A note on quadratic residue curves on rational ruled surfaces

Hiro-o Tokunaga

Abstract

. Let Σ be a smooth projective surface, let $f^{\prime}: S^{\prime} \rightarrow \Sigma$ be a double cover of Σ and let $\mu: S \rightarrow S^{\prime}$ be the canonical resolution of S^{\prime}. Put $f=f^{\prime} \circ \mu$. An irreducible curve D on Σ is said to be a splitting curve with respect to f if $f^{*} D$ is of the form $D^{+}+D^{-}+E$, where $D^{+} \neq D^{-}, D^{-}=\sigma_{f}^{*} D^{+}, \sigma_{f}$ being the covering transformation of f and all irreducible components of E are contained in the exceptional set of μ. In this article, we consider "reciprocity" concerning splitting curves when Σ is a rational ruled surface.

§0. Introduction

Let Σ be a smooth projective surface and let Z^{\prime} be a normal projective surface with finite surjective morphism $f^{\prime}: Z^{\prime} \rightarrow \Sigma$ of degree 2 . Let $\mu: Z \rightarrow Z^{\prime}$ be the canonical resolution (see [4] for the canonical resolution) of Z^{\prime} and put $f:=f^{\prime} \circ \mu$. We denote the involution on Z induced by the covering transformation of f^{\prime} by σ_{f}. The branch locus $\Delta_{f^{\prime}}$ of f^{\prime} is the subset of Σ consisting of points x such that f^{\prime} is not locally isomorphic over x. Similarly we define the branch locus Δ_{f} of f. Note that $\Delta_{f^{\prime}}=\Delta_{f}$. In [10], we introduce a notion " a splitting curve with respect to f " as follows:

Definition 0.1. Let D be an irreducible curve on Σ. We call D a splitting curve with respect to f if $f^{*} D$ is of the form

$$
f^{*} D=D^{+}+D^{-}+E
$$

where $D^{+} \neq D^{-}, \sigma_{f}^{*} D^{+}=D^{-}, f\left(D^{+}\right)=f\left(D^{-}\right)=D$ and $\operatorname{Supp}(E)$ is contained in the exceptional set of μ. If the double cover $f: Z \rightarrow \Sigma$ is

Received April 26, 2011.
Revised October 10, 2011.
2010 Mathematics Subject Classification. 14E20, 14G99.
Key words and phrases. Quadratatic residue curve, Mordell-Weil group.
uniquely determined by its branch locus Δ_{f} and D is a splitting curve with respect to f, we say that " Δ_{f} is a quadratic residue curve mod D".

Remark 0.1. One can similarly define a splitting divisor with respect to a double cover or a quadratic residue divisor for higher dimensional cases.

We here recall our notation introduced in [10]. Suppose that f : $Z \rightarrow \Sigma$ is uniquely determined by Δ_{f}. For an irreducible curve D on Σ, we put

$$
\left(\Delta_{f} / D\right)=\left\{\begin{array}{cl}
1 & \text { if } \Delta_{f} \text { is a quadratic residue curve } \bmod D \\
-1 & \text { if } \Delta_{f} \text { is not a quadratic residue curve } \bmod D
\end{array}\right.
$$

Remark 0.2. Note that any double cover is determined by its branch locus if there exists no element of order 2 in $\operatorname{Pic}(\Sigma)$. This condition is satisfied if Σ is simply connected, for example.

In [10], we studied splitting quartics Q with respect to a double cover, $f_{C}: Z_{C} \rightarrow \mathbb{P}^{2}$, branched along a smooth conic C. Our key idea in [10] is that we consider a double cover $f_{Q}^{\prime}: Z_{Q}^{\prime} \rightarrow \mathbb{P}^{2}$ in order to determine the value of (C / Q). In other words, we showed that a kind of "reciprocity" holds between C and Q ([10, Theorem 2.1]). Our purpose of this article is to prove "reciprocity" for some curves on rational ruled sufaces. More precisely we consider a generalization of Theorem 1.2 in [10], which is a "reciprocity" between sections and trisections on rational ruled surfaces. Note that our proof of [10, Theorem 2.1] is based on [10, Theorem 1.2]. Let us explain our setting.

Let Σ_{d} (d: even) be the Hirzebruch surface of degree d. Throughout this article, we fix the following notation:

- Δ_{0} : the section of Σ_{d} with $\Delta_{0}^{2}=-d$.
- F : a fiber of the ruling of Σ_{d}.
- $B_{i}(i=1,2)$: irreducible curves on Σ_{d} such that $B_{i} \sim\left(2 g_{i}+\right.$ 1) $\left(\Delta_{0}+d F\right)\left(i=1,2, g_{i} \in \mathbb{Z}_{\geq 0}\right)$.

Also we always assume that
$(*)$ neither singular point of B_{1} nor B_{2} is in $B_{1} \cap B_{2}$.
Let $p_{i}^{\prime}: S_{i}^{\prime} \rightarrow \Sigma_{d}$ be the double cover of Σ_{d} with branch curve $\Delta_{0}+B_{i}$ and let $\mu_{i}: S_{i} \rightarrow S_{i}^{\prime}$ be its canonical resolution and put $p_{i}:=p_{i}^{\prime} \circ \mu_{i}$. The ruling $\Sigma_{d} \rightarrow \mathbb{P}^{1}$ induces a hyperelliptic fibration of genus g_{i} on S_{i}, which we denote by $\varphi_{i}: S_{i} \rightarrow \mathbb{P}^{1}$. Since φ_{i} has a canonical section O_{i} arising from Δ_{0}, one can consider the Mordell-Weil group $\operatorname{MW}\left(\mathcal{J}_{S_{i}}\right)$ of the Jacobian of the generic fiber $S_{i, \eta}$. For an irreducible curve C not contained in any fiber of $\varphi_{i}, s(C)$ denote the element of $\operatorname{MW}\left(\mathcal{J}_{S_{i}}\right)$ determined by C as in $[8, \S 3]$. Then we have

Proposition 0.1. Suppose that

- B_{2} has only nodes (resp. at worst simple singularities) if $g_{2} \geq 2$ (resp. $g_{2}=1$), and
- B_{1} is a splitting curve with respect to p_{2}; and $p_{2}^{*} B_{1}$ is of the form $B_{1}^{+}+B_{1}^{-}$.
If $s\left(B_{1}^{+}\right)$is 2-divisible, then B_{2} is a splitting curve with respect to p_{1}.

Proposition 0.2. Suppose that B_{1} has at worst simple singularities and $\mathrm{MW}\left(\mathcal{J}_{S_{1}}\right)=\{0\}$. If B_{2} is a splitting curve with respect to p_{1}, then we have the following:

- B_{1} is a splitting curve with respect to p_{2} and $p_{2}^{*} B_{1}$ is of the form $B_{1}^{+}+B_{1}^{-}$.
- $s\left(B_{1}^{ \pm}\right)$is 2-divisible in $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$.

Remark 0.3. (i) The condition $\operatorname{MW}\left(\mathcal{J}_{S_{1}}\right)=\{0\}$ can be replaced by more geometric condition (see Remark 1.1).
(ii) For $x \in B_{1} \cap B_{2}$, we denotes the intersection multiplicity between B_{1} and B_{2} at x by $I_{x}\left(B_{1}, B_{2}\right)$. Note that if there exists a point $x \in$ $B_{1} \cap B_{2}$ such that $I_{x}\left(B_{1}, B_{2}\right)$ is odd, then B_{1} (resp. B_{2}) is not a splitting curve with respect to p_{2} (resp. p_{1}). Hence under the conditions of Propositions 0.1 and 0.2 , we may assume that $I_{x}\left(B_{1}, B_{2}\right)$ is even for $\forall x \in B_{1} \cap B_{2}$.

From Propositions 0.1 and 0.2 , we have the following theorem, which is a generalization of [10, Theorem 1.2]:

Theorem 0.1. Let B_{1} and B_{2} be as before. If $g_{1}=0$ and $I_{x}\left(B_{1}, B_{2}\right)$ is even for all $x \in B_{1} \cap B_{2}$, then

$$
\left(\Delta_{0}+B_{1} / B_{2}\right)=(-1)^{\varepsilon\left(s\left(B_{1}^{+}\right)\right)}
$$

where, for an element $s \in \operatorname{MW}\left(\mathcal{J}_{S_{2}}\right), \varepsilon(s)$ is defined as follows:

$$
\varepsilon(s)= \begin{cases}0 & \text { if } \exists s_{o} \in \operatorname{MW}\left(\mathcal{J}_{S_{2}}\right) \text { such that } s=2 s_{o} \\ 1 & \text { if } \nexists s_{o} \in \operatorname{MW}\left(\mathcal{J}_{S_{2}}\right) \text { such that } s=2 s_{o}\end{cases}
$$

§1. Preliminaries

1.1. Summary on cyclic covers and double covers

Let $\mathbb{Z} / n \mathbb{Z}$ be a cyclic group of order n. We call a ($\mathbb{Z} / n \mathbb{Z}$)- (resp. a $(\mathbb{Z} / 2 \mathbb{Z})$-) cover by an n-cyclic (resp. a double) cover. We here summarize some facts about cyclic and double covers.

Fact: Let Y be a smooth projective variety and let B be a reduced divisor on Y. If there exists a line bundle \mathcal{L} on Y such that $B \sim n \mathcal{L}$, then we can construct a hypersurface X in the total space, L, of \mathcal{L} such that

- X is irreducible and normal, and
- $\pi:=\left.\operatorname{pr}\right|_{X}$ gives rise to an n-cyclic cover, where pr is the canonical projection pr : $L \rightarrow Y$.
(See [1] for the above fact.)
As we see in [9], cyclic covers are not always realized as a hypersurface of the total space of a certain line bundle. As for double covers, however, the following lemma holds.

Lemma 1.1. Let $f: X \rightarrow Y$ be a double cover of a smooth projective variety with $\Delta_{f}=B$, then there exists a line bundle \mathcal{L} such that $B \sim 2 \mathcal{L}$ and X is obtained as a hypersurface of the total space, L, of \mathcal{L} as above.

Proof. Let φ be a rational function in $\mathbb{C}(Y)$ such that $\mathbb{C}(X)=$ $\mathbb{C}(Y)(\sqrt{\varphi})$. By our assumption, the divisor of φ is of the form

$$
(\varphi)=B+2 D
$$

where D is a divisor on Y. Choose \mathcal{L} as the line bundle determined by $-D$. This implies our statement.
Q.E.D.

By Lemma 1.1, note that any double cover X over Y is determined by the pair (B, \mathcal{L}) as above. In particular, if there exists no 2 -torsion in $\operatorname{Pic}(Y)$, then \mathcal{L} is uniquely determined by B as $2 \mathcal{L} \sim 2 \mathcal{L}^{\prime}$ implies $\mathcal{L} \sim \mathcal{L}^{\prime}$.

1.2. Review on the Mordell-Weil groups for fibrations over curves

In this section, we summarize some results on the Mordell-Weil groups given by Shioda in $[7,8]$.

Let S be a smooth algebraic surface with fibration $\varphi: S \rightarrow C$ of genus $g(\geq 1)$ curves over a smooth curve C. Throughout this article, we always assume that

- φ has a section O and
- φ is relatively minimal, i.e., no (-1) curve is contained in any fiber.
Let S_{η} be the generic fiber of φ and let $\mathbb{C}(C)$ be the rational function field of $C . S_{\eta}$ is regarded as a curve of genus g over $\mathbb{C}(C)$.

Let $\mathcal{J}_{S}:=J\left(S_{\eta}\right)$ be the Jacobian variety of S_{η}. We denote the set of rational points over $\mathbb{C}(C)$ by $\operatorname{MW}\left(\mathcal{J}_{S}\right)$. By our assumption, MW $\left(\mathcal{J}_{S}\right)$
is not empty and it is well-known that $\operatorname{MW}\left(\mathcal{J}_{S}\right)$ has the structure of an abelian group.

Let $\operatorname{NS}(S)$ be the Néron-Severi group of S and let $\operatorname{Tr}(\varphi)$ be the subgroup of $\operatorname{NS}(S)$ generated by O and irreducible components of fibers of φ. Under these notation, we have:

Theorem 1.1. If the irregularity of S is equal to C, then we have

$$
\operatorname{MW}\left(\mathcal{J}_{S}\right) \cong \operatorname{NS}(S) / \operatorname{Tr}(\varphi)
$$

In particular, MW $\left(\mathcal{J}_{S}\right)$ is finitely generated.
See $[7,8]$ for a proof.
Let $p_{i}: S_{i} \rightarrow \Sigma_{d}(i=1,2)$ be the double covers of Σ_{d} with branch loci $\Delta_{0}+B_{i}(i=1,2)$ as in the Introduction. Then we have

Lemma 1.2. There exists no unramified cover of S_{i}. In particular, $\operatorname{Pic}\left(S_{i}\right)$ has no torsion element.

Proof. By Brieskorn's results on the simultaneous resolution of rational double points $([2,3])$, we may assume that B_{i} is smooth. Since the linear system $\left|B_{i}\right|$ is base point free, it is enough to prove our statement for one special case. Chose an affine open set $U=\Sigma_{d} \backslash\left(\Delta_{0} \cup F\right)$ of Σ_{d} isomorphic to \mathbb{C}^{2} with a coordinate (t, x) so that a curve $x=0$ gives rise to a section linear equivalent to $\Delta_{0}+d F$. Choose B_{i} whose defining equation in U is

$$
B_{i}: f_{B_{i}}(t, x)=x^{2 g_{i}+1}-\Pi_{i=1}^{\left(2 g_{i}+1\right) d}\left(t-\alpha_{i}\right)=0
$$

where $\alpha_{i}\left(i=1, \ldots,\left(2 g_{i}+1\right) d\right)$ are distinct complex numbers. Note that

- B_{i} is smooth,
- singular fibers of φ are over $\alpha_{i}\left(i=1, \ldots,\left(2 g_{i}+1\right) d\right)$, and
- all the singular fibers are irreducible rational curves with unique singularity whose local analytic equation is given by $v^{2}-u^{2 g_{i}+1}$ $=0$.
Suppose that there exists an unramified cover $\gamma: \widehat{S}_{i} \rightarrow S_{i}, \operatorname{deg} \gamma \geq 2$, and let $\hat{g}: \widehat{S}_{i} \rightarrow \mathbb{P}^{1}$ be the fibration induced by φ_{i}. As γ is unramified, $\gamma^{*}\left(O_{i}\right)$ consists of disjoint $\operatorname{deg} \gamma$ sections. Choose one of them, \widehat{O}_{i}, in $\gamma^{*} O_{i}$. Let $\widehat{S}_{i} \xrightarrow{\rho_{7}} C \xrightarrow{\rho_{2}} \mathbb{P}^{1}$ be the Stein factorization. Then $\left.\operatorname{deg}\left(\rho_{2} \circ \rho_{1}\right)\right|_{\widehat{O}_{i}}=$ $\left.\operatorname{deg} \hat{g}\right|_{\widehat{O}_{i}}=1$. Hence $\operatorname{deg} \rho_{1}=\operatorname{deg} \rho_{2}=1$ and \hat{g} has a connected fiber.

On the other hand, since all the singular fibers of φ_{i} are simply connected, all fibers over $\alpha_{i}\left(i=1, \ldots,\left(2 g_{i}+1\right) d\right)$ are disconnected. This leads us to a contradiction.
Q.E.D.

Corollary 1.1. The irreguarity $h^{1}\left(S_{i}, \mathcal{O}_{S_{i}}\right)$ of S_{i} is 0 . In particular,

$$
\operatorname{MW}\left(\mathcal{J}_{S_{i}}\right) \cong \operatorname{NS}\left(S_{i}\right) / \operatorname{Tr}\left(\varphi_{i}\right)
$$

where $\operatorname{Tr}\left(\varphi_{i}\right)$ denotes the subgroup of $\mathrm{NS}\left(S_{i}\right)$ introduced as above.
Proof. By Lemma 1.2, we infer that $H^{1}\left(S_{i}, \mathbb{Z}\right)=\{0\}$. Hence $h^{1}\left(S_{i}, \mathcal{O}_{S_{i}}\right)=0$.
Q.E.D.

Remark 1.1. By Corollary 1.1, $\operatorname{MW}\left(\mathcal{J}_{S_{i}}\right)=\{0\}$ if and only if $\mathrm{NS}\left(S_{i}\right)=\operatorname{Tr}\left(\varphi_{i}\right)$. We use this geometric condition in our proof of Proposition 0.2 .

§2. Proof of Proposition 0.1

Let us start with the following lemma:
Lemma 2.1. $f: X \rightarrow Y$ be the double cover of Y determined by (B, \mathcal{L}) as in Lemma 1.1. Let Z be a smooth subvariety of Y such that (i) $\operatorname{dim} Z>0$ and (ii) $Z \not \subset B$. We denote the inclusion morphism $Z \hookrightarrow Y$ by ι. If there exists a divisor B_{1} on Z such that

- $\iota^{*} B=2 B_{1}$ and
- $\iota^{*} \mathcal{L} \sim B_{1}$,
then the preimage $f^{*} Z$ splits into two irreducible components Z^{+}and Z^{-}.

Proof. Let $\left.f\right|_{f^{-1}(Z)}: f^{-1}(Z) \rightarrow Z$ be the induced morphism. $f^{-1}(Z)$ is realized as a hypersurface in the total space of $\iota^{*} L$ as in usual manner (see [1, Chapter I, §17], for example). Our condition implies that $f^{*}(Z)$ is reducible. Since $\operatorname{deg} f=2$, our statement follows. Q.E.D.

Lemma 2.2. Let Y be a smooth projective variety, let $\sigma: Y \rightarrow Y$ be an involution on Y, let R be a smooth irreducible divisor on Y such that $\left.\sigma\right|_{R}$ is the identity, and let B be a reduced divisor on Y such that $\sigma^{*} B$ and B have no common component.

If there exists a σ-invariant divisor D on Y (i.e., $\sigma^{*} D=D$) such that

- $\quad B+D$ is 2-divisible in $\operatorname{Pic}(Y)$, and
- R is not contained in $\operatorname{Supp}(D)$,
then there exists a double cover $f: X \rightarrow Y$ with branch locus $B+\sigma^{*} B$ such that R is a splitting divisor with respect to f (see Remark 0.1 for a splitting divisor and a quadratic residue divisor).

Moreover, if there is no 2-torsion in $\operatorname{Pic}(Y)$, then $B+\sigma^{*} B$ is a quadratic residue divisor $\bmod R$.

Proof. Since Y is projective, there exists a divisor D_{o} on Y such that
(1) R is not contained in $\operatorname{Supp}\left(D_{o}\right)$, and
(2) $B+D \sim 2 D_{o}$.

Hence $B+\sigma^{*} B \sim 2\left(D_{o}+\sigma^{*} D_{o}-D\right)$. Let $f: X \rightarrow Y$ be a double cover determined by $\left(Y, B+\sigma^{*} B, D_{o}+\sigma^{*} D_{o}-D\right)$ and let $\iota: R \hookrightarrow Y$ denote the inclusion morphism. Since $\left.\sigma\right|_{R}=\operatorname{id}_{R}$,

$$
\iota^{*} B=\iota^{*} \sigma^{*} B, \quad \iota^{*}\left(D_{o}-D\right)=\iota^{*}\left(\sigma^{*} D_{o}-D\right)
$$

we have

$$
\begin{aligned}
\iota^{*} B & \sim \iota^{*}\left(2 D_{o}-D\right) \\
& =\iota^{*} D_{o}+\iota^{*}\left(\sigma^{*} D_{o}-D\right) \\
& =\iota^{*}\left(D_{o}+\sigma^{*} D_{o}-D\right) .
\end{aligned}
$$

Hence, by Lemma $2.1, R$ is a splitting divisor with respect to f. Moreover, if there is no 2-torsion in $\operatorname{Pic}(Y), f$ is determined by $B+\sigma^{*} B$. Hence $B+\sigma^{*} B$ is a quadratic residue divisor $\bmod R$.
Q.E.D.

Proposition 2.1. Let $p_{2}: S_{2} \rightarrow \Sigma_{d}$ and $p_{1}: S_{1} \rightarrow \Sigma_{d}$ be the double covers as in the Introduction. Under the assumption of Proposition 0.1, if there exists a $\sigma_{p_{2}}$-invariant divisor D on S_{2} such that $B_{1}^{+}+D$ is 2-divisible in $\operatorname{Pic}\left(S_{2}\right)$, then B_{2} is a splitting curve with respect to p_{1}.

Proof. Let ψ_{1} and ψ_{2} be rational function on Σ_{d} such that $\mathbb{C}\left(S_{1}^{\prime}\right)(=$ $\left.\mathbb{C}\left(S_{1}\right)\right)=\mathbb{C}\left(\Sigma_{d}\right)\left(\sqrt{\psi_{1}}\right)$ and $\mathbb{C}\left(S_{2}^{\prime}\right)\left(=\mathbb{C}\left(S_{2}\right)\right)=\mathbb{C}\left(\Sigma_{d}\right)\left(\sqrt{\psi_{2}}\right)$, respectively. Note that $\left(\psi_{1}\right)=\Delta_{0}+B_{1}+2 D_{1}$ and $\left(\psi_{2}\right)=\Delta_{0}+B_{2}+2 D_{2}$ for some divisors D_{1} and D_{2} on Σ_{d}. Let X^{\prime} be the $\mathbb{C}\left(\Sigma_{d}\right)\left(\sqrt{\psi_{1}}, \sqrt{\psi_{2}}\right)$ normalization of Σ_{d} and let $q: X \rightarrow S_{2}$ be the canonical resolution of the induced double cover of S_{2} by the quadratic extension $\mathbb{C}\left(\Sigma_{d}\right)\left(\sqrt{\psi_{1}}, \sqrt{\psi_{2}}\right)$ $/ \mathbb{C}\left(\Sigma_{d}\right)\left(\sqrt{\psi_{2}}\right)$.

Put

$$
R:=\overline{\left(p_{2}^{*} B_{2}\right)_{\text {red }} \backslash\left(\text { the exceptinonal set of } S_{2} \rightarrow S_{2}^{\prime}\right)},
$$

where $\bar{\bullet}$ denotes the closure of \bullet. Note that R is smooth as $\mu_{2}: S_{2} \rightarrow S_{2}^{\prime}$ is the canonical resolution. We infer that B_{2} is a splitting curve with respect to p_{1} if and only if R is a splitting curve with respect to q. Now by Lemma 2.2, our statement follows.
Q.E.D.

We are now in position to prove Proposition 0.1. We first note that the algebraic equivalence \approx and the linear equivalence \sim coincides on S_{i} by Lemma 1.2.

The case of $g_{2} \geq 2$. Let s_{0} be an element in $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$ such that $2 s_{0}=s\left(B_{1}^{+}\right)$on $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$. By [8], there exists a divisor D on S_{2} such that $s(D)=s_{0}$. By [8], D satisfies the following relation
$2 D \sim B_{1}^{+}+\left(2 D \mathfrak{f}_{2}-2 g_{1}-1\right) O_{2}+\left\{2 D O_{2}+\frac{d}{2}\left(2 D \mathfrak{f}_{2}-2 g_{1}-1\right)\right\} \mathfrak{f}_{2}+\Xi$,
where \mathfrak{f}_{2} denotes a fiber of φ_{2} and Ξ is a divisor whose irreducible components consist of those of singular fibers not meeting O_{2}. By our assumption on the singularity of B_{2}, we can infer that any irreducible component of Ξ is $\sigma_{p_{2}}$-invariant. As $\sigma_{p_{2}}^{*} O_{2}=O_{2}, \sigma_{p_{2}}^{*} \mathfrak{f}_{2}=\mathfrak{f}_{2}$, by Proposition 2.1, our statement follows.

The case of $g_{2}=1$. Let s_{0} be an element in $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$ such that $2 s_{0}=s\left(B_{1}^{+}\right)$.

By Theorem 1.1 and Corollary 1.1, we have

$$
2 s_{0}-s\left(B_{1}^{+}\right) \in \operatorname{Tr}\left(\varphi_{2}\right)
$$

Let $\phi: \operatorname{MW}\left(\mathcal{J}_{S_{2}}\right) \rightarrow \mathrm{NS}_{\mathbb{Q}}\left(:=\mathrm{NS}\left(S_{2}\right) \otimes \mathbb{Q}\right)$ be the homomorphism given in [7, Lemmas 8.1 and 8.2]. Note that there will be no harm in considering $\mathrm{NS}_{\mathbb{Q}}$ since $\mathrm{NS}\left(S_{2}\right)$ is torsion free. By [7, Lemmas 8.1 and 8.2], $\phi(s)$ satisfies the following properties:
(i) $\phi(s) \equiv s \bmod \operatorname{Tr}\left(\varphi_{2}\right)_{\mathbb{Q}}\left(:=\operatorname{Tr}\left(\varphi_{2}\right) \otimes \mathbb{Q}\right)$.
(ii) $\phi(s)$ is orthogonal to $\operatorname{Tr}\left(\varphi_{2}\right)$.

Explicitly $\phi(s)$ is given by

$$
\phi(s)=s-O_{2}-\left(s O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)\right) \mathfrak{f}_{2}+\text { the contribution terms }
$$

The contribution terms is a \mathbb{Q}-divisor arising from reducible singular fiber in the following way:

Let \mathfrak{f}_{v} be a singular fiber over $v \in \mathbb{P}^{1}$ and let $\Theta_{v, 0}$ be the irreducible component with $O_{2} \Theta_{v, 0}=1$.

- If s meets $\Theta_{v, 0}$, then there is no correction term from \mathfrak{f}_{v}.
- If s does not meet $\Theta_{v, 0}$, the contribution term from \mathfrak{f}_{v} is as follows:

Let $\Theta_{v, 1}, \ldots, \Theta_{v, r_{v}-1}$ denote irreducible components of \mathfrak{f}_{v} other than $\Theta_{v, 0}$ and let $A_{v}:=\left(\left(\Theta_{v, i} \Theta_{v, j}\right)\right)$ be the intersection matrix of $\Theta_{v, 1}, \ldots, \Theta_{v, r_{v}-1}$. With these notation, the contribution term is

$$
\sum_{i}\left(\Theta_{v, 1}, \ldots, \Theta_{v, r_{v}-1}\right)\left(-A_{v}^{-1}\right)\left(\begin{array}{c}
s \Theta_{v, 1} \\
\cdot \\
s \Theta_{v, r_{v}-1}
\end{array}\right)
$$

By our assumption on $B_{1} \cap B_{2}$, both of $B_{1}^{ \pm}$meet any $\Theta_{v, 0}$ only and so does $s\left(B_{1}^{+}\right)$by [6, Theorem 9.1]. By [7, Lemma 5.1], we have

$$
B_{1}^{+} \sim s\left(B_{1}^{+}\right)+2 g_{1} O_{2}+n \mathfrak{f}_{2}
$$

for some integer n, and

$$
\phi\left(s\left(B_{1}^{+}\right)\right)=s\left(B_{1}^{+}\right)-O_{2}-\left(s\left(B_{1}^{+}\right) O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)\right) \mathfrak{f}_{2}
$$

Put

$$
\phi\left(s_{0}\right)=s_{0}-O_{2}-\left(s_{o} O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)\right) \mathfrak{f}_{2}+\sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v}
$$

where $\operatorname{Red}\left(\varphi_{2}\right)=\left\{v \in \mathbb{P}^{1} \mid \varphi_{2}^{-1}(v)\right.$ is reducible $\}$ and Contr_{v} denotes the contribution term arising from the singular fiber $\varphi_{2}^{-1}(v)$. Since $2 s_{0}-$ $s\left(B_{1}^{+}\right) \in \operatorname{Tr}\left(\varphi_{2}\right), \phi\left(2 s_{0}\right)-\phi\left(s\left(B_{1}^{+}\right)\right)=0$ in $\mathrm{NS}_{\mathbb{Q}}$. Hence
(*) $\quad 2 s_{0}-B_{1}^{+} \quad \sim_{\mathbb{Q}} \quad\left(1-2 g_{1}\right) O_{2}+\left(2 s_{0} O_{2}-s\left(B_{1}^{+}\right) O_{2}\right.$

$$
\left.+\chi\left(\mathcal{O}_{S_{2}}\right)-n\right) \mathfrak{f}_{2}-2 \sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v}
$$

Thus

$$
2 \sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v} \sim_{\mathbb{Q}} E
$$

for some element $E \in \operatorname{Tr}\left(\varphi_{2}\right)$.
Claim. $2 \sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v} \in \operatorname{Tr}\left(\varphi_{2}\right)$.
Proof of Claim. We first note that $2 \sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v}=E$ in $\operatorname{Tr}\left(\varphi_{2}\right)_{\mathbb{Q}}$. Since O_{2}, \mathfrak{f}_{2} and all the irreducible components of reducible singular fibers which do not meet O_{2} form a basis of the free \mathbb{Z}-module $\operatorname{Tr}\left(\varphi_{2}\right)$ as well as the \mathbb{Q}-vector space $\operatorname{Tr}\left(\varphi_{2}\right)_{\mathbb{Q}}, E$ is expressed as a \mathbb{Z}-linear combination of these divisors. As Contr $\cos _{v}$ a \mathbb{Q}-linear combination of the
irreducible components of reducible singular fibers which do not meet O_{2}, if $2 \sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} \operatorname{Contr}_{v} \notin \operatorname{Tr}\left(\varphi_{2}\right)$, then we have a nontrivial relation among O_{2}, \mathfrak{f}_{2} and all the irreducible components of reducible singular fibers which do not meet O_{2}. This leads us to a contradiction. Q.E.D.

By Claim, we have
(i) $\operatorname{Contr}_{v}=0$ if the singular fiber over v is of type either $I_{n}(n$: odd), $I V$ or $I V^{*}$ and
(ii) if $\operatorname{Contr}_{v} \neq 0$, one can write Contr_{v} in such a way that

$$
\operatorname{Contr}_{v}=\frac{1}{2} D_{1, v}+D_{2, v}
$$

where $D_{1, v}, D_{2, v} \in \operatorname{Tr}\left(\varphi_{2}\right)$ and $D_{1, v}$ is reduced.
Since $s_{0}+\sigma_{p_{2}}^{*} s_{0} \in \operatorname{Tr}\left(\varphi_{2}\right)$, we have

$$
\frac{1}{2}\left(D_{1, v}+\sigma_{p_{2}}^{*} D_{1, v}\right) \in \operatorname{Tr}\left(\varphi_{2}\right)
$$

Therefore we infer that we can rewrite $D_{1, v}$ in such a way that

$$
D_{1, v}=D_{1, v}^{\prime}+\sigma_{p_{2}}^{*} D_{1, v}^{\prime}+D_{1, v}^{\prime \prime}
$$

where

- $D_{1, v}^{\prime} \neq \sigma_{p_{2}}^{*} D_{1, v}^{\prime}$ and there is no common component between $D_{1, v}^{\prime}$ and $\sigma_{p_{2}}^{*} D_{1, v}^{\prime}$, and
- each irreducible component of $D_{1, v}^{\prime \prime}$ is $\sigma_{p_{2}}$-invariant.

In particular, $D_{1, v}$ is $\sigma_{p_{2}}$-invariant. Now put

$$
\begin{aligned}
& D:= O_{2} \\
&+\sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)} D_{1, v}+ \\
&\left(\left(2 s_{0} O_{2}-s\left(B_{1}^{+}\right) O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)-n\right)\right. \\
&\left.-2\left[\frac{\left(2 s_{0} O_{2}-s\left(B_{1}^{+}\right) O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)-n\right)}{2}\right]\right) \mathfrak{f}_{2} \\
& D_{o}:= s_{0} \\
&+g_{1} O_{2}-\left[\frac{\left(2 s_{0} O_{2}-s\left(B_{1}^{+}\right) O_{2}+\chi\left(\mathcal{O}_{S_{2}}\right)-n\right)}{2}\right] \mathfrak{f}_{2} \\
&+\sum_{v \in \operatorname{Red}\left(\varphi_{2}\right)}\left(D_{1, v}+D_{2, v}\right)
\end{aligned}
$$

where $[\bullet]$ means the greatest integer not exceeding \bullet. Then the relation (*) becomes

$$
B_{1}^{+}+D \sim 2 D_{o}
$$

As $\sigma_{p_{2}}^{*} O_{2}=O_{2}, \sigma_{p_{2}}^{*} \mathfrak{f}_{2}=\mathfrak{f}_{2}$, by Proposition 2.1, our statement follows.

§3. Proof of Proposition 0.2.

We first note that $\mathrm{NS}\left(S_{1}\right)=\operatorname{Tr}\left(\varphi_{1}\right)$ by Remark 1.1. Choose an affine open subset U of Σ_{d} as follows:

- $U:=\Sigma_{d} \backslash\left(\Delta_{0} \cup F\right) \cong \mathbb{C}^{2}$.
- Let (t, x) denote an affine coordinate of U. B_{1} and B_{2} are given by

$$
\begin{aligned}
& B_{1}: f_{1}(t, x)=x^{2 g_{1}+1}+a_{1}^{(1)} x^{2 g_{1}}+\ldots+a_{2 g_{1}+1}^{(1)}(t) \in \mathbb{C}[t, x], \\
& B_{2}: f_{2}(t, x)=x^{2 g_{2}+1}+a_{1}^{(2)} x^{2 g_{2}}+\ldots+a_{2 g_{2}+1}^{(2)}(t) \in \mathbb{C}[t, x],
\end{aligned}
$$

where $\operatorname{deg} a_{k}^{(i)}(t) \leq d k(i=1,2)$.
Under these circumstances, $\left(p_{1}^{\prime}\right)^{-1}(U)$ is given by

$$
\left(p_{1}^{\prime}\right)^{-1}(U)=\operatorname{Spec}\left(\mathbb{C}\left[t, x, \zeta_{1}\right]\right), \quad \zeta_{1}^{2}=f_{1} .
$$

By our assumption,

$$
\operatorname{NS}\left(S_{1}\right)=\operatorname{Tr}\left(\varphi_{1}\right)=\mathbb{Z} O_{1} \oplus \mathbb{Z} \mathfrak{f}_{1} \oplus \bigoplus_{v \in \operatorname{Red}\left(\varphi_{1}\right)} T_{v}
$$

where

- \mathfrak{f}_{1} denotes a fiber of $\varphi_{1}: S_{1} \rightarrow \mathbb{P}^{1}$,
- $\operatorname{Red}\left(\varphi_{1}\right):=\left\{v \in \mathbb{P}^{1} \mid \varphi_{1}^{-1}(v)\right.$ is reducible $\}$, and
- $T_{v}:=$ the subgroup of $\operatorname{NS}\left(S_{1}\right)$ generated by irreducible components of $\varphi_{1}^{-1}(v), v \in \operatorname{Red}\left(\varphi_{1}\right)$, not meeting O_{1}.
Since $B_{2}^{+} \Theta=0$ for any irreducible component of $\varphi_{1}^{-1}(v), v \in \operatorname{Red}\left(\varphi_{1}\right)$, not meeting O_{1}, and T_{v} is a negative definite lattice with respect to the intersection pairing, we may assume $B_{2}^{+} \sim a O_{1}+b f_{1}$ for some $a, b \in \mathbb{Z}$. Since $B_{2}^{-}=\sigma_{p_{1}}^{*} B_{2}^{+} \sim a \sigma_{p_{1}}^{*} O_{1}+b \sigma_{p_{1}}^{*} \mathfrak{f}_{1}=a O_{1}+b \mathfrak{f}_{1}$ and $B_{2}^{+}+B_{2}^{-} \sim$ $p_{1}^{*} B_{2} \sim\left(2 g_{2}+1\right)\left(2 O_{1}+d \mathfrak{f}_{1}\right)$, we have

$$
B_{2}^{+} \sim B_{2}^{-} \sim\left(2 g_{2}+1\right)\left(O_{1}+\frac{d}{2} \mathfrak{f}_{1}\right)
$$

Let $\psi^{+} \in \mathbb{C}\left(S_{1}\right)\left(=\mathbb{C}\left(S_{1}^{\prime}\right)\right)$ such that

$$
\begin{aligned}
\left(\psi^{+}\right) & =B_{2}^{+}-\left(2 g_{2}+1\right)\left(O_{1}+\frac{d}{2} \mathfrak{f}_{1}\right) \\
\left(\sigma_{p_{1}}^{*} \psi^{+}\right) & =B_{2}^{-}-\left(2 g_{2}+1\right)\left(O_{1}+\frac{d}{2} \mathfrak{f}_{1}\right)
\end{aligned}
$$

By choosing $\mathfrak{f}_{1}=p_{1}^{*} F$, we may assume that both rational functions ψ^{+}and $\sigma_{p_{1}}^{*} \psi^{+}$are regular on $p_{1}^{-1}(U)$. Hence by [5, Theorem 2.29, p.147], they are also regular on $p_{1}^{\prime-1}(U)$. This means that

$$
\begin{aligned}
\left.\psi^{+}\right|_{U} & =g(t, x)+h(t, x) \zeta_{1} \\
\left.\sigma_{p_{1}}^{*} \psi^{+}\right|_{U} & =g(t, x)-h(t, x) \zeta_{1}
\end{aligned}
$$

for some $g, h \in \mathbb{C}[t, x]$. On the other hand, one can choose a rational function $\psi \in \mathbb{C}\left(\Sigma_{d}\right)$ in such a way that

$$
(\psi)=B_{2}-\left(2 g_{2}+1\right)\left(\Delta_{0}+d F_{0}\right) \quad \text { and }\left.\quad \psi\right|_{U}=f_{2}(t, x)
$$

Since $\left(p_{1}^{*} \psi\right)=\left(\psi^{+} \sigma_{p_{1}}^{*} \psi^{+}\right)$, we infer that $p_{1}^{*} \psi=$ (non-zero constant) \times $\psi^{+} \sigma_{p_{1}}^{*} \psi^{+}$. Hence we may assume that $\left.p_{1}^{*} \psi\right|_{U}=\left.\left.\psi^{+}\right|_{U} \sigma_{p_{1}}^{*} \psi^{+}\right|_{U}$, i.e.,

$$
f_{2}(t, x)=g^{2}-h^{2} f_{1}
$$

From this equation, we infer that B_{1} is a splitting curve with respect to p_{2}. Since the generic fiber of $S_{2, \eta}$ is given by

$$
\zeta_{2}^{2}-f_{2}(t, x)=0
$$

we may assume $\left.B_{1}^{+}\right|_{S_{2, \eta}}$ is given by $\zeta_{2}-g=0$ and $f_{1}=0$. If we put $D_{2}:=$ the divisor given by $\zeta_{2}-g=0$ and $h=0$, then the divisor of the rational function $\zeta_{2}-g$ on $S_{2, \eta}$,

$$
\left.B_{1}^{+}\right|_{S_{2, \eta}}+\left.2 D_{2}\right|_{S_{2, \eta}}-\left.\left(2 g_{2}+1\right) O_{2}\right|_{S_{2, \eta}}
$$

Hence $s\left(B_{1}^{+}\right)+2 s\left(D_{2}\right)=0$ in $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$.
Q.E.D.

§4. Proof of Theorem 0.1

Under the assumption, we first note that

- B_{1} is a section of Σ_{d}, i.e., B_{1} is smooth and isomorphic to \mathbb{P}^{1},
- $S_{1} \cong \Sigma_{d / 2}$ and $\operatorname{NS}\left(S_{1}\right)=\operatorname{Tr}\left(\varphi_{1}\right)$ (i.e., $\operatorname{MW}\left(\mathcal{J}_{S_{1}}\right)=\{0\}$ by Remark 1.1), and
- B_{1} is a splitting curve with respect to p_{2}.

Hence if $s\left(B_{1}^{+}\right)\left(=B_{1}^{+}\right)$is 2-divisible in $\operatorname{MW}\left(\mathcal{J}_{S_{2}}\right)$, then B_{2} is a splitting curve with respect to p_{1} by Proposition 0.1. Conversely, if B_{2} is a splitting curve with respect to $p_{1}, s\left(B_{1}^{+}\right)$is 2 -divisible by Proposition 0.2. As p_{1} is determined by $\Delta_{0}+B_{1}$, our statement follows.

Acknowledgments. This research is partially supported by Grant-in-Aid 22540052 from JSPS. The author thanks the referee for his/her comments on the first version of this article.

References

[1] W. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact Complex Surfaces. 2nd ed., Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, 2004.
[2] E. Brieskorn, Über die Auflösung gewisser Singlaritäten von holomorpher Abbildungen, Math. Ann., 166 (1966), 76-102.
[3] E. Brieskorn, Die Auflösung der rationalen Singularitäten holomorpher Abbildungne, Math. Ann., 178 (1968), 255-270.
[4] E. Horikawa, On deformation of quintic surfaces, Invent. Math., 31 (1975), 43-85.
[5] S. Iitaka, Algebraic Geometry, Grad. Texts in Math., 76, Springer-Verlag, 1982.
[6] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2), 77 (1963), 563-626.
[7] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[8] T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, In: New Trends in Algebraic Geometry, Warwick, 1996, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, 1999, 359-373.
[9] H. Tokunaga, On a cyclic covering of a projective manifold, J. Math. Kyoto Univ., 30 (1990), 109-121.
[10] H. Tokunaga, Geometry of irreducible plane quartics and their quadratic residue conics, J. Singul., 2 (2010), 170-190.
[11] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 791-796.

Department of Mathematics and Information Sciences
Graduate School of Science and Engineering
Tokyo Metropolitan University
1-1 Minami-Ohsawa, Hachiohji 192-0397
Japan
E-mail address: tokunaga@tmu.ac.jp

