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Remark on C0-semigroups with scaling invariance 

Yasunori~aekawa 

Abstract. 

We study C0-semigroups acting on a Banach space which possess 
an invariant property with respect to an action of the multiplicative 
group of positive real numbers (scaling). Some properties on the do­
mains or the spectrum of the associated generators are presented. 

§1. Introduction 

There are wide classes of evolution equations which possess invariant 
properties with respect to a scaling and translations. In the abstract 
settings a scaling and a translation can be considered as an action of 
the multiplicative group of positive real numbers and of the additive 
group of real numbers, respectively. Using this, [6] discussed large time 
behaviors of solutions to nonlinear evolution equations which possess 
scaling and translation invariance, within the abstract framework based 
on the semigroup theory; see also [5]. In this paper we present a short 
remark on properties of generators for 0 0-semigroups possessing the 
invariance with respect to a scaling acting on a Banach space X. Only 
abstract results will be stated here; for concrete examples, see [5], [6]. 

§2. Preliminaries 

In this section we recall the definition of scaling stated in [6]. Let 
X be a Banach space and let .C(X) be the Banach space of all bounded 
linear operators in X. We assume that (A, Dom(A)) is a closed linear 
operator in X which generates a 0 0-semigroup {etAh>o C C(X). 
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Definition 2.1. We say R = { Rr h>o c .C(X) a scaling acting on 
X ifR is a strongly continuous action of {r E lR I r > 0} on X, i.e., 

(2.1) 
(2.2) 
(2.3) 

Rr1r2 

R1 

lim Rr'U 
r'-tr 

R.-1 Rr2 , r1, r2 > 0 

I, 

Rru in X, for each u E X. 

The generator of R = { Rr }r>O is denoted by B, which is a closed linear 
operator defined by Bf = limh-+0 h-1(Rl+hf- f) for f E Dom(B), 
where Dom(B) = {f EX I limh-+O h-1 (Rl+hf- f) exists }. A scaling 
R = {Rrh>o induces an action on C((O,oo);X), called the scaling 
induced by R, as follows. 

(2.4) Gr(f)(t) = Rr(f(rt)) r>O, fEC((O,oo);X). 

Definition 2.2. LetR = {Rr h>o be a scaling and letT= {ra}aEIR C 
.C(X) be a C0 -group acting on X. (i) We say that {etA}t;:::o is invariant 
with respect to the scaling induced by R if 

(2.5) r > 0, t 2:: 0. 

(ii) We say that {etA h::::o is invariant with respect to 7 if 

(2.6) a E JR, t 2:: 0. 

§3. Domains of generators 

3.1. Invariance of domains 

In this section we investigate invariant properties of the domains of 
generators when {etA h>o is invariant under the scaling induced by R. 

Lemma 3.1. Let (2.5) hold. Then ARrf = rRrAf iff E Dom(A). 

Proof. The assertion easily follows from the equality r 1(etARrf­
Rrf) = R.-r1(ertA f- f), which is derived from (2.5). The details are 
left to the reader. Q.E.D. 

Corollary 3.2. Let (2.5) hold. Let WB be the growth bound of the 
strongly continuous group {Re• hEIR· Then for all f E Dom(A) and 
f-L E C such that Re(J.L) > 1 + WB we have 

(3.1) A(J.L- B)-1 f = (J.L- 1- B)-1 Af. 
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Proof The assertion follows from the Laplace formula r 1 (etA­

I)(t-L- B)-1 f = 1= e-~-'sr 1 (etA- I)Re•fds. We omitted the details 

here. Q.E.D. 

Lemma 3.3. Assume that (2.5) holds. Then BetA f = -tAetA f + 
etABf iff E Dom(A) n Dom(B). 

Proof From (2.5) we have 

Then J1 -+ -tAetA f and h -+ etA B f in X as r -+ 1, which yileds 
etA f E Dom(B) and BetA f = -tAetA f +etABJ. The proof is complete. 

Q.E.D. 

Let 7 = {ra}aElR be a Co-group acting on X. We denote by D 
the generator of 7, and Ta will be often written as eaD 0 Let n be 
a scaling acting on X. Then for each 1-L > 0 a one-parameter family 
R~-' = {R}~-')}r>O C .C(X), R't) = Rr~~-, also defines a scaling acting on 
X whose generator is t-LB. Now we assume that 7 is invariant under the 
scaling induced by R 1IJ.! for some 1-L > 0, i.e., 

Since the generator of R1 1~-' is given by t-L-1B, Lemma 3.3 implies 

Lemma 3.4. Let 7 = {ra}aElR be a Co-group acting on X. Assume 
that (3.2) holds for some 1-L > 0. Then 

(3.3) f E Dom(D) n Dom(B). 

Remark 3.5. For a pair of linear operators £ 1 , £ 2 its commutator 
is defined by [£1 , £ 2] = L 1L2- £ 2£ 1 . Then (3.3) is formally written as 
[B, ra] = -at-LDra, which is a special case of the condition (Tl) given in 
[6, Section 2.2.1]. That is, (Tl) in [6] represents the symmetry between 
the scaling Rand the translation 7 in the sense of (3.2). 

3.2. Similarity transform and the associated generator 

As in [6], we define the similarity transform of {etA }t:;,::o with respect 
to the scaling induced by n by 

(3.4) 



340 Y. Maekawa 

This one-parameter family {S(t)}t>o c .C(X) is closely related with the 
operator C defined by 

(3.5) C =A+ B, Dom(C) = Dom(A) n Dom(B). 

Lemma 3.6. Let (2.5) hold. Then the one parameter family {S(t)}t~o 
defined by (3.4) is a C0 -semigroup acting on X, and its generator A sat­
isfies C C A. Moreover, WA ~ WB holds, where WA and WB are the 
growth bounds of {S(t)}t~o and {Ret hER., respectively. 

Proof. The assertion that {S(t)}t>O defines a Co-semigroup in X 
is stated in [6, Lemma 2.1]. The property WA ~ WB also follows from 
Rete(et-l)A = e(l-e-t)Ret, for we have IIS(t)fllx ~ CIIRetfllx. From 
Lemma 3.1 and Lemma 3.3 we see that Af = Af+Bf for f E Dom(A)n 
Dom(B). This completes the proof. Q.E.D. 

Lemma 3.7. Let (2.5) hold. Then BS(t)f = S(t)Cf- etS(t)Af if 
f E Dom(C). 

Proof. The invariant property S(t)Dom(C) C Dom(C) immediately 
follows from Lemma 3.1 and Lemma 3.3. Furthermore, from Lemma 3.3 
we have BS(t)f =Ret (- (et -1)e(et-l)A Af + e(et-l)ABf) = S(t)Cf­
etS(t)Af. This completes the proof. Q.E.D. 

In the following paragraphs we always assume (2.5). Since A is 
closed, C is closable and C c A holds by Lemma 3.6. 

Theorem 3.8. Assume that Dom(C) is dense in X. Then A= C. 

Proof. Since Dom(C) is dense in X and is invariant under the action 
of {S(t)}t~0 by Lemma 3.7, Dom(C) is a core of A; [3, Proposition II-1-
7]. This implies A C C, which completes the proof. Q.E.D. 

Next we give a sufficient condition to lead A = C when X is a Hilbert 
space. For a linear operator L in a Hilbert space X we denote by L * the 
adjoint operator of L in X. 

Theorem 3.9. Let X be a Hilbert space. Let Dom(C) be dense in 
X and Dom(C) C Dom(A*) n Dom(B*). Assume that there are positive 
constants a1, a2, b1, b2, C', such that a1 + b1 < 1, a2 + b2 < 1, and 

(3.6) II(A- A*)fll~ ~ a1IIAfll~ + a2IIBfll~ + C'llfll~, 
(3.7) II(B + B*)fll~ ~ bliiAfll~ + b211Bfll~ + C'llfll~, 
for all f E Dom(C). Then A= C. 
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Proof. By Theorem 3.8 it suffices to show that C is closed. Let 
f E Dom( C). Then 

(3.8) II(A + B)fll~ = IIAfll~ + IIBfll~ + (Bf, A* f)x- (Af, B* f)x 

+ (Af, (B + B*)f)x + (Bf, (A- A*)f)x. 

From (3.6) and (3.7) we have 

(3.9) (Af, (B + B*)f)x + (Bf, (A- A*)f)x 

> - 1 +a~+ b1 IIAfll~- 1 +a~+ b2 IIBfll~- Cllfll~, 

for some C > 0. Next we observe from Lemma 3.3 that (B(et.A f -
f), f)x = -t(Aet.A f, f)x + ((et.A- I)Bf, f)x. Since X is reflexive, 
the adjoint operator of et.A is given by et.A* ([3, Propositions I-5-14, 
II-2-6], and thus we have (r1 (et.A f- f), B* f)x = -(Aet.A f, f)x + 
(Bf, r 1 (et.A* f- f))x. Taking the limit t---+ 0 leads to the equality 

(3.10) (Bf,A*f)x- (Af,B*f)x = (Af,f)x. 

Collecting (3.8)-(3.10), we finally get the inequality 
(3.11) 

II(A + B)fll~ ~ 1 - a~- b1 IIAfll~ + 1 - a~- b2 11Bfll~- Cllfll~, 

for some C > 0 iff E Dom(C). The estimate (3.11) is enough to conclude 
that C is closed. This completes the proof. Q.E.D. 

Next we look for another sufficient condition to ensure A= C, which 
can be applied also for the case when X is not a Hilbert space. For 
this purpose we follow the arguments by Metafune et al [7], where the 
domains of the Ornstein-Uhlenbeck operators are discussed. 

Theorem 3.10. Let X be a Banach space of class 1i'T. Assume 
that >-o- A, !Jo-B E BIP(X) for some Ao > W.A, !Jo > 1 + WB, and 
that the strong parabolicity condition e>-.o-.A + efJ,o-B < 7f holds. Here eL 
is the power angle of L E BIP(X). Then A= C. 

Proof. For the definitions of 1-lT, BIP(X), and the power angle, 
we refer to [4]. As in [7], the proof is based on the closedness result 
for noncommuting operators by Monniaux and Pruss [8], which is a 
significant extension of the classical Dore-Venni theorem [2]. We write 
Ao = A - .\0 and B0 = B - !Jo for simplicity of notations. Then from 
Corollary 3.2 we have A(M- Bo)-1 ( -Ao)- 1 = (M -1- Bo)-1 A( -Ao)-1 

for all iJ E <C with Re(M) ~ 0. Hence from the definition of Ao it is not 
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difficult to derive Ao(Jt- Bo)-1 ( -Ao)- 1 = -(p- 1- Bo)-1 - .>..o{(p­
.80)-1 - (p -1- .80 )-1 }( -Ao)-1 , which yield by the resolvent equation, 

(3.12) 
[( -Ao)-1, (p- Bo)-1] 

= ( -Ao)-1{(p- Bo)-1 - (p- 1- Bo)- 1 } 

- .>..o( -Ao)-1{(p- Bo)-1 - (p- 1- Bo)-1 }( -Ao)-1 

= ( -Ao)-1(p- Bo)-1 (p- 1 - Bo)-1{.>..o( -Ao)-1 - 1 }. 

Let ¢>0 , 'lj;0 be positive numbers such that c/>o > B-Ao, 'lf;o > B-Bo, and 
1>o +'lf;o < 1r. Since each of ( -Ao)-1 (p- Bo)-1, (p- Bo)-1 ( -Ao)-1, and 
( -A0 )-1 (p- B0 )-1 (p -1- .80)-1{1- .>..0 ( -Ao)-1 } is holomorphic with 
respect to Jt in the sector l.:n-'fo := {z E rc I z i= 0, I argzl < 7r- 'lf;o}, 
the equality (3.12) holds for all Jt E l.:n-,Po· Then from (3.12) we have 

c 
IIAo(.>..- Ao)- 1 [(-Ao)-1, (p- Bo)-1lllccx):::; (1 + 1.>..1)(1 + l~tl)2 

for all .>.. E l.:n-<Po, Jt E l.:n-'fo. By [8, Corollary 2] the operator Co = 

Ao+Bo with Dom(C0 ) = Dom(C) is closed and v0 -C0 is sectorial for some 
v0 ;::: 0. Since X is of class HT, it is reflexive. Thus Dom(C) = Dom(C0 ) 

is dense in X by [4, Proposition 2.1.1]. Hence from Theorem 3.8 we have 
A = C = C. This completes the proof. 

Q.E.D. 

§4. Spectral property of A + B 

Let rT P ( L) be the set of point spectrum of a linear operator L in X. 
With the definition of C in (3.5) we show that if C is closed and if A is 
injective in addition, then one eigenvalue of C produces infinitely many 
eigenvalues of C which reflect the symmetry of the scaling invariance. 
The argument used here is almost same as [6, Lemma 6.2]. 

Theorem 4.1. Set N0 = NU{O}. Let C be the linear operator defined 
by (3.5). (i) Let 0 E rTp(C) and let U EX be an associated eigenfunction. 
If either A orB is injective, then -1 is an eigenvalue of C and BU is an 
eigenfunction to the eigenvalue -1 of C. (ii) Assume that C is closed. Let 
p E rTp(C) and let U E X be an associated eigenfunction. If either A is 
injective orrTp(B)n{p-k IkE No}= 0, then {p-k IkE No} c rTp(C). 
Moreover, A k U is an eigenfunction to the eigenvalue Jt - k of C. 

Proof. The assertion (i) is essentially proved in [6, Lemma 6.2] and 
here we show (ii) only. Under the assumptions of (ii) we will prove 
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by the induction of k that f-t - k is an eigenvalue of C and AkU(y!o 
0) is an associated eigenfunction. The case k = 0 follows from the 
assumptions. Suppose that the assertion is true for k. Then we have 
AkU E Dom(C)\{0} and 

( 4.1) 

From Lemma 3.3 and (4.1) we get Cr 1 (etA AkU-AkU) = r 1 {etA Ak+1U 
+BetA AkU -Ak+1U -BAkU}= r 1 {etAAk+ 1U -tetAAk+1U+etABAkU 
+(k- ~-t)AkU} = -etAAk+1U + (f-t- k)r 1 (etAAkU- AkU). Hence 
C(etA AkU -AkU)jt converges to (f-t- k-1)Ak+lu in X as t -t 0, while 
(etA AkU -AkU)jt converges to Ak+1U in X as t -t 0. Since Cis closed, 
this implies that Ak+lU E Dom(C) and CAk+lU = (f-t- k- 1)Ak+1 U. 
Suppose that Ak+lU = 0. Then BAkU= (f-t- k)AkU by (4.1). Thus 
AkU must be 0 since A is injective or O"p(B) n {f-t - k I k E N0 } = 0, 
which is a contradiction. So Ak+lu is an eigenfunction to the eigenvalue 
f-t- k- 1 of C. This completes the proof. Q.E.D. 

Next we consider the case {etA h>o is also invariant with respect to 
some strongly continuous groups. We will assume that: 
(sl) {etAh>o is invariant under the scaling induced by R; see (2.5). 

(s2) There ~re n strongly continuous groups T(j) = {T~j)}aEJR, 1:::; j:::; 

n, acting on X such that they commute with each other, i.e., T~i)T~fl = 

T~fl T~i), a, a' E JR, 1 :::; i, j :::; n, and that {etA }t20 is invariant with 
respect to each T(j); see (2.6). 
(s3) For each j there is /-tj > 0 such that /(j) is invariant with respect 
to R 111-'j; see (3.2). 

These assumptions imply three symmetries; (sl) between semigroup 
and scaling, (s2) between semigroup and translations, (s3) between 
translations and scaling. As in Theorem 4.1, when O"p(C) # 0 there 
are infinitely many eigenvalues of C in X under some conditions on the 
domains of generators. We denote by Dj the generator of T(j) in X. 

Theorem 4.2. Assume that (sl), (s2), (s3) hold and that C is 
closed. Assume that each Dj is injective and Dom(C) C n.J=1Dom(Dj)­
Let f-t E O"p(C) and let U EX be an associated eigenfunction. Then {f-t­

'£j=1 kj/-tj I kj E No, j = 1,··· ,n} C O"p(C). Moreover, D~1 ···D~nU 
is an eigenfunction to the eigenvalue f-t- '£j=1 kj /-tj of C in X. 

Proof. We follows the arguments in [6, Lemma 6.2]. From (s2) 
it is easy to see that DiDjf = DjDd iff E Dom(Dj) n Dom(DjDi), 
where Dom(DjDi) = {f E Dom(Di) I Dd E Dom(Dj)}. Hence by 
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taking the assumption Dom(C) C nj=1Dom(Dj) into account, it suffices 
to show that DjU is an eigenfunction to the eigenvalue f.L- P,j of C 
in X, for the general cases then follow by the induction on ki. Since 
U E Dom(C) satisfies AU+ BU = p,U, we have Ar~j)U + T~j)BU = 
f.LT~j)U. Here we used the property T~j) AU= Ar~j)U which follows from 
(2.6). By (3.2) and Dom(C) c nj=1Dom(Dj) we have from Lemma 3.4 

that T~j) BU = Br~j) U- [B, T~j)]U = Br~j) U + ap,jT~i) DjU. This yields 

Cr~j)u = f.LT~j)u -aP,jT~j) DjU, that is, ca- 1 (r~j)u -U) = p,a- 1 (r~j)u­
U)-P,jT~j) DjU· Since (r~j)U -U)/a converges to DjU in X as a-+ 0, by 
the closedness of C we have DjU E Dom(C) and CDjU = (p,- f.Lj)DjU. 
Since D j is injective and U is not trivial, p,- P,j is an eigenvalue of C and 
DjU is an associated eigenfunction. This completes the proof. Q.E.D. 

Combining Theorem 4.1 and Theorem 4.2, we have 

Corollary 4.3. Assume that the assumptions in Theorem 4.2 hold. 
Let A be injective. Then {p,-Lj=l kjP,j-ko I kj E No, j = 0, 1, · · · , n} C 

(J P (C). Moreover, A ko D~1 • • • D~n U is an eigenfunction to the eigenvalue 
f.L- Lj=l kjP,j- ko ofC in X. 
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