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A shallow water approximation for water waves 
over a moving bottom 

Hiroyasu Fujiwara and Tatsuo Iguchi 

Abstract. 

It is known that the Green-Naghdi equations are higher order 
approximations for the water wave problem in a shallow water regime. 
We derive corresponding equations in the case of moving bottom as a 
mode of tsunamis caused by the slow deformation of the bottom, and 
give a mathematically rigorous justification of the model. 

§1. Introduction 

In this paper we are concerned with model equations for generation 
and propagation of tsunamis. In a standard tsunami model, the shallow 
water equations 

{ 1Jt+Y'· ((h+ry-bl)u) =0, 
Ut + (u · V')u + gV'ry = 0 

are used to simulate the propagation of tsunami under the assumption 
that the initial profile of tsunami is equal to the permanent shift of the 
seabed and the initial velocity field is zero 

1J = b1 - bo, u = 0 at t = 0, 

where 1J is the elevation of the water surface, u is the velocity field in 
the horizontal direction on the water surface, h is the mean depth of 
the water, g is the gravitational constant, b0 is the bottom topography 
before the submarine earthquake, and b1 is that after the earthquake. In 
fact, in [7] it was shown that the solution of the full water wave problem 
can be approximated by the solution of this tsunami model in the scaling 
regime IP « c « 1 under appropriate assumptions on the initial data 
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and the bottom topography. Here the nondimensional parameters 8 and 
E are defined by 8 = ~ and E = >-!~'where A is a typical wave length 
and t0 is the time when the submarine earthquake takes place. 

However, very rarely, the condition 82 « E « 1 is not satisfied, 
particularly, the condition on E. One of such events is the Meiji-Sanriku 
earthquake, which occurred at June 15 in 1896. The seismic scale of 
this earthquake was small, but it continued for several minutes. As a 
result, a huge tsunami attacked the Sanriku coast line. To simulate such 
a tsunami, it might be better to consider the limit 8 -+ 0 keeping E is of 
order one. In this paper we will consider this kind of tsunamis, so that 
in the following we always assume that E = 1. In this case, the standard 
tsunami model should be replaced by 

{ 77t+V'· ((h+77-b)u) =bt, 
Ut + (u · \l)u + g\11] = 0 

with zero initial conditions, where b is the bottom topography. In fact, 
using the techniques in [7] we can easily show that the solution of the full 
water wave problem can be approximated by the solution of the above 
tsunami model with a source term in the scaling regime 8 « 1 and E = 1. 
Therefore, in this paper we will consider a higher order approximation. 

It was shown by Li [10] that the solution of the two-dimensional 
water waves over a fiat bottom can be approximated by the solution 
of the so-called Green-N aghdi equations up to order 0( 84 ). Alvarez­
Samaniego and Lannes [2] extended her result to the three-dimensional 
water waves over a nonfiat bottom by using the Nash-Moser technique 
to show the existence of solution, so that they imposed much regularity 
of the initial data. In this paper, we extend the result to the case of 
moving bottom without using the Nash-Moser technique. Therefore, in 
our result the regularity assumption on the initial data is much weaker 
than those in [2]. 

§2. Formulation of the problem 

Under the assumption E = 1, the basic equations for water waves in 
the nondimensional form have the form 

(1) 

(2) 

.1:2 A iii.+ <:>32m. -- 0 • "(t) t 0 U L.\'±' U '±' ln H , > , 

{ 
82 (<I>t + ~IV'<I>I 2 + 77) + ~(83<1?) 2 = o, 
82 (77t + \1<1? · \177)- 83<1? = 0 on r(t), t > 0, 



(4) 

where 

A shallow water approximation 

17(x, 0) = 17o(x), <I>(X, 0) = <I>o(X), 

n(t) ={X= (x, X3) E R3 ; b(x, t) < X3 < 1 + 17(X, t)}, 
r(t) ={X= (x, X3) E R 3 ; X3 = 1 + 17(X, t)}, 
E(t) ={X= (x, x3) E R 3 ; x3 = b(x, t)}. 
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Here, <I> is the velocity potential and 17 is the surface elevation. Both of 
them are unknown functions, while b is a given function in this paper. 
x = ( x1 , X2) and x3 are the horizontal and vertical spatial variables, 
respectively, V' = ( al, a2), and ~ = a~ + a~ 0 

We reformulate the initial value problem (1)-(4) to a problem on 
the water surface. To this end, we introduce a new unknown function ¢ 
as the trace of the velocity on the water surface, that is, 

¢(x, t) = <I>(x, 1 + 17(x, t), t). 

Then, we have 

(6) 

17t - A_DN ( 11, b, o)¢ - ANN ( 11, b, o)bt = o, 
¢t + 11 + !IV'¢12 - !o2(1 + o2IY'77I2)- 1 

X (ADN(17, b, o)¢ + ANN(17, b, o)bt + V'¢ 0 Y'77) 2 = 0 for t > 0, 

17 = 11o, ¢ = ¢o at t = 0, 

where ADN and ANN are Dirichlet-Neumann and Neumann-Neumann 
maps, respectively, and ¢0 = <!>0 ( ·, 1 + 11o ( ·)). We refer to [7] for the 
derivation of these equations. The following theorem is one of the main 
results in this paper and asserts the existence of the solution of (5) and 
(6) with uniform bounds of the solution on a time interval independent 
of small o > 0. 

Theorem 1. Lets > 3 and M0 , c0 > 0. Then, there exist a time 
T > 0 and constants Co, Oo > 0 such that for any o E (0, oo], 11o E 

Hs+71 2 , V'¢o E H 8 +3 , and bE C([O,T];H8 +4) satisfying 

{ 
llb(t)lls+4 + llbt(t)lls+3 + llbtt(t)lls+l + llbttt(t)lls ~ Mo, 

ll77olls+7/2 + IIV'¢olls+3 ~ Mo, 
1 + 17o(x)- bo(x) ~co for (x, t) E R 2 x [0, T], 
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the initial value problem (5) and (6) has a unique solution (ry, ¢) 
(ryii,¢ii) on the time interval [O,T] satisfying 

{ ll77ii(t)lls+3 + ll\7¢ii(t)lls+2 + ll(ryf(t), ¢~(t))lls+2:::; Co, 
1 + ry8 (x, t)- b(x, t)?: c0 /2 for (x, t) E R 2 x [0, T], o E (0, 50 ]. 

§3. Shallow water approximations 

The following proposition was obtained by Alvarez-Samaniego and 
Lannes [2]. 

Proposition 1. Lets> 1 and M, c1 > 0. Suppose that 

{ ll77lls+9/2 + llblls+ll/2 :=:; M, 
1 + ry(x)- b(x)?: c1 for x E R 2 . 

Then, there exists a constant C = C(M, c1 , s) > 0 independent of o such 
that for any o E (0, 1] we have 

II A oN (77, b, o)¢ + v. ((1 + 77 - b)\7¢) + o2 tl(~(l + 77 - b) 3 fl¢) 

- o2 tl(~(1 + 7]- b) 2 \7b. \7¢) + 52\7. G(1 + 7]- b?(Vb)tl¢) 

- 52\7 · ( (1 + 7]- b)(\7b)\7b · \7 ¢)lis :::; CJ4 II\7 ¢lls+Il/2· 

The following proposition was obtained in [7]. 

Proposition 2. Let s > 1 and M, c1 > 0. Suppose that 

{ ll77lls+9/2 + llblls+ll/2 :=:; M, 
1 + ry(x)- b(x)?: c1 for x E R 2 . 

Then, there exist constants C = C ( M, c1 , s) > 0 and o0 = o0 ( M, c1 , s) > 
0 such that for any o E (0, 50 ] we have 

IIANN(ry,b,o)bt- bt 

- 52\7 · { (1 + 7]- b) (bt \7ry + ~(1 + 7]- b)Vbt)} lis :::; Co4 llbtlls+4· 

Using these two propositions, we can approximate the equations (5) 
by the following partial differential equations up to order 0(54 ). 

(7) 

'T/t- bt + v. ((1 + 7]- b)v¢) + o2tlG(1 + 77 - b)3tl¢) 

-o2tlG(1 + 77 - b) 2 \7b. v¢) + o2\7. (~(1 + 77 - b)2\7bfl¢) 

-52\7. ((1 + 7]- b)\7b(\7b. \7¢)) 

-52 \7 · {(1 + 77- b)(bt\77] + ~(1 + ry- b)Vbt)} = 0(54 ), 

c/Jt + 7] + ~ l\7 ¢1 2 

-~52 (Vb · \7¢- (1 + ry- b)fl¢ + bt) 2 = 0(54 ). 
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Here, we define a second order differential operator T(ry, b) depending 
on 7] and b and acting on vector fields by 

T(ry, b)u := -V(i(l + TJ- b) 3 (\7 · u)) + \7(~(1 + TJ- b) 2(\7b · u)) 

- ~(1 + TJ- b) 2\7b(\7 · u) + (1 + 7]- b)\7b(\7b · u) 

and introduce a new variable u by 

( 8) v ¢ = u + o2 ( 1 + TJ - b) -l T ( TJ, b) u + o2 ( bt v TJ + ~ ( 1 + TJ - b) v bt) . 

Putting this into (7) and neglecting the terms of order 0(154 ), we obtain 
the Green-Naghdi equations 

(9) 

(10) 

{ 

TJt+\7·((1+ry-b)u)=bt, 

((1 + TJ- b)+ o2T(ry, b))ut + (1 + TJ- b)(VTJ + (u · V)u) 
+o2 {iV((1 + TJ- b) 3 Pu(\7 · u)) + Q(ry, u, b) 

+Rl(ry,u,b)bt +R2(ry,b)btt} = 0 for t > 0, 

7] = 'T]o, u = uo at t = 0, 

where 

Pu=V·u-u·\7, 

Q(ry,u,b) = ~\7((1 +TJ- b?(u · V?b) + !((1 +TJ- b)2Pu(\7 · u))Vb 

+(1 + TJ- b)((u · \7) 2 b)Vb, 
R1 (ry, u, b)bt = (1 + TJ- b)2\7(u · Vbt) + 2(1 + TJ- b)(u · Vbt)Vry, 
R2(TJ, b)btt = ~(1 + TJ- b)2\7btt + (1 + TJ- b)btt \7ry, 

and u0 is determined by (8) from (TJo, bo). 
Now, we are ready to give the main result in this paper, which 

asserts the rigorous justification of the Green-Naghdi approximation. 

Theorem 2. Lets > 3 and M 0 , c0 > 0. Then, there exist a time 
T > 0 and constants C, o0 > 0 such that for any o E (0, 150 ], TJo E 

Hs+l5/2, \7¢0 E Hs+7, and bE C([O,T];H8 +8) satisfying 

{ 
llb(t)lls+S + llbt(t)lls+7 + llbtt(t)lls+5 + llbttt(t)llsH :S: Mo, 

IITJolls+l5/2 + IIV¢olls+7 :S: Mo, 
1 + TJo(x)- b0 (x) 2: c0 for (x, t) E R 2 x [0, T], 

the solution ( 7], ¢) = ( ry8 , ¢8) obtained in Theorem 1 and the function u8 

determined by ( 8) from ( ry8 , ¢8 ) and b satisfy 

IITJ8 (t)- i]8 (t)lls + llu8 (t)- u8(t)lls + oiiV. (u8(t)- u8 (t))lls::::: Co4 
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forO:<::; t :<::; T, where (ry,u) = (ij8 ,u8 ) is a unique solution of the initial 
value problem for the Green-Naghdi equations (9) and (10). 

§4. The Green-Naghdi equations 

We define a second order differential operator L(ry, b, 8) by 

L(ry, b, 8)u := ((1 + 'TJ- b)+ 82T(ry, b))u 

and consider the partial differential equation 

(11) L(ry, b, 8)u = F + 8a'V f. 

Lemma 1. Let s > 2 and M, c1 > 0. Suppose that 

{ ll"llls + llblls+l + llalls :<::; M, 
1 + ry(x)- b(x);:::: c1 for x E R 2 . 

Then, for any F, f E H 8 and 8 E (0, 1], equation (11) has a unique 
solution u E H 8 satisfying '\1 · u E H 8 • Moreover, we have 

llulls + 8II'V · ulls :::; C(IIFIIs + IIIIIs), 
where C = C(M, c1 , s) > 0 is independent of 8. 

Proof. For any u, ¢ E H := { u E £ 2 ; '\1 · u E £ 2 } we have 

(Lu, ¢) 

= ((1 + TJ- b)u, ¢) + 8; ((1 + 'TJ- b)3 ('\l · u), '\1 · ¢) 
82 2 82 2 - 2((1 + 'TJ- b) ('Vb · u), '\1 · ¢)- 2 ((1 + 'TJ- b) ('\1 · u), '\lb · ¢) 

+ 82 ((1 + 'TJ- b)('Vb · u), 'Vb · ¢) 

=: (u, <P)s. 

By the hypothesis we have 

(12) c-1 (llull 2 + 82 II'V. ull 2 ):::; (Lu, u):::; C(llull 2 + 82 II'V. ull 2 ). 

Therefore, His the Hilbert space with the inner product (·, ·)s, so that 
Riesz's representation theorem implies the existence of a unique solution 
u E H to the equation 

(u, <P)s = (F + 8a'V f, ¢). 

This solution u is a unique weak solution of (11). Moreover, it is easy 
to see that u satisfies llull + 8II'V · ull :<::; C(IIFII + IIIII). A higher order 
estimate is obtained in a standard manner. Q.E.D. 
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The following proposition asserts the existence of the solution to the 
initial value problem (9) and (10) with a uniform bound of the solution 
on a time interval independent of I) E (0, 1]. 

Proposition 3. Let s > 3 and M, c1 > 0. Then, there exist a time 
T > 0 and a constant Co > 0 such that for any I) E (0, 1], TJo E H 8 , 

u 0 E H 8 , and b E C([O, T]; Hs+Z) satisfying 

{ 
IITJolls + lluolls + bll\7 · uolls::::; M, 

llb(t)lls+2 + llbt(t)lls+2 + llbu(t)lls+1 ::=:; M, 
1 + TJo(x)- b0 (x) 2': c1 for (x, t) E R 2 x [0, T], 

the initial value problem for the Green-Naghdi equations (9) and (10) 
has a unique solution (TJ, u) on the time interval [0, T] satisfying 

{ IITJ(t)lls + llu(t)lls + bll\7 · u(t)lls ::=:;Co, 
1 + ry(x, t)- b(x, t) 2': c0 /2 for (x, t) E R 2 x [0, T]. 

Proof. We first give an a priori estimate of the solution by the 
energy method. Let (TJ, u) be a solution of (9) and (10) satisfying 

{ 
IITJ(t)lls-1 ::=:; N1, 

(13) Es(t) := IITJ(t)ll; + llu(t)ll; + b2ll\7 · u(t)ll;::::; Nz, 

1 + ry(x, t) - b(x, t) 2': c0/2 for (x, t) E R 2 x [0, T], 

where positive constants N1, N2, and T will be determined later. In 
the following, c1 and c2 denote positive constants depending only on 
(M0 ,N1,c0 ,s) and (M0 ,N2,c0 ,s), respectively. The energy function for 
( 9) is defined by 

Es(t) := IITJ(t)ll; + (L(l + IDI) 8 U, (1 + IDI) 8 u), 

which is equivalent to E 8 (t) thanks of (12). Then, it holds that 

d 
d/s(t) ::=:; C2(Es(t) + 1). 

This and Gronwall's inequality yield that 

We also have 
1 + ry(x, t) - b(x, t) 2': co - Czt. 

Thus, if we set N1 = IITJo lls-1 + 1, Nz = 2C1 (IITJoll; + lluo 11; +b2ll\7 ·Uo 11; + 
1) and T = min{C21log2, (2C2)-1co}, then the estimates in (13) hold 
for 0::::; t::::; T. 
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To construct the solution, we use, for example, a parabolic regular­
ization of the equations by 

"lt- cArt+ \1· ((1 + rt- b)u) = bt, 

((1 + rt- b)+ 82T(ry, b)) (ut- cAu) 
(14) +(1 + rt- b)(\lrt + (u · \l)u) 

+82 0\1((1 + rt- b) 3 Pu(\l· u)) + Q(ry,u,b) 

+Rl(ry,u,b)bt+R2(rt,b)bu}=O for t>O. 

For each c E (0, 1] the initial value problem for the regularized Green­
Naghdi equations (14) and (10) has a unique solution (rye, ue), which 
satisfies a uniform bound on a time interval independent of c. Moreover, 
the solution (rye, ue) converges as c -+ +0. The limiting function is the 
desired solution. Q.E.D. 

§5. Proof of the main theorem 

Let (ry8 , qi) be the solution of (5) and (6) obtained in Theorem 2 
and define h8' W 8' and u8 by 

{ h8 = 1 + "'8- b, w8 = bt \lrt8 + !h8\lbt, 

L(ry8,b,8)u8 = \lqi- 82h8W 8. 

Then, we have 

(15) 

9f1 = ADN(ry8, b, 8)1i + \1· (h8\lqi) + 82 A.(~(h8 ) 3A.cfi) 

_ 82A.(!(h8)2\lb. \lqi) + 82\1. (!(h8)2(\lb)A.<ti) 

- 82 \1. (h8(\lb)\lb. \lqi) 

+ A_NN (rt8, b, 8)bt - bt- 82 \1 · (h8W 8), 
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ggl = hov{(-\7. (hs\7¢i) +bt + V¢i. \i'rys)ggll + ~82(gg11)2 
- ~ IVryJ 12(1 + 82IVry" I) ~2 

x (ADN ( ry", b, 8)¢i +ANN ( ry8 , b, 8)bt + v¢i . Vry8) 2}, 

gg11 = 8~ 2 { ADN ( ry8 , b, 8)¢8 + v . (h8V ¢8) +ANN ( ry8 , b, 8)bt - bt}, 

gg2 = 82 {V((h8 ) 2 g~(\7 · u8 )- h8g~(\7b · u 8)) + h8g~(\7b)\7 · u8 

- g~(\i'b)\i'b. u 8 - h8 bt\7g~- ~h8gf\7bt}, 

gg3 = -((T8 (ry8 , b)u8 + h8W 8 ) · V) ((h8 )~ 1T8 (ry8 , b)u8 + W 8 ), 

gg4 = h8\7 { (Vb · u8 - h8 (\7 · u8 ) )(Vb · ( (h8)~ 1T8 (ry8 , b)u8 + W 8 ) 

- h8 \7 · ((h8 )~ 1T8 (ry8 ,b)u8 + W8))} 

+ ~h882 \7{ (Vb · ((h8 )~ 1T8 (ry8 , b)u8 + W 8 ) 

- h8\7 · ((h8 )~ 1T8 (ry8 , b)u8 + W") ) 2 } 

+ h8\7 { (Vb · ( ( h8 )~ 1T8 ( ry8 , b )u8 + W 8 ) 

- h8\7 · ((h8 )~ 1T8 (ry8 ,b)u8 + W 8 ))bt}, 

gg5 = ~8~2 { (u8 · V)V((h8 ) 3 (\7 · u 8 )) + (V((h8 ) 3 (\7 · u8 )) · V)u8 

- V(V((h8 ) 3 (\7 · u8 )) · u 8 )} 

- 8~2 h8 bt{ (u6 · \7)\7ry8 + (Vry8 · \7)u6 - \7(\7ry8 · u 6 )} 

- ~8~2 (h8 ) 2 {(u8 · \7)\i'bt + (Vbt · \7)u8 - V(Vbt · u8)} 

- 8~2 h8 (\i'b · u 8 ){ ( u 8 · \7)\i'b + (Vb · \7)u8 - \7 (Vb · u 6 )} 

+ ~8~2 (h6? (\7 · u 6 ) { ( u 8 · \7)\i'b + (Vb · \7)u8 - \7(\i'b · u 6 )} 

- ~8~2 (Vb · u8 ) { ( u 8 · \7)\7 ( (h8 ) 2) + (\7 ( (h6 ) 2) · \7)u6 

- V(V((h8) 2) · u8)} 

- ~8~2 (h8? { ( u 6 · \7) \7 (Vb · u 8 ) + (\7(\i'b · u8 ) · \7)u8 

- \7(\7(\i'b · u 8 ) · u 8 ) }. 
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Lemma 2. Under the same hypothesis of Theorem 2, there exists a 
constant C = C(M0 , c0 , s) > 0 such that we have 

ll(gf(t), gg(t))lls:::; C for t E [0, T], J E (0, 8o], 

where T and 50 are the constants in Theorem 1. 
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Proof. By Theorem 1 we have 

llrl(t)lls+7 + IIY'¢8 (t)lls+6:::; C for t E [O,T], 8 E (0,8o], 

which together with Lemma 1 implies that llua(t)lls+B :::; C. We also 
note that llgg5 (t)lls:::; C8-2 llrotua(t)lls:::; C. Now, the desired estimate 
is obtained by Propositions 1 and 2. Q.E.D. 

Let (ij8 , ua) be the solution of (9) and (10) obtained in Proposition 
3 and put 

ha = 1 + r/- b, ha = 1 + ija- b, ( = r/- ija, w = ua- ua. 

It follows from (15) that 

(16) 

where 

{ 
(t + V' ·(haw)+ V' · ((ua) = 84g1, 

i}wt + A1w + V'(A2w) + B( =a+ 84g2, 

i}wt = (ha + 82Ta)Wt 

= h8wt- 8;Y'((ha)3(V' · Wt)) + a;Y'((ha)2(V'b · Wt)) 

- a; (ha)2V'b(V' · Wt) + 02haV'b(V'b · Wt), 

A1w = ha(ua · Y')w + a;Y'((ha) 3 (V' · ua)(Y' · w)) 

+ a;Y'((ha)3 (V' · ua)(Y' · w))- a;Y'((h8 ) 3 (w · V')(V' · u8 )) 

+ a;Y'((ha)2(w. V')(u8 • V'b))- a; ((h8 ) 2(ua. Y')(Y'. w))Y'b 

+ 82(ha(ua · V')(w · V'b))Y'b + 82(h8 ) 2V'(w · Y'bt), 

A2w =_a; ((h8 ) 3 (ua · V')(V' · w)) +a; ((ha)2(ua · Y')(w · V'b)), 

B( = _a;Y'(((ha) 2 + h8ha + (ha) 2)(Y' · ut)() 

+ a; Y'( (h0 + ha)(V'b · ut)() +haY'( 

+ a;Y'(((ha) 2 + haha + (ha) 2)(Y'. ua) 2() 

- a;Y'(((h8 ) 2 + h8ha + (ha) 2)((ua. Y')(Y'. ua)) 

+ a;Y'((ha + ha)((ua · V')(ua · V'b)) 

+ 282 h8 (ua · Y'bt)Y'( + 82 h8btt V'(, 



A shallow water approximation 87 

a= -Cut+ o; ( (h" + h")(\1 · ut)() \lb- 82 (\lb · ut)(\lb- (\lh0 - (\lb 

- h0 (w. \!)ito- ((u". \l)u"- o; ((h0 ) 2 (\l· u")(\1· w))\lb 

- o; ((h")2(\l· u")(\1· w))\lb- o; ((h" + h")(\1· u0 ) 2()\lb 

+ o; ((h") 2 (w. \1)(\1· u"))\lb + 022 ((h" + h)((u". \1)(\1· u"))\lb 

- o2 (h"(w. \l)(u". \lb))\lb- o2 (((u". \l)(u". \lb))\lb 

- o2((h0 + h0 )\l(u0 • \lbt)- o; ((h" + h0 )\lbtt 

- 2o2 h"(w. \lbt)\lh"- 2o2((u". \lbt)\lh0 - 2o2h"(w. \lbt)\lb 

- 2o2((u". \lbt)\lb- o2(bttVh"- o2(btt\lb, 

where a is a correction of lower order terms in ((, w). We note that the 
equations in (16) are linearized Green-Naghdi equations. Here, we also 
have 

Therefore, in the same way as the proof of Proposition 3 we obtain 

where 

In the above calculation we used the fact that E8 (0) = 0. Therefore, by 
Gronwall's inequality we obtain 

which together with Lemma 2 yields the desired estimate. Q.E.D. 
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