4.29) and (4.30), so M:::; C1 (1+EM2 ), where 0 1 ~ 2d. 
With this inequality, we solve the corresponding equality, 

(4.31) 

At leading order, the roots are M = 0 1 and M = 1/ (C1E). Similar to 
Theorem 3.1, initial data bounds imply M(O) :::; 2d, so M:::; cl. Q.E.D. 

§5. Higher spatial dimensions 

We must change spaces for our results to hold for x E JR.d. We 
need the new space to control L 00 , so we require kp > d. The obvious 
space is the Sobolev space Hk, with k > d/2. We want p = 2 to main
tain Plancherel's Theorem and other befitting properties of the Fourier 
transform in £ 2 . In Hk, for k > 2/d, we still have Lq controlled for 
q > p, which is needed in the proof of Theorem 3.1. 

We require new £ 1 semigroup estimates; otherwise the proof of The
orem 3.1 will fail. Short and long-time estimates are necessary to avoid 
integrating near 0. With the next estimate replacing (2.1), the results 
of this paper will follow for x E JR.d: 

(5.1) 

§6. Conclusion 

This work demonstrates new results showing that a scaled solution 
of the Allen-Cahn system accurately approximates a solution to the 
nonlinear reaction-diffusion system (1.1) for long-time. We build on 
previous results by providing a sharper representation of the nonlinear 
term g, which leads to sharper estimates. For Theorem 4.1, we are 
sharper to a higher order of E in the assumption and result with respect 
to the second component. We also work in a more general function 
space. 
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