Allen-Cahn equation as a long-time modulation to a reaction-diffusion system

Thomas Bellsky

Abstract

. We examine a two-component reaction-diffusion system on the real axis with quadratic nonlinearity. Using semigroup estimates, we obtain a solution to our nonlinear system for long-time. For appropriate initial data, we show that a slowly-varying, scaled solution of the Allen-Cahn equation will estimate the solution of our nonlinear system for longtime. We additionally extend this work to \mathbb{R}^{d}.

§1. Introduction

Modulation equations approximate the dynamics of an original system in an attracting set. Modulation equations are essential in understanding complicated systems near the threshold of instability [2].

This paper expands results of [3], sharpening an assumption on the nonlinearity, and producing sharper stability estimates. These results are also in a more general function space.

We study the following reaction-diffusion system:

$$
\begin{align*}
\partial_{t} u_{1} & =\epsilon^{2} u_{1}+\partial_{x}^{2} u_{1}+g(u) \tag{1.1a}\\
\partial_{t} u_{2} & =-\nu u_{2}+\partial_{x}^{2} u_{2}+h(u) \tag{1.1b}
\end{align*}
$$

where $0<\epsilon \ll 1, \nu>0, t \geq 0, x \in \mathbb{R}, u(x, t)=\left(u_{1}(x, t), u_{2}(x, t)\right)^{T} \in$ \mathbb{R}^{2}, and the nonlinearities $h(u)$ and $g(u)$ satisfy,

$$
(g(u), h(u))=u^{T}\left(\left(\begin{array}{cc}
0 & c_{12} \tag{1.2}\\
c_{21} & c_{22}
\end{array}\right),\left(\begin{array}{cc}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)\right) u+O\left(\|u\|^{3}\right)
$$

for $c_{12}, c_{21}, c_{22}, d_{11}, d_{12}, d_{21}$, and d_{22} constant.
Received December 15, 2011.
Revised February 28, 2013.
2010 Mathematics Subject Classification. 35B35, 35B40, 35K57.
Key words and phrases. Allen-Cahn, modulation equation, reactiondiffusion.

§2. Semigroup estimates

First, we analyze only the linear components of the system (1.1). For the u_{1} component, we solve $\partial_{t} \phi=\mathcal{L}_{1} \phi=\epsilon^{2} \phi+\partial_{x}^{2} \phi$. A solution to this is $\phi=S_{1}(t) \phi(0)$, where $S_{1}(t)=e^{\mathcal{L}_{1} t}$. For the u_{2} component, we solve $\partial_{t} \phi=\mathcal{L}_{2} \phi=-\nu \phi+\partial_{x}^{2} \phi$, where $\phi=S_{2}(t) \phi(0)$, for $S_{2}(t)=e^{\mathcal{L}_{2} t}$. We have the following semigroup estimates.

Proposition 2.1. There exists $C>0$ independent of ϵ and $t>0$ such that for any $\phi \in L^{1}$,

$$
\begin{align*}
& \left\|S_{1}(t) \phi\right\|_{H^{1}} \leq C e^{\epsilon^{2} t}\left(t^{-1 / 4}+t^{-3 / 4}\right)\|\phi\|_{L^{1}} \tag{2.1}\\
& \left\|S_{2}(t) \phi\right\|_{H^{1}} \leq C e^{-\nu t}\left(t^{-1 / 4}+t^{-3 / 4}\right)\|\phi\|_{L^{1}} \tag{2.2}
\end{align*}
$$

Also for any $\phi \in H^{1}$,

$$
\begin{align*}
& \left\|S_{1}(t) \phi\right\|_{H^{1}} \leq e^{\epsilon^{2} t}\|\phi\|_{H^{1}} \tag{2.3}\\
& \left\|S_{2}(t) \phi\right\|_{H^{1}} \leq e^{-\nu t}\|\phi\|_{H^{1}} \tag{2.4}
\end{align*}
$$

Sketch of Proof. For (2.1) and (2.2), L^{2} to L^{1} estimates are used. The proofs of (2.3) and (2.4) are standard. Q.E.D.

§3. Reduction of long-time dynamics

If $v=\left(v_{1}, v_{2}\right)^{T}$ solves (1.1) absent the nonlinear terms, we can apply (2.3) and (2.4) to v for $t \in\left[0, T_{0} / \epsilon^{2}\right]$ for fixed $T_{0}=0(1)$. If the initial data is $O\left(\epsilon^{\alpha}\right)$ in H^{1} norm, then at $t=T_{0} / \epsilon^{2}, v$ has the representation:

$$
\begin{equation*}
v\left(x, T_{0} / \epsilon^{2}\right)=(A(x), B(x))^{T} \tag{3.1}
\end{equation*}
$$

where $\|A(x)\|_{H^{1}}=O\left(\epsilon^{\alpha}\right)$ and $\|B(x)\|_{H^{1}}=O\left(\epsilon^{\alpha} e^{-C / \epsilon^{2}}\right)$. This linear reduction is close to the correct representation for a solution to (1.1). But now the u_{2} component is forced by the nonlinearity, so it is not exponentially decaying. We formalize this with the following theorem:

Theorem 3.1. Fix $C_{0}>0$, then there exists $T_{0}, C_{f}>C_{0}$, and $\epsilon_{0}>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the following holds: let $\left\|u_{0}\right\|_{H^{1}} \leq C_{0} \epsilon$ where $u_{0}=\left(u_{1}(x, 0), u_{2}(x, 0)\right)^{T}$, then the solution u of (1.1) at a time $t=T_{0} / \epsilon^{2}$ can be written as

$$
\begin{equation*}
u\left(x, T_{0} / \epsilon^{2}\right)=\left(\epsilon A(x), \epsilon^{2} B(x)\right)^{T} \tag{3.2}
\end{equation*}
$$

where $\|A\|_{H^{1}} \leq C_{f}$ and $\|B\|_{H^{1}} \leq C_{f}$.

Proof. From (1.2) we observe for u small,

$$
\begin{align*}
& |g(u)| \leq C\left(\left|u_{1} u_{2}\right|+\left|u_{2}^{2}\right|\right)+O\left(\|u\|^{3}\right) \tag{3.3}\\
& |h(u)| \leq C| | u \|^{2}+O\left(\|u\|^{3}\right) \tag{3.4}
\end{align*}
$$

For (1.1a), we solve for u_{1} by variation of constants and apply the H^{1} norm to $u_{1}(x, t)$ and the semigroup estimates (2.1) and (2.3),

$$
\begin{align*}
\left\|u_{1}(x, t)\right\|_{H^{1}} & \leq\left\|S_{1}(t) u_{1}(0)\right\|_{H^{1}}+\left\|\int_{0}^{t} S_{1}(t-s) g(u(s)) d s\right\|_{H^{1}} \\
& \leq C \epsilon e^{\epsilon^{2} t}+C \int_{0}^{t} \psi_{1}(t-s)\|g(u(s))\|_{L^{1}} d s \tag{3.5}
\end{align*}
$$

where we define $\psi_{1}(t)=e^{\epsilon^{2} t}\left(t^{-1 / 4}+t^{-3 / 4}\right)$. Substituting (3.3) above, we estimate $\left|\left|\left|u_{1} u_{2}\right|+\left|u_{2}\right|^{2} \|_{L^{1}}\right.\right.$ with Holder's and Young's Inequality and $\left\|\|u\|^{3}\right\|_{L^{1}}$ with the Sobolev Embedding Theorem,

$$
\begin{align*}
\left\|\left|u_{1} u_{2}\right|+\left|u_{2}\right|^{2}\right\|_{L^{1}} & \leq C\left(\left\|u_{2}\right\|_{H^{1}}^{3 / 2}+\|u\|_{H^{1}}^{3}\right) \tag{3.6}\\
\left\|\|u\|^{3}\right\|_{L^{1}} & \leq C\|u\|_{L^{3}}^{3} \leq C\|u\|_{H^{1}}^{3} \tag{3.7}
\end{align*}
$$

Applying the above to (3.5), we have

$$
\begin{equation*}
\left\|u_{1}(x, t)\right\|_{H^{1}} \leq C \epsilon e^{\epsilon^{2} t}+C \int_{0}^{t} \psi_{1}(t-s)\left(\left\|u_{2}(s)\right\|_{H^{1}}^{3 / 2}+M(\tau)^{3}\right) d s \tag{3.8}
\end{equation*}
$$

where we define $M_{1}(\tau)=\sup _{t<\tau}\left\|u_{1}(t)\right\|_{H^{1}}, M_{2}(\tau)=\sup _{t \leq \tau}\left\|u_{2}(t)\right\|_{H^{1}}$, and $M=M_{1}+M_{2}$, for $\tau \leq T_{0} / \epsilon^{t \leq \tau}$. We solve for u_{2} in (1.1a) by variation of constants and apply the H^{1} norm to $u_{2}(x, t)$ and the semigroup estimates (2.2) and (2.4),

$$
\begin{align*}
\left\|u_{2}(x, t)\right\|_{H^{1}} & \leq\left\|S_{2}(t) u_{2}(0)+\int_{0}^{t} S_{2}(t-s) h(u(s)) d s\right\|_{H^{1}} \\
& \leq C \epsilon e^{-\nu t}+\int_{0}^{t} \psi_{2}(t-s)\|h(u(s))\|_{L^{1}} d s \\
& \leq C\left(\epsilon e^{-\nu t}+M(\tau)^{2}\right) \tag{3.9}
\end{align*}
$$

where $\psi_{2}(t)=e^{-\nu t}\left(t^{-1 / 4}+t^{-3 / 4}\right)$. Of note, we omit an $M(\tau)^{3}$ from (3.9) since it does not have a leading order contribution. This $M(\tau)^{3}$ term would result in a $M(\tau)^{9 / 2}$ in the subsequent equation (3.10) below, but we again omit this term since it does not have a leading order
contribution. We substitute (3.9) into (3.8) and apply the $\sup _{t \leq \tau}$

$$
\begin{aligned}
M_{1} & \leq C \sup _{t \leq \tau}\left(\epsilon e^{\epsilon^{2} t}+C \int_{0}^{t} \psi_{1}(t-s)\left(\epsilon^{3 / 2} e^{-3 \nu s / 2}+M(\tau)^{3}\right) d s\right) \\
& \leq C\left(\epsilon+\epsilon^{3 / 2} \int_{0}^{\tau} \psi_{1}(\tau-s) e^{-3 \nu s / 2} d s\right) \\
& \leq C\left(\epsilon+\epsilon^{-3 / 2} M^{3}\right),
\end{aligned}
$$

since $\int_{0}^{\tau} \psi_{1}(\tau-s) d s \leq C \epsilon^{-3 / 2}$. Applying the $\sup _{t \leq \tau}$ to (3.9) we have:

$$
\begin{equation*}
M_{2} \leq C\left(\epsilon+M^{2}\right) \tag{3.11}
\end{equation*}
$$

Summing (3.11) and (3.10) implies $M \leq C_{f}\left(\epsilon+M^{2}+\epsilon^{-3 / 2} M^{3}\right)$, where $C_{f}>C_{0}$. We take the corresponding equality and define

$$
\begin{equation*}
w(M) \equiv C_{f}\left(\epsilon+M^{2}+\epsilon^{-3 / 2} M^{3}\right)-M \tag{3.12}
\end{equation*}
$$

At leading order, $w(M)$ has two positive roots at $C_{f} \epsilon$ and $\epsilon^{3 / 4} / \sqrt{C_{f}}$. Depending on the size of the initial data, either $M<C_{f} \epsilon$ or $M(0)>$ $\epsilon^{3 / 4} / \sqrt{C_{f}}$ for long-time. From an assumption of Theorem 3.1, $M(0) \leq$ $C_{0} \epsilon$, so $M<C_{f} \epsilon$. Applying this to (3.9), we have

$$
\begin{equation*}
\left\|u_{2}\left(x, T_{0} / \epsilon^{2}\right)\right\|_{H^{1}} \leq C_{f} \epsilon^{2} \tag{3.13}
\end{equation*}
$$

Using the above estimate in (3.10), it follows that

$$
\begin{equation*}
\left\|u_{1}\left(x, T_{0} / \epsilon^{2}\right)\right\|_{H^{1}} \leq C_{f} \epsilon \tag{3.14}
\end{equation*}
$$

To finish the proof, we define

$$
\begin{align*}
\epsilon A(x) & =u_{1}\left(x, T_{0} / \epsilon^{2}\right) \tag{3.15}\\
\epsilon^{2} B(x) & =u_{2}\left(x, T_{0} / \epsilon^{2}\right) \tag{3.16}
\end{align*}
$$

> Q.E.D.

Remark 3.1. We can extend Theorem 3.1 to the case when the first component of the nonlinearity $g(u)$ is controlled by $C\left(\left|u_{1} u_{2}\right|+\left|u_{2}\right|^{2}\right)+$ $O\left(\|u\|^{\beta}\right)$, for $\beta \geq 5 / 2$.

§4. Approximation by the Allen-Cahn equation

Motivated by Theorem 3.1, for $A, B \in \mathbb{R}$, we make the ansatz $u=$ $\left(\epsilon A(X, T), \epsilon^{2} B(X, T)\right)^{T}$, for $X=\epsilon x$ and $T=\epsilon^{2} t$. Formally, plugging this into (1.1),

$$
\begin{align*}
& \partial_{T} A= \tag{4.1}\\
& \epsilon_{X}^{2} A+A+\epsilon^{-3} g\left(\left(\epsilon A, \epsilon^{2} B\right)\right) \tag{4.2}\\
& \epsilon_{T}^{2} B= \\
& \partial_{T}-\nu B+\epsilon^{2} \partial_{X}^{2} B+\epsilon^{-2} h\left(\left(\epsilon A, \epsilon^{2} B\right)\right)
\end{align*}
$$

Using the information about g and h from (1.2), we have:

$$
\begin{align*}
& g\left(\left(\epsilon A, \epsilon^{2} B\right)\right)=\left(c_{21}+c_{12}\right) \epsilon^{3} A B+c_{111} \epsilon^{3} A^{3}+O\left(\epsilon^{4}\right) \tag{4.3}\\
& h\left(\left(\epsilon A, \epsilon^{2} B\right)\right)=d_{11} \epsilon^{2} A^{2}+O\left(\epsilon^{3}\right) \tag{4.4}
\end{align*}
$$

where c_{111} is the first entry in the 3 -tensor of the cubic part of g. Plugging these into (4.1) and (4.2), at leading order we have,

$$
\begin{align*}
\partial_{T} A & =\partial_{X}^{2} A+A+\left(c_{21}+c_{12}\right) A B+c_{111} A^{3} \tag{4.5}\\
0 & =-\nu B+d_{11} A^{2} \tag{4.6}
\end{align*}
$$

With the second line, we express B in terms of A, where $B=d_{11} A^{2} / \nu$. Substituting this into the system above, we have the Allen-Cahn system:

$$
\begin{equation*}
\partial_{T} A=\partial_{X}^{2} A+A+\gamma A^{3} \tag{4.7}
\end{equation*}
$$

where $\gamma=d_{11}\left(c_{21}+c_{12}\right) / \nu+c_{111}$. To begin a rigorous reduction, we define the ansatz to our nonlinear system (1.1) as

$$
\begin{equation*}
\Phi_{\epsilon}\left[A_{0}\right](x, t)=\binom{\epsilon A\left(\epsilon x, \epsilon^{2} t\right)}{\epsilon^{2} B\left(\epsilon x, \epsilon^{2} t\right)} \tag{4.8}
\end{equation*}
$$

where A solves (4.7), $\left.A\right|_{t=0}=A_{0}$ is the initial data, and $B=d_{11} A^{2} / \nu$. The function Φ_{ϵ} maps the initial data forward, both scaling space and time. We define the following residuals for $v=\left(v_{1}, v_{2}\right)^{T}$ where $v_{1}, v_{2} \in$ $H^{1}\left(\left(0, T_{0}\right) ; L^{2}(\mathbb{R})\right) \cap L^{2}\left(\left(0, T_{0}\right) ; H^{2}(\mathbb{R})\right):$

$$
\begin{align*}
& \operatorname{Res}_{1}(v)=-\partial_{t} v_{1}+\epsilon^{2} v_{1}+\partial_{x}^{2} v_{1}+g\left(v_{1}, v_{2}\right) \tag{4.9}\\
& \operatorname{Res}_{2}(v)=-\partial_{t} v_{2}-\nu v_{2}+\partial_{x}^{2} v_{2}+h\left(v_{1}, v_{2}\right) \tag{4.10}
\end{align*}
$$

The next proposition details bounds on these residuals for our ansatz.

Proposition 4.1. Define $\Phi_{\epsilon}\left[A_{0}\right]$ by (4.8) where A solves (4.7) and $\sup _{T \in\left[0, T_{0}\right]}\|A(T)\|_{H^{2}}<\infty$, then we have the following estimates:

$$
\begin{align*}
& \sup _{t \in\left[0, T_{0} / \epsilon^{2}\right]}\left\|\operatorname{Res}_{1}\left(\Phi_{\epsilon}\left[A_{0}\right]\right)\right\|_{H^{1}} \leq C \epsilon^{4}, \tag{4.11}\\
& \sup _{t \in\left[0, T_{0} / \epsilon^{2}\right]}\left\|\operatorname{Res}_{2}\left(\Phi_{\epsilon}\left[A_{0}\right]\right)\right\|_{H^{1}} \leq C \epsilon^{3} . \tag{4.12}
\end{align*}
$$

The above follows from A solving (4.7), $B=d_{11} A^{2} / \nu$, and using the given expansions of g and h above.

The following theorem is our main result.
Theorem 4.1. For all $K, d>0$, there exists C_{1}, ϵ_{0}, and $T_{0}>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$, the following holds: let A be a solution of Allen-Cahn with $\sup _{t \in\left[0, T_{0}\right]}\|A(t)\|_{H^{2}} \leq K$, and $u_{0}=\left(u_{1}(0), u_{2}(0)\right)^{T} \in H^{1}$ an initial condition for (1.1) with

$$
\begin{align*}
\left\|u_{1}(0)-\epsilon A(\epsilon x, 0)\right\|_{H^{1}} & \leq d \epsilon^{2} \tag{4.13}\\
\left\|u_{2}(0)-\epsilon^{2} B(\epsilon x, 0)\right\|_{H^{1}} & \leq d \epsilon^{3} \tag{4.14}
\end{align*}
$$

then there exists a unique solution u of (1.1) with $\left.u\right|_{t=0}=u_{0}$ such that

$$
\begin{align*}
& \sup _{t \in\left[0, T_{0} / \epsilon^{2}\right]}\left\|u_{1}(t)-\epsilon A\left(\epsilon x, \epsilon^{2} t\right)\right\|_{H^{1}} \leq C_{1} \epsilon^{2}, \tag{4.15}\\
& \sup _{t \in\left[0, T_{0} / \epsilon^{2}\right]}\left\|u_{2}(t)-\epsilon^{2} B\left(\epsilon x, \epsilon^{2} t\right)\right\|_{H^{1}} \leq C_{1} \epsilon^{3} . \tag{4.16}
\end{align*}
$$

Proof. We define the error of $\Phi_{\epsilon}\left[A_{0}\right]$ as a solution of (1.1) as $R=$ $\left(R_{1}, R_{2}\right)^{T}=\left(\epsilon^{-2}\left(u_{1}-\epsilon A\left(\epsilon x, \epsilon^{2} t\right)\right), \epsilon^{-3}\left(u_{2}-\epsilon^{2} B\left(\epsilon x, \epsilon^{2} t\right)\right)\right)^{T}$. Plugging these errors into (1.1), we have the following system,

$$
\begin{align*}
\partial_{t} R_{1} & =\epsilon^{2} R_{1}+\partial_{x}^{2} R_{1}+N_{1}(u) \tag{4.17}\\
\partial_{t} R_{2} & =-\nu R_{2}+\partial_{x}^{2} R_{2}+N_{2}(u) \tag{4.18}
\end{align*}
$$

Lemma 4.1. The following H_{1} bounds on N_{1} and N_{2} hold:

$$
\begin{align*}
& \left\|N_{1}(u)\right\|_{H^{1}} \leq C \epsilon^{2}\left(\|R\|_{H^{1}}+\epsilon\|R\|_{H^{1}}^{2}\right)+C \epsilon^{2} \tag{4.19}\\
& \left\|N_{2}(u)\right\|_{H^{1}} \leq C\left(\left\|R_{1}\right\|_{H^{1}}+\epsilon\left\|R_{2}\right\|_{H^{1}}+\epsilon\|R\|_{H^{1}}^{2}\right)+C . \tag{4.20}
\end{align*}
$$

Proof. We now sketch some of the proof. We substitute for $N_{1}(u)$ using (4.17) and the form of R above, so

$$
\begin{aligned}
\left\|N_{1}(u)\right\|_{H^{1}} & =\left\|\frac{1}{\epsilon^{2}}\left(\left(\epsilon^{2}+\partial_{x}^{2}-\partial_{t}\right)(\epsilon A)+g\left(\epsilon^{2} R_{1}+\epsilon A, \epsilon^{3} R_{2}+\epsilon^{2} B\right)\right)\right\|_{H^{1}} \\
& =\left\|\frac{1}{\epsilon^{2}}\left(\operatorname{Res}_{1}\left(\Phi_{\epsilon}(A)\right)+G(g)\right)\right\|_{H^{1}} \\
& \leq C_{R e s_{1}} \epsilon^{2}+\frac{1}{\epsilon^{2}}\|G(g)\|_{H^{1}}
\end{aligned}
$$

where we define

$$
\begin{equation*}
G(g) \equiv g\left(\epsilon^{2} R_{1}+\epsilon A, \epsilon^{3} R_{2}+\epsilon^{2} B\right)-g\left(\epsilon A, \epsilon^{2} B\right) \tag{4.22}
\end{equation*}
$$

Using our knowledge about g to thoroughly analyze the differences contained in G, we arrive at the following estimate:

$$
\begin{align*}
\|G(g)\|_{H^{1}} & =\left\|g\left(\epsilon^{2} R_{1}+\epsilon A, \epsilon^{3} R_{2}+\epsilon^{2} B\right)-g\left(\epsilon A, \epsilon^{2} B\right)\right\|_{H^{1}} \\
& \leq C \epsilon^{4}\left(\left\|R_{1}\right\|_{H^{1}}+\left\|R_{2}\right\|_{H^{1}}+\epsilon\left(\left\|R_{1}\right\|_{H^{1}}+\left\|R_{2}\right\|_{H^{1}}\right)^{2}\right), \tag{4.23}
\end{align*}
$$

from which we conclude the first estimate in this lemma. Here, we use the fact that $\left\|W^{2}\right\|_{H^{1}} \leq\|W\|_{H^{1}}^{2}$, since $W \in L^{\infty}$ for any $W \in H^{1}$, which follows from the Sobolev Embedding Theorem. The estimate on N_{2} follows similarly, by examining the difference of two h terms. Q.E.D.

For (4.17) and (4.18) we solve by variation of constants,

$$
\begin{align*}
& R_{1}(t)=S_{1}(t) R_{1}(0)+\int_{0}^{t} S_{1}(t-s) N_{1}(u(s)) d s \tag{4.24}\\
& R_{2}(t)=S_{2}(t) R_{2}(0)+\int_{0}^{t} S_{2}(t-s) N_{2}(u(s)) d s \tag{4.25}
\end{align*}
$$

We define $\tilde{M}_{1}(\tau)=\sup _{t \leq \tau}\left\|R_{1}(t)\right\|_{H^{1}}, \tilde{M}_{2}(\tau)=\sup _{t \leq \tau}\left\|R_{2}(t)\right\|_{H^{1}}$, and $\tilde{M}(\tau)=$ $\tilde{M}_{1}(\tau)+\tilde{M}_{2}(\tau)$ for $\tau \leq T_{0} / \epsilon^{2}$. We apply $\sup _{t \leq \tau}$ to (4.24) and (4.25),

$$
\begin{align*}
& \tilde{M}_{1}(\tau) \leq C e^{T_{0}}+C T_{0} e^{T_{0}}\left(\tilde{M}_{1}(\tau)+\tilde{M}_{2}(\tau)+\epsilon \tilde{M}(\tau)^{2}\right) \tag{4.26}\\
& \tilde{M}_{2}(\tau) \leq C+C\left(\tilde{M}_{1}(\tau)+\epsilon \tilde{M}_{2}(\tau)+\epsilon \tilde{M}(\tau)^{2}+C\right) \tag{4.27}
\end{align*}
$$

Picking ϵ_{0} small enough such that $C \epsilon \leq 1 / 2$, it follows that

$$
\begin{equation*}
\tilde{M}_{2}(\tau) \leq C+C\left(\tilde{M}_{1}(\tau)+\epsilon\left(\tilde{M}_{1}(\tau)+\tilde{M}_{2}(\tau)\right)^{2}\right) \tag{4.28}
\end{equation*}
$$

Plugging the above bound into (4.26) and picking $T_{0}>0$ small enough so that $C T_{0} e^{T_{0}} \leq 1 / 2$, we arrive at the following estimate:

$$
\begin{equation*}
\tilde{M}_{1}(\tau) \leq C+C\left(\epsilon\left(\tilde{M}_{1}(\tau)+\tilde{M}_{2}(\tau)\right)^{2}\right) \tag{4.29}
\end{equation*}
$$

Substituting (4.29) into (4.28), we have

$$
\begin{equation*}
\tilde{M}_{2}(\tau) \leq C+C\left(\epsilon\left(\tilde{M}_{1}(\tau)+\tilde{M}_{2}(\tau)\right)^{2}\right) \tag{4.30}
\end{equation*}
$$

Finally, we sum (4.29) and (4.30), so $\tilde{M} \leq C_{1}\left(1+\epsilon \tilde{M}^{2}\right)$, where $C_{1} \geq 2 d$. With this inequality, we solve the corresponding equality,

$$
\begin{equation*}
\tilde{w}(\tilde{M})=C_{1}\left(1+\epsilon \tilde{M}^{2}\right)-\tilde{M} \tag{4.31}
\end{equation*}
$$

At leading order, the roots are $\tilde{M}=C_{1}$ and $\tilde{M}=1 /\left(C_{1} \epsilon\right)$. Similar to Theorem 3.1, initial data bounds imply $\tilde{M}(0) \leq 2 d$, so $\tilde{M} \leq C_{1}$. Q.E.D.

§5. Higher spatial dimensions

We must change spaces for our results to hold for $x \in \mathbb{R}^{d}$. We need the new space to control L^{∞}, so we require $k p>d$. The obvious space is the Sobolev space H^{k}, with $k>d / 2$. We want $p=2$ to maintain Plancherel's Theorem and other befitting properties of the Fourier transform in L^{2}. In H^{k}, for $k>2 / d$, we still have L^{q} controlled for $q>p$, which is needed in the proof of Theorem 3.1.

We require new L^{1} semigroup estimates; otherwise the proof of Theorem 3.1 will fail. Short and long-time estimates are necessary to avoid integrating near 0 . With the next estimate replacing (2.1), the results of this paper will follow for $x \in \mathbb{R}^{d}$:

$$
\begin{equation*}
\left\|S_{1}(t) \phi\right\|_{H^{k}} \leq C \frac{e^{\epsilon^{2} t}}{(t+1)^{d / 2-1 / 4}}\left(\|\phi\|_{H^{k}}+\|\phi\|_{L^{1}}\right) \tag{5.1}
\end{equation*}
$$

§6. Conclusion

This work demonstrates new results showing that a scaled solution of the Allen-Cahn system accurately approximates a solution to the nonlinear reaction-diffusion system (1.1) for long-time. We build on previous results by providing a sharper representation of the nonlinear term g, which leads to sharper estimates. For Theorem 4.1, we are sharper to a higher order of ϵ in the assumption and result with respect to the second component. We also work in a more general function space.

Acknowledgments. The author is grateful for superb guidance from Keith S. Promislow.

References

[1] L. Hörmander, The Analysis of Linear Partial Differential Operators 14, Springer-Verlag, 1985.
[2] G. Schneider, A new estimate for the Ginzburg-Landau approximation on the real axis, J. Nonlinear Sci., 4 (1994), 23-34.
[3] G. Schneider, Bifurcation theory for dissipative systems on unbounded cylindrical domains-An introduction to the mathematical theory of modulation equations, ZAMM Z. Angew. Math. Mech., 81 (2001), 507-522.

Department of Mathematics \& Statistics
University of Maine
Orono, ME 04469
U.S.A.

E-mail address: thomas.bellsky@maine.edu

