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Diffusion phenomenon of solutions to the Cauchy 
problem for the damped wave equation 

Kenji Nishihara 

Abstract. 

We survey the recent results for the damped wave equations and 
obtain the critical exponent for the semilinear problem. Those results 
are based on the diffusion phenomenon of the damped wave equation. 

§1. Introduction 

In this note we consider the Cauchy problem for the damped wave 
equation 

(P) { Utt- ~u+ b(t,x)ut = f(u), (t,x) E R+ x RN, 
(u,ut)(O,x) = (uo,u!)(x), x ERN, 

where if(u)i = O(luiP), p > 1. When b(t,x) = 1, (P) is reduced to 

(DW) { Utt- ~u + Ut = j(u), (t, x) E R+ X RN, 
(u,ut)(O,x) = (uo,ul)(x), x ERN, 

which has the property of diffusion phenomenon, that is, the solution is 
expected to behave as t --+ oo like the solution ¢ to the corresponding 
diffusive equation 

(H) { -~</J+</Jt=f(¢), (t,x)ER+xRN, 
</J(O,x) = </Jo(x), X ERN. 

When f(¢) = I</JIP-1¢, the equation in (H) is called the Fujita equation, 
named after his pioneering work [2] and, for non-trivial data ¢0 (x) ?: 0, 
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there is a critical exponent, the Fujita exponent, 

(1.1) 
2 

PF(N) = 1 + N 

in the following sense: if p > PF(N), then there exists a unique and 
global-in-time solution ¢(t,x) for suitably small data ¢o(x), and if p::; 
p F ( N), then there is no global solution ¢( t, x) for any small data <Po ( x). 
By the diffusion phenomenon it is expected that (DW) has the same 
critical exponent PF(N). In fact, these have been investigated by many 
authors [3]-[6], [9]-[11 J, [15], [17]-[18], [23], [28] etc. See also the refer­
ences therein. 

Our aims are to survey the related topics for (P) and to determine 
the critical exponent Pc(N,(3) for (P) with f(u) = luiP and b(t,x) = 
(t + 1)-.B, -1 < (3 < 1. Our final result is to show 

(1.2) Pc(N,(3) = PF(N) (= 1 + ~) 
even for time-dependent damping. 

Our plan of this note is as follows. In Section 2 we show the diffu­
sion phenomenon of the linear wave equation with constant coefficient 
damping, using the explicit formula of solutions. In Section 3 we survey 
the properties of solutions for (DW) and (P) dependent on the exponent 
p. In the final section we treat (P) with b(t,x) =: b(t) = (t+ 1)-.B. 

§2. Linear damped wave equation 

We first consider the linear wave equation with constant coefficient 
damping 

(LDW) { Utt-6u+ut=O, (t,x)ER+xRN, 
(u,ut)(O,x) = (uo,ul)(x), x ERN. 

The solution to (LDW) is given explicitly, which is found in Courant 
and Hilbert [1]. By v(t, x) = [SN(t)g](x) we denote the solution to 

{ vu-6v+vt=O, (t,x)ER+xRN, 
(v,vt)(O,x) = (O,g)(x), x ERN, 

then it is given, for example when N = 3, by 
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where Iv is the modified Bessel function given by the series 

00 1 (y)2m+v 
Iv(Y)=L I( )I 2 , v=0,1,2,···. 

m=O m. m+v. 

The solution u(t, x) to (LDW) is given by 

(2.1) 

Hence we analyse SN(t)g and 8t(SN(t)g). Here we only show the case 
N = 3. To do so, we need the properties of the modified Bessel function. 

Lemma 2.1. The modified Bessel function Iv (v = 0, 1, 2, · · ·) sat­
isfies 

(2.2) Io(O) = 1, h(y)jyly=O = 1/2, (Io(Y)- ~h(y))/y2 1y=O = 1/8, 

(2.3) Ib(y) = h(y), I~(y) = Io(Y)- h(y)jy 

and, moreover, the following expansion formula as y --t oo: 

J ( ) _ ..£_ (1 _ (v-l/2)(v+l/2) + (v-l/2)(v-3/2)(v+3/2)(v+l/2) 
v y - V21fY 2y 2!22y2 

_ ... + (-1)k (v-l/2)···(v-(k-l/2))(v+(k-l/2))···(v+l/2) + 0( -k-1)) 
k!2kyk y . 

Differentiating in tin S3 (t)g and using (2.2), we obtain 

( ) _ -t/2 t J ( ) e-t/2 f ( y'tLjzj 2 ) g(x+z) dz 
83 t g- e · 41f 82 g x + tw dw + s:;r Jizi~t h 2 ~ 

=: e-t12W(t)g + J 0 (t)g (W(t)g : Kirchhoff formula). 

Again, using (2.2)-(2.3), we get 

8t(S(t)g) = e-t/2 · {( -~ + ~)W(t)g + 8t(W(t)g)} 

[ 
-t/21 (~)] 

+ ~zl~t Ot e 87fJtLi;l2 g(x + z) dz 

=: e-t12W(t)g + J 1 (t)g. 

Hence, by (2.1) the solution u(t,x) to (LDW) is decomposed as 

u(t, x) = e-ti2 {W(t)(uo + ul) + W(t)uo} + Jo(t)(uo + ul) + J1(t)uo. 

By the expansion in Lemma 2.1 each Ji(t)g is estimated as follows. 
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Lemma 2.2 ([18), LP-Lq estimate inN= 3). For p, q with 1:::; q:::; 
p :::; oo, it holds that 

IIJo(t)giiLP < 3 (' 1) CIIYIILo(t + 1)-2 -q--p , t:::: 0, 

II(Jo(t)- et~)giiLP < Gil II rJ(-L.!)-l g L• 2 o P ' t > 0, 

IIJl(t)glb < CIIYIILo(t + 1)-~(t-~)-1, t:::: 0, 

Therefore, the decomposition of solution u( t, x) to (LDW) is sym­
bolically seen as 

u(t,x) = e-t/2 {W(t)(uo + ul) + W(t)uo} + Jo(t)(uo + u1) + J1(t)uo. 

wave part decaying fast 

Thus, we can say about the solution to (LDW): 

(i) u(t,x) may have the singularity, 
(ii) u(t,x) has the finite propagation property, 

diffusive part 

(iii) u(t,x) has not the smoothing effect nor the maximum principle, 
(iv) u(t,x) rv qy(t,x) as t---+ 00, if ¢o = Uo + U1. 

Here f rv gas t---+ oo means (f- g)fg---+ 0 as t---+ oo. The final relation 
(iv) means the diffusion phenomenon. 

§3. Semilinear damped wave equation 

We now consider the Cauchy problem (P) for the semilinear wave 
equation with time- or space-dependent damping. Here we assume that 
the data (uo, u1) E H 1 x L2 have the compact supports and the semilin­
ear term f(u) satisfies lf(u)l :::; CluiP (1 < p < [lS'-it := oo (N = 1, 2) 
and := (N + 2)/(N- 2) (N :2: 3)). Then there exists a local-in-time 
solution u E C([O, T]; H 1 ) n C 1 ([0, T]; L2 ) with compact support. 

Our main concern is in the large time behavior of the solution, which 
corresponds to that for the corresponding diffusive equation. 

First state the case b(t,x) = 1, which is again reduced to 

(DW) Utt- .6-u + Ut = f(u), (u, Ut)(O, x) = (uo, u1)(x). 

By the diffusion phenomenon, we expect the solution u( t, x) behaves like 
the solution ¢( t, x) to 

(H} ¢t- .6.¢ = !(¢), ¢(0,x) = ¢o(x). 
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We have several known results depending on the semilinear absorbing 
term f(u) = -luiP-1u or semilinear source term f(u) = +luiP- 1u, luiP. 
Roughly speaking, we can sum them up as follows. 

(Absorbing semilinear term) If f(u) = -luiP-1 u, then there exists 
a global-in-time solution u(t) to (DW) for any large data ( u0 , u1 ), which 
satisfies 

(i) when p > PF(N) = 1 + ft, u(t) "'MoG(t,x) as t--+ oo, where 
Mo = JRN(uo + ui)(x) dx- j0

00 JRN luiP- 1u(t,x)dxdt. 
(ii) when p = PF(N), llu(t)ll£2 = O(rlf(logt)-~) as t--+ oo. 

1 +N 
(iii) when 1 < p < pp(N), llu(t)ll£2 = O(r p- 1 4 ) as t--+ oo. 

Here we note that, when 1 < p < pp(N), there exists a similarity 

solution wo(t, x) of the form w0 = (t+ 1)- P~ 1 fo(~ ), whose decay rate 

is the same as u in (iii), to the corresponding semilinear heat equation 
-D.¢+ cPt + lc/JIP- 1¢ = 0, where fo is a solution of 

-!~'- (!:_2 + N - 1 )!~ + lfolp-lfo = __2_1fo, lim P2_ 1 fo(r) = 0. 
r p- r--too 

(Source semilinear term) If f(u) = +luiP- 1u, luiP, then 

(i) when p > pp(N), there exists a global-in-time solution u(t) for 
small data (uo, ui), and u(t) "' MoG(t, x) as t --+ oo with 
Mo = JRN(uo + u1)(x) dx + j 0

00 JRN f(u)(t,x)dxdt. 
(ii),(iii) when p ::; PF(N), f(u) = luiP (f(u) = +luiP- 1u in some 

cases), there is no existence of global-in-time solution u(t) for 
some data (uo, ui). 

Thus the critical exponent is the Fujita exponent pp(N). We want 
to know the critical exponent of our problem (P) for the general time­
or space-dependent damping case. 

In the case b(t,x) = (x)-<>, (x) = y'1 + lxl 2 , our problem is 

(P)x Utt- D.u+ (x)-aut = f(u), (u,ut)(O,x) = (uo,ui)(x). 

For this we have the following results. 

• If a > 1, then the damping is weak and non-effective, so that 
the equation has the wave structure and the total energy not 
necessarily decays (Mochizuki [16]). 

• If 0 ::; a < 1, then the damping is effective and the equation 
will have the diffusive structure. 

• When a = 1, the situation is very delicate (Ikehata, Todorova 
and Yordanov [8]). 
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The results on (P)x are the followings. 

Theorem 1 ([19], Absorbing semilinear term). In case ofO ~ a < 1 
the solution of (P)x satisfies 

2 ( 1 N) 

1 2 < N+2 + N-a.- p < [N-2]+ l o ( c 2rc2--2:) +8) 

O(C2-a p-1 -4 ) 
U t £2 = 2 1 N II ()II O(C2-a(p-1-4)(logt)!) 

1 + ~ < p < 1 + - 2 -N-a. - N-a. 

P =1+~ N-a. 
1 + " O(C p-1 2t2-a)) 1<p<1+~. N-a. 

By this, we conjecture Pc(N, a) = 1 + N~a. is critical for (P)x· In 
fact, Ikehata, Todorova and Yordanov [7] showed the following theorem. 

Theorem 2 ([7], Source semilinear term). Assume 0 ~ a < 1. 
When Pc(N, a) < p < [ff-"tt, a small data global existence of solutions 

holds for (P)x· On the other hand, when 1 < p ~ Pc(N, a), the solution 
does not exist globally for any positive in average initial data. 

Thus, Pc(N, a) is critical for (P)x, 0 ~ a < 1 with source. 

In the case b(t,x) =: b(t) = (1 +t)-.8, our problem is 

(P)t Utt-D..u+b(t)ut=f(u), (u,ut)(O,x)=(uo,ul)(x). 

For the linear equation 

(LP)t Vtt- D..v + b(t)vt = 0, (u, Ut)(O, x) = (vo, vl)(x), 

Wirth ([25], [26]) showed the followings by the Fourier transformation. 

• If (3 > 1, the damping is non-effective and the solution of (LP)t 
has the wave property. 

• If -1 < (3 < 1, the damping is effective and the decay rate 
is the same as that of solutions of the corresponding diffusive 
equation (See also Yamazaki [27] for 0 ~ (3 < 1). 

• The rest case (3 < -1 is classified as the over-damping. 
• When (3 = ±1, the situations are delicate. 

We now consider the corresponding parabolic problem when -1 < (3 < 1 
from another point of view. The linear equation is 

1 
-D.¢+ b(t)c/Jt = 0 or cPt = b(t) D.¢, with ¢(0, x) = ¢o(x). 

The explicit formula of solution is 
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Hence, for -1 < (3 < 1 we have the LP-Lq estimate 

(l+f3)N ( 1 1) 
ll¢(t)II£P:::; Cll¢oll£q c-2- -q-r; (1:::; q:::; p:::; oo), 

in particular, 

(3.1) 

On the other hand, the corresponding nonlinear equation is 

For this equation we have the self-similar solution of the form 

wo(t,x)=(c+ct)-¥='tf( lxl 1+f3) if p<1+N2 
(c + ct)_2_ 

with cl+i3(1 + (3) = 1 ([22]), which satisfies the decay rate 

(3.2) llw0 (t, ·)11£2 = O(cV-1 -lf)(l+i3)). 

131 

Comparing the decay rates of (3.1) and (3.2), we can expect that pp(N) 
is still critical. 

In the absorbing semilinear term we have the following theorem. 

Theorem 3. When f(u) = -luiP- 1u, 1 < p < [t'-i]+, the global­

in-time solution u to ( P)t with -1 < (3 < 1 satisfies 

(i) llu(t, ·)11£2 = O(ccp:1 -lf)CH!3)) 
provided that 1 < p:::; pp(N) (Nishihara and Zhai [22]). 

(ii) llu(t, ·)11£2 = O(rlfCl+i3)+c:) (0 < s « 1) 
provided that pp(N):::; p < [t'-i]+ (Nishihara [20]). 

Moreover, when N = 1 with ( u 0 , ul) E H 2 x H 1 additionally, 

(3.3) llu(t, ·)- BoGB(t, ·)11£2 = o(r±Cl+i3)) as t--+ oo 

holds (Nishihara [21]), where 

Bo = JR1(u1+(1-(3)uo)(x)dx 

+ fo00 [c~C~)~flf3l fw udx- (T + 1)!3 JR1 luiP- 1udx] dT. 

Remark on the absorbing semilinear term. From the view­
point of the diffusion phenomenon, the decay rate ( i) in Theorem 3 is 
optimal in the sub critical exponent, and ( ii) is almost optimal in the 
supercritical one. When N = 1, we can conclude that the Fujita expo­
nent pp(N) is completely critical by (3.3). We conjecture that pp(N) 
is critical even when N 2 2. In the critical exponent, we will have the 
slightly faster decay rate than G B ( t, x), which is remained open. 
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§4. Results on ( P)t with Source 

In this section we consider 

with -1 < j3 < 1. Our main theorems are as follows. 

Theorem 4 (Global existence in the supercritical exponent). 
Assume pp(N) < p < [_t"_+J+. If (uo, ul) E H 1 x L 2 is compactly 
supported and, for 0 < 8 ~ 1, 

then there exists a global-in-time solution u E C([O,oo); H 1)nC1 ([0, oo); 
L 2 ) to (P)t, which satisfies 

llu(t)ll£2 :::; Colo(t + 1)-.lf(l+.B)+~ for c = c:(8) '\.t 0 (8-+ 0) 

provided that pp(N) < p < rJ"-ij+. 
Theorem 5 (Blow-up in critical and subcritical exponents). 

Suppose that ( u0 , u1 ) E H 1 x L 2 are compactly supported with 

r (u1(X) + b1Uo(x))dx > 0, b1 1 = rOO e- J~(r+l)-/ldT dt. JaN lo 
Then the global-in-time solution u E C([O,oo); H 1 ) nC1 ([0,oo); L 2 ) to 
(P)t does not exist provided that 1 < p:::; pp(N). 

We only state the key points of proofs of Theorems 4 and 5. Precise 
proofs are referred to Lin, Nishihara and Zhai [14]. 

Note that the case b(t, x) = (x)-"'(1 +t)-.8, a, j3 > 0, 0 :::; a+ j3 < 1 
is referred to Lin, Nishihara and Zhai [12, 13] and Wakasugi [24]. By 
their results, we conjecture that Pc(N, a) is still critical. The blow-up 
result is remained open and the critical exponent is not determined. 

Key point of the proof of Theorem 4. The proof is done by the 
weighted energy method, in which the key is how to determine the 
weight. In this theorem, as t -+ oo both Utt and luiP become small. 
Therefore, (P)t is approximated by the simplest equation 

(4.1) -~u+ut = 0, u(O,x) = uo(x). 

Here we took j3 = 0 for simplicity. Since the support of u in ( 4.1) is 
compact because of the finite propagation property of (P), we apply the 
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weighted energy method to obtain [[u(t)[[£2 ~ C(t+1)-lf. Choosing the 

weight e2 '1/J with 7/J = ~~r (a> 0), we multiply (4.1) by 2e2'1/Ju to get 

(4.2) 
(e2'1/Ju2 )t- 2\7 · (e2'1/Ju\7u) 

+2 [ e2'1/J ( -7/Jt)u2 + e2'1/J2\77/J · u\i'u + e2'1/J [V'u[ 2 J = 0. 

Thanks to small idea, we change e2'1/J2\77/J · u\i'u more to 

e2'1/J2\77/J · u\i'u 
= e2'1/J4\77/J · u\i'u- e2'1/J2\77/J · u\i'u 
= e2'1/J4\77/J · u\i'u- \7 · (e2'1/Ju2 \77/J) + e2'1/J2[\77/J[ 2u2 + e2'1/J(f}.7/J)u2 , 

then ( 4.2) becomes 

(e2'1/Ju2)t- 2\7 · (e2'1/Ju\7u + e2'1/Ju2 \77/J) 

+2e2'1/J [ ( -7/Jt + 2[\77/J[ 2 ) u2 + 4u\77/J · \i'u + [V'u[ 2 J + e2'1/J ~ u2 

(1/4a+2)[\7'1jJ[ 2 4aN/(t+l) 

=0, 

b · nf, _ a[x[ 2 _ 1 [""1'[2 d An/, _ 2aN / d y usmg -'+'t - (t+l) 2 - 4a v '+' an u'+'- t+l. Taking a= 1 8 an 
integrating this equation over R N yield 

This implies the desired result and the basic weight will be determined. 

Key point of the proof of Theorem 5. For the proof we apply the 
test function method developed by Qi S. Zhang [28]. We observe it by 
the simpler equation with (3 = 0 

(4.3) Utt- /}.u + Ut = [u[P, (u, Ut)(O, x) = (uo, u 1)(x). 

Assuming that u is a global-in-time non-trivial solution to (4.3), we 
derive the contradiction. For 7; + ~ = 1 set 
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where QR = [0, R 2] x BR(O), BR(O) = {lxl ~ R} and the test function 

'lj;R(t, x) = TJR(t)¢R(r) = "'(( zk )¢(-fi), r = lxl 

0 < < 1 (t) = 1 t E [O, 1/ 4] lr/(t)l, ITJ"(t)l ~ C, 
- "' - , "' 0 t E [1, 00) , 'I 

with 0 ~ ¢ ~ 1, ¢(r) = { ~ ~ ~ [fl,~~J , W(r)l, W'(r)l ~ C, 

(ry') 2 fry~ C (0 ~ t ~ 1), IV¢12 /1¢1 ~ C (0 ~ r ~ 1). 

Then, by the integration by parts, for example (by abbreviating dx dt), 

JQR Ut('lj;R)P' 

= - JBR uo- I¢R, u · p'('lj;R)p'-1 · ry'(Jb hh- · ¢( 1~1 ) 
• 1 1 

~ - JBR uo + ( JQR,t luiP('Ij;R)P');; ( I¢R)TJ'(J2)¢(l]t)}P') 7 ~ 
A 1 (2+N) 1 2 

~ - f8 R uadx + C(IR,t)P R 7- , BR := BR(O). 

Here we have used the Holder inequality with p' = (p'- 1)p and 

R2 
fR,t:= ( lutp{'lj;R)P'dxdt= { { luiP('Ij;R)P'dxdt. 

lr:JR,t J R2 /4 J BR 

By similar ways to the other terms in IR, we have 

A A 1 ~ 2 
IR ~ -J8 R(uo+u1)(x)dx+C(IR,t+IR,Ixl)t>R P-, 

where iR,Ixl = J~ J8 R\BR;2 IuiP('Ij;R)P'dxdt. Here NP-+; 2 -2 < 0 is equiva­

lent top< 1+~ = pp(N). Since JRN(uo+u1)(x)dx > 0, if p < pp(N), 

then (IR) 1-i ~ CR7-2 and IR --+ 0 as R --+ oo, which contra­
dicts to the non-triviality of u. If p = pp(N), then IR ~ C, that 
is, J0

00 JRN luiPdxdt < oo by taking R = oo. Hence IR ~ - f8 R(uo + 
..... "'- 1 A A 

ui)dx+C(IR,t+IR,Ixl)t> and both IR,t and IR,Ixl tend to zero as R--+ oo. 
Thus we again reach to the contradiction. 

By this proof we know it is a key point that the left hand side of 
(4.3) is the divergence form. However, our equation in (P)t is not and 
some idea is necessary. To overcome this, we multiply (P)t by some 
non-negative function g(t) to get 

(g(t)u)tt- b.(g(t)u)- (g'(t)u)t + (-g'(t) + b(t)g(t))ut = g(t)luiP. 

Hence we choose g(t) by the ordinary differential equation 

-g'(t) + b(t)g(t) = 1, g(O) = 1/b1, b1 = (100 e- f~ b(s)dsdt)-1, 
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that is, explicitly, g(t) = ef~ b(s)ds(J0
00 e- J; b(s)dsdT- J~ e- I; b(s)dsdT). 

Thus, we have the divergence form 

(g(t)u)u- Ll(g(t)u)- (g'(t)u)t + Ut = g(t)luiP, 

and, as above, we set IR = JQR g(t)luiP·('l)!R)P' dx dt with QR = [0, R 1~.a] x 

BR(O) and 'l)!R(t, x) = rm(t) · ¢R(r) = TJ(R2f(l+.Bl) · ¢( l~l ). 
Again, assuming that u is a non-trivial global solution, we can derive 

the contradiction if p ~ pp(N). We omit the details. 
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