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Remark on Cj-semigroups with scaling invariance

Yasunori Maekawa

Abstract.

We study Cp-semigroups acting on a Banach space which possess
an invariant property with respect to an action of the multiplicative
group of positive real numbers (scaling). Some properties on the do-
mains or the spectrum of the associated generators are presented.

§1. Imntroduction

There are wide classes of evolution equations which possess invariant
properties with respect to a scaling and translations. In the abstract
settings a scaling and a translation can be considered as an action of
the multiplicative group of positive real numbers and of the additive
group of real numbers, respectively. Using this, [6] discussed large time
behaviors of solutions to nonlinear evolution equations which possess
scaling and translation invariance, within the abstract framework based
on the semigroup theory; see also [5]. In this paper we present a short
remark on properties of generators for Cy-semigroups possessing the
invariance with respect to a scaling acting on a Banach space X. Only
abstract results will be stated here; for concrete examples, see {5], [6].

§2. Preliminaries

In this section we recall the definition of scaling stated in [6]. Let
X be a Banach space and let £(X) be the Banach space of all bounded
linear operators in X. We assume that (A, Dom(.A)) is a closed linear
operator in X which generates a Co-semigroup {e*};>0 C £(X).
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Definition 2.1. We say R = {R,}r>0 C L(X) a scaling acting on
X if R is a strongly continuous action of {r e R | r >0} on X, i.e.,

(2.1) Rer, = Ry Ry, r1, ro >0
. R, = 1,
(2.3) lim Rwu = Ryu inX, foreachueX.
=T

The generator of R = {R,},~¢ is denoted by B, which is a closed linear
operator defined by Bf = limp_oh Y (Ripnf — f) for f € Dom(B),
where Dom(B) = {f € X | limp—0 h™ (R14nf — f) exists }. A scaling
R = {R,}r>o induces an action on C((0,00); X), called the scaling
induced by R, as follows.

(2.4) Or(f)(t) = R (f(rt)) r>0, feC((0,00);X).

Definition 2.2. Let R = {R; }r>0 be a scaling and let T = {7g}aer C
L(X) be a Co-group acting on X. (i) We say that {€**};>o is invariant
with respect to the scaling induced by R if

(2.5) R.e"* = R, r>0, t>0.
(ii) We say that {e*}i>0 is invariant with respect to T if

(2.6) Taett = et aeR, t>0.

83. Domains of generators

3.1. Invariance of domains

In this section we investigate invariant properties of the domains of
generators when {e‘“};>¢ is invariant under the scaling induced by R.

Lemma 3.1. Let (2.5) hold. Then AR, f =rR.Af if f € Dom(A).

Proof. The assertion easily follows from the equality ¢t~ (e!AR,. f —
R.f) = Rt~ (e"Af — f), which is derived from (2.5). The details are
left to the reader. Q.E.D.

Corollary 3.2. Let (2.5) hold. Let wg be the growth bound of the
strongly continuous group {Ret}icr. Then for all f € Dom(A) and
u € C such that Re(u) > 1 + wp we have

3.1) Alp=B)"'f = (n—-1-B) Af.
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Proof. The assertion follows from the Laplace formula ¢t~ (etA —

Dp-B)"1f = / e #3t7Y(e!* — IR,o fds. We omitted the details
0

here. _ Q.E.D.

Lemma 3.3. Assume that (2.5) holds. Then BetAf = —tAetAf +
etABf if f € Dom(A) N Dom(B).

Proof. From (2.5) we have

Ryef —e ) R(ef—em™f) (R - )

r—1 r—1 rT—1

= Jl +J2.

Then J; — —tAetAf and Jo — eABf in X as r — 1, which yileds
e!Af € Dom(B) and BetAf = —tAetAf +etABf. The proof is complete.
QE.D.

Let T = {7s}acr be a Cy-group acting on X. We denote by D
the generator of 7, and 7, will be often written as e*”. Let R be
a scaling acting on X. Then for each p > 0 a one-parameter family
RH = {RY¥ )}T>() C L(X), R™ = R,., also defines a scaling acting on
X whose generator is uB. Now we assume that T is invariant under the
scaling induced by R/* for some p > 0, i.e.,

(3.2) R{/Meral — aD RA/W) - for all 7 > 0, a € R.

Since the generator of RY/# is given by p~ !B, Lemma 3.3 implies

Lemma 3.4. Let T = {7, }acr be a Co-group acting on X. Assume
that (3.2) holds for some p > 0. Then

(3.3) Brof = —apD1,f + 1.Bf f € Dom(D) N Dom(B).

Remark 3.5. For a pair of linear operators Ly, Ly its commutator
is defined by [Li, Ls] = L1 Ly — Lo L. Then (3.3) is formally written as
[B, 7o] = —apDT,, which is a special case of the condition (T1) given in
[6, Section 2.2.1]. That is, (T1) in [6] represents the symmetry between
the scaling R and the translation 7 in the sense of (3.2).

3.2. Similarity transform and the associated generator

As in [6], we define the similarity transform of {e*};>o with respect
to the scaling induced by R by

(3.4) S(t) = Recel® DA ¢ >0,
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This one—paramet‘er family {S(¢)}+>0 C L£(X) is closely related with the
operator C defined by

(3.5) C=A+B, Dom(C)=Dom(A)NDom(B).

Lemma 3.6. Let (2.5) hold. Then the one parameter family {S(t) }+>0
defined by (3.4) is a Cy-semigroup acting on X, and its generator A sat-
isfies C C A. Moreover, wy < wp holds, where wy and wg are the
growth bounds of {S(t)}1>0 and {Ret }ter, respectively.

Proof. The assertion that {S(t)}:>0 defines a Cp-semigroup in X
is stated in [6, Lemma 2.1]. The property wa < wpg also follows from
Recele DA = (1=¢"IR . for we have ||S(t)f|lx < C|Re:f|lx. From
Lemma 3.1 and Lemma 3.3 we see that Af = Af+Bf for f € Dom(A4)N
Dom(B). This completes the proof. Q.E.D.

Lemma 3.7. Let (2.5) hold. Then BS(t)f = S(t)Cf — etS(t)Af if
f € Dom(C).

Proof. The invariant property S(¢)Dom(C) C Dom(C) immediately
follows from Lemma 3.1 and Lemma 3.3. Furthermore, from Lemma 3.3
we have BS(t)f = Re: (— (ef — 1)el¢' " DAUS + (" "DABF) = S(t)Cf —
e'S(t)Af. This completes the proof. Q.E.D.

In the following paragraphs we always assume (2.5). Since A is
closed, C is closable and C C A holds by Lemma 3.6.

Theorem 3.8. Assume that Dom(C) is dense in X. Then A=C.

Proof. Since Dom(C) is dense in X and is invariant under the action
of {5(¢)}+>0 by Lemma 3.7, Dom(C) is a core of A; [3, Proposition II-1-
7]. This implies A C C, which completes the proof. Q.E.D.

Next we give a sufficient condition to lead A = C when X is a Hilbert
space. For a linear operator L in a Hilbert space X we denote by L* the
adjoint operator of L in X.

Theorem 3.9. Let X be a Hilbert space. Let Dom(C) be dense in
X and Dom(C) C Dom(A*) N Dom(B*). Assume that there are positive
constants a1, ag, b1, by, C', such that ay + by <1, as +by <1, and
(3.6) I(A = A fl% < arllAFIK + a2l BFIK + CIIf 1%
3.7) 1B+ B*)fl% < billAfI% + b2l Bf 1% + C' I f 1%

for all f € Dom(C). Then A=C.
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Proof. By Theorem 3.8 it suffices to show that C is closed. Let
f € Dom(C). Then

(38) I(A+BfII% = [AFIX + IBfI% + (Bf, A" f)x — (Af, B f)x
+ (Af, (B+B")f)x + (Bf, (A—A")f)x.

From (3.6) and (3.7) we have

(39) (AL (B+BY)x + (B (A~ A f)x
> —TEUER R - 22 R m s ol

for some C > 0. Next we observe from Lemma 3.3 that (B(e!Af —
0y fx = —t{AetAf, fix + (e — )Bf, f)x. Since X is reflexive,
the adjoint operator of e is given by e*A” ([3, Propositions I-5-14,
11-2-6], and thus we have (t'(e"Af — f),B*f)x = —(AetAf, fx +
(Bf, t= (et f — f))x. Taking the limit ¢ — 0 leads to the equality

(3.10) (Bf, A"f)x —(Af,B" f)x = (Af, f)x.
Collecting (3.8)—(3.10), we finally get the inequality
(3.11)

A+ B > 2B Af R + 227 g3 oy,

for some C > 0if f € Dom(C). The estimate (3.11) is enough to conclude
that C is closed. This completes the proof. Q.E.D.

Next we look for another sufficient condition to ensure A = C, which
can be applied also for the case when X is not a Hilbert space. For
this purpose we follow the arguments by Metafune et al [7], where the
domains of the Ornstein—Uhlenbeck operators are discussed.

Theorem 3.10. Let X be a Banach space of class HT . Assume
that Ao — A, po — B € BIP(X) for some Ao > wa, po > 1+ ws, and
that the strong parabolicity. condition 0y, 4 +0,,-5 < 7 holds. Here §1,
is the power angle of L € BIP(X). Then A=C.

Proof. For the definitions of HT, BIP(X), and the power angle,
we refer to [4]. As in [7], the proof is based on the closedness result
for noncommuting operators by Monniaux and Priiss [8], which is a
significant extension of the classical Dore~Venni theorem [2]. We write
Ao = A— Xy and By = B — pg for simplicity of notations. Then from
Corollary 3.2 we have A(pu— By) ™1 (—Ag) ™! = (u—1—Bpy) " LA(—Ag) !
for all 4 € C with Re(p) > 0. Hence from the definition of Ajg it is not
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difficult to derive Ao — Bo) H(—A0) ™' = —(p — 1 = By) ™! — Xo{ (1 —
Bo) ' — (u—1—By) *}(—Ap) "}, which yield by the resolvent equation,

(3.12)
[(—=A0)™", (n—Bo)™']

= (=Ao) H{(u—Bo)™ = (p—1~Bo)™'}

—do(=Ao) " H{(u—Bo) ™" = (b —1—Bo) "} (~Ao) "

= (=Ao) (1 = Bo) ' (n—1=Bo) H{Ao(—Ao) "t — 1}
Let ¢, o be positive numbers such that ¢o > 6_4,, 1o > 0_5,, and
$o+1o < m. Since each of (—Ag) "1 (u—Bo)~ L, (u—Bo) 1 (—Ag) "', and
(—Ao) (1 —Bo) Y (n—1~Bp) {1 = Ao(—=Ap) '} is holomorphic with
respect to p in the sector 37, ={z€C |2 #0, [argz| <7 — o},
the equality (3.12) holds for all p € }°, . Then from (3.12) we have

c
(T + DA+ [ul)?

forall xe > . pe€d 4 By[8 Corollary 2] the operator Co =
Ag+Bo with Dom(Cy) = Dom(C) is closed and v,—Cy is sectorial for some
vo > 0. Since X is of class HT, it is reflexive. Thus Dom(C) = Dom(Cp)
is dense in X by [4, Proposition 2.1.1]. Hence from Theorem 3.8 we have
A =C = C. This completes the proof.

I Ao(A = Ao) ~[(=A0) ™, (1 — Bo) llexy <

Q.ED.

84. Spectral property of A+ B

Let 0,(L) be the set of point spectrum of a linear operator L in X.
With the definition of C in (3.5) we show that if C is closed and if A is
injective in addition, then one eigenvalue of C produces infinitely many
eigenvalues of C which reflect the symmetry of the scaling invariance.
The argument used here is almost same as [6, Lemma 6.2].

Theorem 4.1. Set Ny = NU{0}. LetC be the linear operator defined
by (3.5). (i) Let 0 € 0,(C) and let U € X be an associated eigenfunction.
If either A or B is injective, then —1 is an eigenvalue of C and BU is an
eigenfunction to the eigenvalue —1 of C. (ii) Assume that C is closed. Let
1€ 0,(C) and let U € X be an associated eigenfunction. If either A is
injective or op(B)N{p—k | k € No} =0, then {u—k | k € No} C 0,,(C).
Moreover, A*U is an eigenfunction to the eigenvalue p — k of C.

Proof. The assertion (i) is essentially proved in [6, Lemma 6.2] and
here we show (ii) only. Under the assumptions of (ii) we will prove
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by the induction of k that p — k is an eigenvalue of C and A*U(#
0) is an associated eigenfunction. The case k = 0 follows from the
assumptions. Suppose that the assertion is true for k. Then we have

A*U € Dom(C)\{0} and
(4.1) AR 4+ BARU = (1 — k) A*U.

From Lemma 3.3 and (4.1) we get Ct 1 (e!A AF U~ AFU) = 1~ {4 AU
+BetAARU - AFU -BARU} = t—HetAARIU —tetAARTIU 44 BARU
+(k — wAFU} = —eAARTIU + (u — k)t~ (!4 AU — ARU). Hence
C(e!AAFU — A*U) /t converges to (u—k—1)A* U in X ast — 0, while
(e!AARU — AFU) /t converges to AFF1U in X ast — 0. Since C is closed,
this implies that A**1U € Dom(C) and CA* U = (u — k — 1) AFF1U.
Suppose that A*T1U = 0. Then BA*U = (u — k)A*U by (4.1). Thus
AFU must be 0 since A is injective or o,(B) N {u —k | k € No} = 0,
which is a contradiction. So A**1U is an eigenfunction to the eigenvalue
u —k — 1 of C. This completes the proof. Q.E.D.

Next we consider the case {e"};>¢ is also invariant with respect to
some strongly continuous groups. We will assume that:
(s1) {e*}s>0 is invariant under the scaling induced by R; see (2.5).

(s2) There are n strongly continuous groups 7) = {Téj ) baer, 1 €5 <

n, acting on X such that they commute with each other, i.e., Téi)Tg ) —

TS)Téi), a,a’ € R, 1 <4i,j7 <n, and that {e*};>¢ is invariant with
respect to each 71); see (2.6).
(s3) For each j there is y1; > 0 such that 70 is invariant with respect
to RY/Hi; see (3.2). 4

These assumptions imply three symmetries; (s1) between semigroup
and scaling, (s2) between semigroup and translations, (s3) between
translations and scaling. As in Theorem 4.1, when 0,(C) # @ there
are infinitely many eigenvalues of C in X under some conditions on the
domains of generators. We denote by D; the generator of TG in X.

Theorem 4.2. Assume that (s1), (s2), (s3) hold and that C is
closed. Assume that each Dj is injective and Dom(C) C N?_;Dom(Dy).
Let p € 0p(C) and let U € X be an associated eigenfunction. Then {u—
S kjus | kj € No, j=1,---,n} C 0p(C). Moreover, D¥ ... Dk
18 an eigenfunction to the eigenvalue p — E;-l:l kip; of Cin X.

Proof. We follows the arguments in [6, Lemma 6.2]. From (s2)
it is easy to see that D;D;f = D;D;f if f € Dom(D;) N Dom(D;D;),
where Dom(D;D;) = {f € Dom(D;) | D;f € Dom(D;)}. Hence by
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taking the assumption Dom(C) C N7_;Dom(D;) into account, it suffices
to show that D;U is an eigenfunction to the eigenvalue p — p; of C
in X, for the general cases then follow by the induction on k;. Since

U € Dom(C) satisfies AU + BU = pU, we have AU + 79BU =
prPU. Here we used the property 79 AU = AU which follows from

(2.6). By (3.2) and Dom(C) C N}_;Dom(D;) we have from Lemma 3.4

that 7'BU = BrU — [B,Téj)]U = BU + aujréj)DjU. This yields
crU = /LT(Sj)U—aujréj)DjU, that is, Ca_l(Téj)U—U) = ua‘l(Téj)U—
U)—p;78 D,U. Since (r$'U~U) /a converges to D;U in X as a — 0, by
the closedness of C we have D;U € Dom(C) and CD;U = (u — p;)D;U.
Since D; is injective and U is not trivial, i —p; is an eigenvalue of C and
D;U is an associated eigenfunction. This completes the proof. Q.E.D.

Combining Theorem 4.1 and Theorem 4.2, we have

Corollary 4.3. Assume that the assumptions in Theorem 4.2 hold.
Let A be injective. Then {u—3;_, kjpj—ko | kj € No, j =0,1,--- ,n} C
0,(C). Moreover, Ako DF ... Dk is an eigenfunction to the eigenvalue
o — Zj:l k‘j/,Lj — ko OfC in X.
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