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The (local) lifting problem for curves 

Andrew Obus 

Abstract. 

The lifting problem that we consider asks: given a smooth curve in 
characteristic p and a group of automorphisms, can we lift the curve, 
along with the automorphisms, to characteristic zero? One can reduce 
this to a local question (the so-called local lifting problem) involving 
continuous group actions on formal power series rings. In this expos
itory article, we overview much of the progress that has been made 
toward determining when the local lifting problem has a solution, and 
we give a taste of the work currently being undertaken. Of particular 
interest is the case when the group of automorphisms is cyclic. In this 
case the lifting problem is expected to be solvable-this is the Oort 
conjecture. 

CONTENTS 

1. Introduction 360 
2. Preliminary global results 364 
3. Reduction to the local lifting problem 366 
4. Generalities on local extensions 367 
5. Obstructions to lifting 372 
6. Cyclic groups 378 
7. Metacyclic groups 394 
Appendix A. Non-archimedean geometry 403 
Appendix B. Depth and deformation data 407 

Received May 8, 2011. 
Revised November 11, 2011. 
2000 Mathematics Subject Classification. Primary 14H37, 12F10; Sec

ondary 11G20, 12F15, 13B05, 13K05, 14G22, 14H30. 
Key words and phrases. Branched cover, lifting, Galois group, Oort 

conjecture. 
The research was partially supported by an NSF Mathematical Sciences 

Postdoctoral Research Fellowship. Revision of this work took place at the Max
Planck-Institut Fur Mathematik in Bonn. The author's travel to Kyoto was 
made possible by NSF Grant DMS 1044746. 



360 A. Obus 

§1. Introduction 

Throughout this paper, p represents a prime number, k is an alge
braically closed field of characteristic p, and W(k) is the ring of Witt 
vectors of k, that is, the unique complete discrete valuation ring (DVR) 
in characteristic zero with uniformizer p whose residue field is k. If 
R/W(k) is a finite extension, then it will be assumed that R is a DVR 
(i.e., R is integral). We note that any such R has residue field k. 

1.1. What is the lifting problem? 

Many problems in mathematics involve starting with some kind of 
data in characteristic p, and trying to "lift" the data to characteristic 
zero (i.e., trying to find some analogous data in characteristic zero that 
reduce to the given data in characteristic p). This paper considers the 
problem where the data in question are a curve and a finite group of 
automorphisms. More precisely, we have the following: 

Question 1.1. [Lifting problem] Let Y be a smooth, proper curve 
over k. Let G be a finite group acting faithfully on Y by k-automor
phisms. Does there exist R/W(k) finite, and a flat relative curve YR --7 

Spec R such that 

(1) 
(2) 

YRxRk~Y, 
There is an action of G on YR by R-automorphisms such that 
the restriction of this action to the special fiber is the original 
G-action on Y? 

If the answers to (1) and (2) are "yes," then we say that the G-action 
on Y (or the curve Y with G-action) lifts to characteristic zero (or lifts 
over R), and that YR (with G-action) is a lift of Y (with G-action). 

One might ask: does every G-action on every k-curve lift to char
acteristic zero? In fact, the answer is "no." It is well known (see, e.g., 
[Har77, IV, Ex. 2.5]) that the number of automorphisms of a curve of 
genus g ~ 2 in characteristic zero is at most 84(g- 1). But in character
istic p, a curve can have more automorphisms. Raquette [Roq70] gave 
the example of the smooth, projective model of the curve Y given by 
y2 = xP- x. This curve has genus (p- 1)/2 and 2p(p2 - 1) automor
phisms, which exceeds 84(P;1 - 1) for p ~ 5. So clearly the canonical 
Aut(Y) action on Y cannot lift to characteristic zero. 

For another example, it is well known that the automorphism group 
oflP't is PGL2(L) for any field L. IfY ~ lP'k, then the group G = (7!../p)n 
(for any n) is a subgroup of PGL2(k), and thus acts faithfully on Y. If 
this G-action on Y lifts to characteristic zero, then G must act on lP'k for 
some characteristic zero field K, that is, G ~ PGL2(K). But if n > 1 
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and pn -1- 4, then PGL2(K) does not contain (7Ljp)n, so the G-action 
on Y cannot lift to characteristic zero. 

This of course leads one to ask: Can we find necessary and sufficient 
criteria for a G-action on Y to lift to characteristic zero? Over some 
particular R? 

A group G for which any G-action on any curve lifts to characteristic 
zero is called an Oort group for k ([CGH08]). 

1.2. What is the local lifting problem? 

Maintain the notation of Question 1.1. It turns out that there is a 
local-global principle for lifting (Theorem 3.1). To wit, if we can lift the 
germs of the curve Y at each of the points where G acts with inertia to 
characteristic zero, along with the action of the inertia groups, then we 
can lift the G-action on Y to characteristic zero. Clearly, the converse 
holds as well. So if we understand this local lifting problem, we can 
understand the lifting problem. More specifically, if Iy <;;; G is an inertia 
group at some y E Y, then Iy acts on the complete local ring of yin Y, 
which is isomorphic to k[[u]], by continuous k-automorphisms. If there 
is a lift YR of Y with G-action to characteristic zero, then Iy also acts 
on the complete local ring of yin YR, which is isomorphic to R[[U]]. 

In our description of the local lifting problem below, the letter G 
can be thought of as one of these inertia groups Iy. The action of G on 
k[[u]] is called a local G-action. 

Question 1.2. [Local lifting problem] Let G be a finite group, and 
suppose we have an embedding L : G '--+ Autk,cont(k[[u]]). Does there 
exist R/W(k) finite, and an embedding LR : G '--+ AutR,cont(R[[U]]), 
such that, if u is the reduction of U, then the action of G on R[[U]] 
reduces to that of G on k[[u]]? 

If the answer is "yes," then we say that the local G-action lifts to 
characteristic zero (or lifts .over R), and the G-action on R[[U]] is a lift 
of the G-action on k[[u]]. For a reformulation in terms of Galois theory, 
see Question 4.1. 

Since the lifting problem does not always have a solution, neither 
does the local lifting problem. So we ask: Can we find necessary and 
sufficient criteria for a local G- action to lift to characteristic zero? Over 
some particular R? 

A group G for which every local G-action on k[[u]]lifts to character
istic zero (and for which there exists a faithful local G-action) is called 
a local Oort group for k. 
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1.3. Outline 

In §2, we give some basic results on the lifting problem and relate 
it to algebraic fundamental groups of curves. In §3 we reduce the lifting 
problem to the local lifting problem, which we focus on for the rest of 
the paper. In §4, we rephrase the local lifting problem in terms of Galois 
theory, and state some basic results on Galois extensions of k[[t]]. Of 
particular importance is Lemma 4.3, which gives the differents of some 
such extensions in terms of their higher ramification filtrations. We also 
state a weaker form of the local lifting problem, the bimtional local lift
ing problem, and sketch a proof that it can always be solved, unlike the 
(standard) local lifting problem. Lastly, we discuss the relationship be
tween solutions to the local lifting problem and solutions to its birational 
variant. 

The heart of the paper begins with §5, where we discuss obstructions 
to the existence of solutions to the local lifting problem. The most 
important of these obstructions is the KGB obstruction ([CGH09]), for 
which we compute some examples in great detail. We also give some 
examples where the KGB obstruction vanishes and where local lifting 
either is possible or is thought to be possible. The remainder of the 
paper focuses on two interesting such examples. The case of lifting a 
cyclic local G-action from characteristic p to characteristic zero is the 
subject of §6. Such local actions are always expected to lift (this is the 
Oort conjecture, see Conjecture 5.4), and have been shown to lift when 
p3 f IGI ([08889] and [GM98]). We give an overview of the existing 
work in §6.1-6.5, and in §6.6, we outline a new approach of Wewers 
and the author to the conjecture. A success of this new approach has 
been to show that cyclic local G-actions lift to characteristic zero when 
p4 f IGI ([OWll]). In §7, we look at the case where G ~ Z/p )<] Z/m 
is a nonabelian group. This case is well-understood due to the work of 
Bouw, Wewers, and Zapponi, and we give a summary of their work. We 
also remark on the obstacles to generalizing to the case where G has a 
larger p-Sylow subgroup. 

Appendix A gives background on the non-archimedean geometry 
used in the paper, but is by no means a comprehensive reference. The 
reader who has a basic familiarity with formal/rigid geometry should 
only need to refer to it for notational purposes, whereas the reader 
without such familiarity will need to read it to have a reasonable under
standing of much of §3, §6, and §7. Appendix B discusses the concepts of 
depth and deformation data, which may be unfamiliar to most readers. 
However, looking at this appendix may be safely postponed until the 
paper explicitly references it. 
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We note that the only other major. exposition of the lifting and lo
cal lifting problems of which we are aware is Brewis's master's thesis 
([Bre05]). The aspects on which [Bre05] focuses are fairly complemen
tary to those on which we focus here. In particular, [Bre05] gives many 
details on global techniques, the local-global principle, and the bira
tionallocallifting problem, whereas we spend the majority of our time 
discussing specific examples of the local lifting problem. 

1.4. Notation and conventions 

If r is a group of automorphisms of a ring A, we write Ar for the 
fixed ring under r. For a finite group G, a G-Galois extension (or G
extension) of rings is a finite extension A '--7 B (also written B I A) of 
integrally closed integral domains such that the associated extension of 
fraction fields is G-Galois. We do not require B I A to be etale. 

If xis a scheme-theoretic point of a scheme X, then Ox,x is the local 

ring of x in X. If R is any local ring, then R is the completion of R with 
respect to its maximal ideal. A branched cover f : Y -+ X is a finite, 
generically etale morphism of geometrically connected, normal schemes. 
A G-Galois cover (or G-cover) is a branched cover with an isomorphism 
G ~ Aut(Y I X) such that G acts transitively on each geometric fiber of 
f. Note that G-covers of affine schemes give rise to G-extensions of 
rings, and vice versa. 

Suppose f : Y -+ X is a branched cover, with X and Y locally 
noetherian. If x E X and y E Y are smooth codimension 1 points such 
that f(y) = x, then the ramification index of y is the ramification index 
of the extension of complete local rings Ox,x -+ 6Y,y· Iff is Galois, 
then the branching index of a smooth codimension 1 point x E X is the 
ramification index of any pointy in the fiber off over x. If x E X (resp. 
y E Y) has branching index (resp. ramification index) greater than 1, 
then it is called a branch point (resp. ramification point). 

If R is any ring with a non-archimedean absolute value 1·1, then R{T} 
is the ring of power series I::o ciTi such that limi-+oo lei I = 0. If R has 
characteristic zero and residue characteristic p (that is, if 0 < IPI < 1), 
then we normalize the valuation on R and on K = Frac(R) so that p 
has valuation 1. 

If X is a smooth curve over a complete discrete valuation field K 
with valuation ring R, then a semistable model for X is a relative curve 
XR-+ SpeeR with XR xRK ~X and semistable special fiber (i.e., the 
special fiber is reduced with only ordinary double points for singulari
ties). 

Suppose S is a ring of characteristic zero, with an ideal I such 
that S I I has characteristic p. If an indeterminate in S is given by a 
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capital letter, our convention (which we will no longer state explicitly) 
will be to write its reduction in S I I using the respective lowercase let
ter. For example, if I r:;;; W(k)[[U]] is the ideal generated by p, then 
W(k)[[U]]I I~ k[[u]], and u is the reduction of U. 

If B I A is a finite extension of Dedekind rings, the degree of the 
different of B I A is its length as a B-module. If L I K is a finite extension 
of discrete valuation fields with valuation rings A r:;;; K and B r:;;; L, then 
the degree of the different of L I K is the degree of the different of B I A. 

The group Dn is the dihedral group of order 2n. 

§2. Preliminary global results 

Before asking about lifting curves with automorphisms with char
acteristic zero, it makes sense to ensure that the curves themselves lift 
to characteristic zero, without worrying about automorphisms. Luckily, 
this is true: 

Proposition 2.1. The trivial group is an Oort group. Furthermore, 
the lifting of any curve with trivial action can be done over W ( k). 

Proof. Since Y is a curve, the cohomology H 2 (Y, Ty) is trivial, 
where Ty is the tangent sheaf of Y. By [SGA1, III, Corollaire 6.10], 
there is a smooth formal relative curve Y IW(k), whose special fiber is 
Y. Since, in addition, H 2 (Y, Oy) is trivial, [SGA1, III, Proposition 7.2] 
shows that Y is in fact the formal completion of an algebraic relative 
curve Yw(k)IW(k) at the special fiber. Then Yw(k) is the lift we seek. 

Q.E.D. 

As the next proposition shows, Proposition 2.1 allows us to shift 
our perspective from lifting curves to lifting branched covers. Let G act 
faithfully on Y, let X~ YIG, and let f: Y---+ X be the canonical map. 
Suppose RIW(k) is finite. Then lifting the G-action on Y over R is the 
same as lifting the G-cover f to a G-cover fR: YR---+ XR, where YR and 
XR are lifts of the curves Y and X over R (see §1.4 for the definition of 
G-cover). 

Proposition 2.2. (i) If G acts on Y with trivial inertia groups, 
then the G-action on Y lifts over W(k). 

(ii) In fact, even if G acts on Y with prime-to-p inertia groups, then 
the G-action on Y lifts over W(k). In particular, any group of 
prime-to-p order is an Oort group. 

Proof. In case (i), the G-cover f : Y ---+ YIG ~ X is etale. By 
Proposition 2.1, we can lift X to a flat, smooth curve Xw(k)· By 
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Grothendieck's theory of etale lifting ([SGAl, I, Corollaire 8.4], com
bined with [SGAl, III, Proposition 7.2]), the G-cover f lifts to a G-cover 
fw(k) : Yw(k)-+ Xw(k) over W(k). In case (ii), we instead use Grothen
dieck's theory of tame lifting ([SGAl, XIII, Corollaire 2.12], or [Wew99] 
for an exposition). Q.E.D. 

Remark 2.3. In §6, we will see how Proposition 2.2 also follows 
from the local-global principle. 

Remark 2.4. In fact, iff : Y -+ X is tamely ramified (as in the 
proof of Proposition 2.2), then the generic fiber of fw(k) is branched 
at the same number of points with the same branching indices as f. 
Furthermore, the lifting off over W(k) (or over any finite R/W(k)) is 
unique once the branch points of the generic fiber are specified. 

This has the following consequence about fundamental groups of 
curves: Let U be an affine curve over k, let X be the smooth projective 
closure of U, let Xw(k) be a lift of X to W(k), and let Uw(k) ~ Xw(k) 
be a lift of U to W(k) such that the generic fiber of Xw(k) \Uw(k) con
tains exactly one point specializing to each point of X\U. Let L be an 
algebraic closure of Frac(W(k)) and let ULand XL be the base changes 
of Uw(k) and Xw(k) to L. If 1ri(U) is the tame fundamental group of 
U (that is, the automorphism group of the pro-universal tame cover 
of X, etale above U), and 1ri(UL) is the p-tame fundamental group of 
UL (same definition, but replace "tame" with "ramified of prime-to-p 
index"), then there is a natural surjection 

given as follows: If 1 E 1ri (U L), then ¢(1) is determined by how it acts 
on tame covers f : Y -+ X, etale over U. Take the unique lift fw(k) 
of f over W(k) such that if foL is the base change of fw(k) to the 
valuation ring OL of L, the branch locus of the generic fiber of foL is 
contained in XL \UL. Note that the special fiber of foL is identical to 
that of fw(k). By definition, 1 acts on the generic fiber of this base 
change of j, and the reduction of this action is the desired action on 
Y. It is also clear that ¢ is surjective, as one can compatibly lift any 
compatible system of automorphisms of tame covers of X, etale over U. 
Since 1ri (U L) is well understood (as are all fundamental groups of curves 
over algebraically closed fields of characteristic zero), the existence of ¢ 
gives us useful information about 1ri (U). For instance, we obtain that 
1ri (U) is topologically finitely generated. 

Given that we can (essentially uniquely) lift tame covers of curves 
to characteristic zero, the next natural question is to ask when we can 
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lift wild covers, and what kinds of moduli these lifts have. Hopefully, for 
affine curves Ujk, this can shed some light on larger quotients of 1r1(U) 
than ni (U). In any case, this gives us motivation to study the lifting 
problem for a G-action on Y by examining the local properties of the 
G-cover f : Y-+ Y jG near its ramification points. 

§3. Reduction to the local lifting problem 

The local-global principle below allows us to study the lifting prob
lem by way of the local lifting problem. 

Theorem 3.1 (Local-global principle). Let Y be a smooth, projec
tive, connected curve over k, with a faithful action of G by k-automor
phisms. Let Yl, ... , Ys E Y be the points where G acts with nontrivial 
inertia. For each j, 1 :::; j :::; s, let Gj be the inertia group of YJ in 
G, and let ~j: Gj Y Autk,contk[[uJ]] be the induced local action on the 
complete local ring of YJ· If R/W(k) is finite, then the curve Y (with 
G-action) lifts over R iff each of the local Gj -actions lifts over R. 

Sketch of proof. (see [Sai10, §1.2], or [Gar96, §3] for many more 
details) Clearly, if the G-action on Y lifts over R, then so do all the local 
actions. Now, assume each of the local actions lifts over R. Consider the 
G-cover f: Y-+ X:= YjG. By Proposition 2.1, X has a smooth lift 
XR over R. Let X be the formal completion of XR at X. Let B be the 
branch locus off, set V = X\B, and set W = f- 1(V) = Y\ {y1, ... , Ys}· 
Let V r:;;; X be the formal subscheme associated to V r:;;; X (§A.4). By 
Grothendieck's theory of etale lifting ([SGA1, I, Corollaire 8.4]), the G
cover f I w : W -+ V lifts to an etale G-cover of formal schemes W -+ V 
over R. The boundary of W is isomorphic to disjoint union U;=l BJ, 
where each Bj is isomorphic to the boundary of a disc (§A.1). Each Bj 
corresponds to the point YJ, and Gj acts on BJ· 

By assumption, each local G)-action on 6Y,yj lifts over R to a con
tinuous R-linear GJ-action on the open disc Dj So' Spf R[[UJJl· The 
action of GJ on Dj induces an action on its boundary 8Dj. In fact, the 
Graction on 8Dj is isomorphic to the action on Bj. Thus by identifying 
Bj and 8Dj, we can use formal patching to "glue" each of these discs Dj 
toW in a Gj-equivariant way. This yields a formal curve with G-action 
and projective special fiber (see, e.g., [Sai10, §1.2], or [Hen99, Chapter 3, 
§4] for more details). By Grothendieck's Existence Theorem, this formal 
curve is the projective completion of a smooth projective curve YR with 
G-action. This is the lift we seek. Q.E.D. 
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Remark 3.2. Bertin and Mezard gave an alternate proof of The
orem 3.1 that relies on deformation theory (see [BMOO, §3]). There is 
also a proof by Green and Matignon ([GM98, III]). 

Because we have Theorem 3.1 at our disposal, the rest of this paper 
will focus exclusively on the local lifting problem. For interesting work 
involving global lifting, see [Oor87], [08889], and [CGH08]. For an 
overview of some of the techniques used in [Oor87] and [08889], see 
[Bre05], especially Chapter 3. 

§4. Generalities on local extensions 

4.1. Power series rings 

Consider the power series ring A= k[[u]]. A continuous k-automor
phism "'( of A (for the u-adic topology) is determined by the image of 
u. In particular, it is necessary and sufficient to have 'Y(u) = :z=:1 aiui, 
with a 1 -=f. 0. A first, nai"ve approach to the local lifting problem would 
be to try to write down a group G of automorphisms of A explicitly as 
power series, and then try to lift them explicitly. However, this method 
is of limited usefulness. It quickly becomes difficult even to write down 
power series of finite order in k[[u]], let alone to write down a lift to 
R[[U]], where R/W(k) is finite. For order m prime to p, the series 
"!( u) = (m u, with (m a primitive mth root of unity, works. For order p, 

the series "!( u) = l~u = u - u2 + u3 - · · · works. But it is already not 
easy to see how to lift this to an order p automorphism of R[[U]] (note 
that lifting the power series 'Y(u) to R[[U]] nai"vely will not in general 
result in an automorphism of order p). 

For automorphisms of order divisible by p2, the situation is even 
worse. In fact, the only explicit continuous k-automorphism of k[[u]] of 
order pn known to the author, for n ::=: 2, is an automorphism"'( of order 
4 given in [C810] by 

00 2j -1 

'Y(u) = u + uz + L L u6·2j+2£. 
j=O £=0 

Trying to lift this automorphism while maintaining its order is a night
mare that we shall not attempt. 

In order to lift a G-action on k[[u]], we must not only lift automor
phisms with the correct orders, but we must also take into account the 
group structure of G. Since even lifting the automorphisms with the 
correct orders seems to be beyond our reach, we will not pursue this 
method further. 
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4.2. Galois extensions 

The more fruitful approach to the local lifting problem has been to 
view it from the perspective of Galois theory. This is analogous to study
ing the (global) lifting problem by studying branched covers of curves. 
Suppose the group G acts on k[[u]] by continuous k-automorphisms. 
Then k[[u]] 0 is a complete DVR with residue field k, so by the structure 
theorem for complete DVRs ([Ser79, II, Theorem 2]), it must be ab
stractly isomorphic to k[[t]]. Choosing an isomorphism gives k[[u]]/k[[t]] 
the structure of a G-extension. Conversely, if A/k[[t]] is any G-Galois 
extension, then A ~ k[[u]], again by the structure theorem. Like
wise, if R/W(k) is finite, then R[[U]] 0 ~ R[[T]] if G acts by continu
ous R-automorphisms ([Ray99, Proposition 2.3.1]), and any G-extension 
AR/ R[[T]] for which AR ®R k ~ k[[u]] must satisfy AR ~ R[[U]]. We 
can now rephrase the local lifting problem as follows: 

Question 4.1. [Local lifting problem, Galois formulation] Suppose 
G is a finite group, and A/k[[t]] is a G-Galois extension, for a finite group 
G. Does there exist R/W(k) finite, and a G-Galois extension AR/ R[[T]] 
such that AR ®R k ~ A and the G-action on AR reduces to the given 
G-action on A? 

If such a lift exists, we say that AR/ R[[T]] is a lift of A/ k[[t]] over 
R, or that A/k[[t]]lifts to characteristic zero (or lifts over R). 

4.2.1. Properties of Galois extensions of complete DVRs. The fol
lowing facts are from [Ser79, IV]. Let F = k( ( t)). If L / F is a finite 
G-Galois extension of complete discrete valuation fields, then G must 
be of the form P ><1 Z/m, where P is a p-group and m is prime to p. 
The group G has a filtration G = G0 ;;;> Gi (i E llho) for the lower 
numbering, and G ;;;> Gi for the upper numbering ( i E lR>o). If i :::; j, 
then Gi ;;;> Gj and Gi ;;;> GJ. The subgroup Gi (resp. Gi) is -known as the 
ith higher ramification group for the lower numbering (resp. the upper 
numbering). The two filtrations are related by Herbrand's formula (see 
[Ser79, IV, §1, §3]). 

One knows that G0 = G0 = G, and that G1 = c:l:; = P. For 
sufficiently large i, Gi = Gi = { id}. Any i such that Gi ;2 ci+E for 
all E > 0 is called an upper jump of the extension L/ F. Likewise, if 
Gi ;2 Gi+E forE> 0, then i is called a lower jump of L/ F. If i is a lower 
(resp. upper) jump, i > 0, and E > 0 is sufficiently small, then Gi/Gi+E 
(resp. Gi /Gi+E) is an elementary abelian p-group. The lower jumps are 
all integers. 

The above discussion applies equally to G-extensions of k[[t]]. In 
particular, any group G that arises in the local lifting problem is of the 



The {local) lifting problem for curves 369 

form P ><1 Z/m, where P is a p-group and p f m. The degree 6 of the 
different of a G-extension A/k[[t]] is given by the formula 

00 

( 4.1) 6 = I)IGij- 1). 
i=O 

The fact that the different can be determined from the higher ramifi
cation filtration for the lower numbering (and, indeed, for the upper 
numbering also) will be important for determining whether a given ex
tension of R[[T]] for R/W(k) finite is, in fact, a lift (see §4.3). 

Remark 4.2. Note that if A/k[[t]] is a wildly ramified G-extension, 
then the degree of the different of A/k[[t]] is always strictly greater than 
jGj - 1. By the Hurwitz formula, this means that if Y ---+ X is a wildly 
ramified cover of curves over k, then the genus of Y is always higher than 
it would be if the cover had the same ramification points and indices, 
but was in characteristic 0. 

4.2.2. Cyclic Extensions. If G ~ Zjpn, then any G-extension must 
haven different upper jumps u1 < · · · < Un· 

Lemma 4.3. Set u0 = 0. If L/ K is a Zjpn-extension with upper 
jumps u1 < · · · < Un, then the degree of the different of L/ K is 

n 

Pn- 1 + LPi-l(pn-i+l- 1)(ui- Ui-1)· 
i=l 

Proof. This follows from (4.1) and Herbrand's formula. Q.E.D. 

4.3. Birational lifts and the different criterion 

Usually, when dealing with Galois extensions of k[[t]], it will be more 
convenient to deal with extensions of fraction fields than extensions of 
rings. For instance, by Artin-Schreier theory, one knows that any Z/p
extension Ljk((t)) is given by an equation of the form yP- y = f(t). 
But writing down equations for the integral closure of k[[t]] in Lis much 
more difficult. So we will often want to think of a Galois ring extension 
in terms of the associated extension of fraction fields. In particular, we 
have the following birational local lifting problem: 

Question 4.4. [Birational local lifting problem] Let A/k[[t]] be 
a G-extension. Does there exist R/W(k) finite, and a G-extension 
M/Frac(R[[T]]) such that: 

(1) If AR is the integral closure of R[[T]] in M, then the integral 
closure of AR ®R k is isomorphic to A, 
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(2) The G-action on Frac(A) = Frac(AR r;;<)R k) induced from that 
on AR restricts to the given G-action on A? 

If so, we say that A/k[[t]]lifts birationally to characteristic zero and 
that AR/ R[[T]] is a birational lift of A/ k[[t]] to characteristic zero. 

The birational local lifting problem evidently requires less than the 
local lifting problem to answer in the affirmative. In fact, Garuti has 
proved the following: 

Theorem 4.5 ([Gar96]). Any G-extension A/k[[t]]lifts birationally 
to characteristic zero. 

Sketch of proof. If A/k[[t]] is a G-extension, then by [Kat86, The
orem 1.4.1], there is a G-cover f : Y -+X := IP'~ such that f is totally 
ramified at a point y E Y, and tamely ramified away from y. The ex
tension of complete local rings associated toy f-t f(y) is isomorphic to 
A/k[[t]]. Write U = X\{f(y)} and V = Y\{y}. Let X be the formal 
completion of IP'tv(k) at its special fiber X, let U be the natural formal 
lift of U inside X (see §A.4), and let D be the formal open disc X\U. 
Thus D ~ Spf W(k)[[T]]. 

By Grothendieck's theory of tame lifting ([SGA1, XIII, Corollaire 
2.12]), the G-cover f : V -+ U lifts to a tame G-cover F : V -+ U 
of formal schemes. Applying [Gar96, Corollaire 2.14] shows that there 
exists R/W(k) finite such that F, when base changed toR, extends to a 
G-cover Y -+ X of normal formal schemes, where the special fiber of Y is 
possibly singular. The equation of this G-cover over D is a G-extension 
AR/R[[T]] that is a birationallift of A/k[[t]]. Q.E.D. 

Remark 4.6. Of course, most of the real work is contained in 
[ Gar96, Corollaire 2.14]. For an overview of this corollary that uses 
less group theory than [Gar96], see [Bre05, Chapter 4], especially Sec
tion 1. The argument given above is somewhat artificial, as it is not 
actually necessary to globalize the problem by building the branched 
cover f. However, in [Gar96], the viewpoint is global, so we globalize in 
order to cite it. 

Remark 4. 7. Sai:di has refined the arguments of [Gar96] to show 
that the birational local lifting problem is solvable in towers. More 
specifically, let B / k[[t]] be a G-Galois extension, let r be a normal sub
group of G, and let A= Br. If AR/R[[T]] is a birationallift of A/k[[t]], 
then there is a finite extension R'/R and a birationallift BR'/R'[[T]] 
of B/k[[t]] such that (BR')r ~ AR r;;<)R R'. See [SailO, Theorem 2.5.5], 
where birationallifts are called "Garuti lifts." 
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The following criterion is extremely useful for seeing when a bira
tionallift is actually a lift (i.e., when AR0<mk is already integrally closed, 
thus isomorphic to A, in the language of Question 4.4). 

Proposition 4.8 (The different criterion). Suppose AR/ R[[T]] is a 
birationallift of the G-Galois extension Ajk[[t]]. Let K = Frac(R), let 
Ory be the degree of the different of (AR ®R K)/(R[[T]] ®R K), and let 
08 be the degree of the different of Ajk[[t]]. Then 08 ::; Ory, and equality 
holds if and only if AR/ R[[T]] is a lift of A/ k[[t]]. 

Sketch of proof. ( cf. [GM98, I, 3.4]) For any free module C j B of 
rank r, write det( C /B) = /\~ (C). Consider the trace map 

T : det(AR/ R[[T]]) x det(AR/ R[[T]]) --+ R[[T]] 

induced by the map AR x AR--+ R[[T]] given by (x, y) r-+ trAR/R[[T]] (xy). 
If 1r is a uniformizer of R, then by the Weierstrass Preparation Theorem, 
the image ofT in R[[T]] is generated by 1rn P(T), with n 2': 0 and P(T) 
a distinguished polynomial (i.e., P has a unit leading coefficient, and 
all other coefficients are in the maximal ideal of R). Tensoring the map 
T with K shows that Dry= dimR[[T]]®K(coker (T ®R K)) = degP. But 
setting T 1 = (1r-nT) ®R k, we see that the image of 

T 1 : det((AR ®R k)jk[[t]]) X det((AR ®R k)jk[[t]])--+ k[[t]] 

is generated by the reduction of P(T) to characterstic p, so 
dimk[[t]](coker T1) = degP =Dry· 

Let i be the trace map det(A/k[[t]]) x det(A/k[[t]])--+ k[[t]]. Then 
dimk[[t]](coker i) = 08 • Since A is the integral closure of AR ®R k, 
[Ser79, III, Proposition 5] shows that 08 ::; Dry, with equality if and only 
if AR ®R k ~A. Q.E.D. 

Remark 4.9. In [SailO], Sa1di introduces the idea of a fake lifting 
of a G-extension. A fake lifting of a G-extension A/k[[t]] is a birational 
lift that is not an actual lift, but such that the degree of the different 
on the generic fiber is minimal among birational lifts. By Proposition 
4.8, the extension A/k[[t]] lifts to characteristic zero iff it has no fake 
liftings. Thus, one can try to answer a lifting problem in the affirmative 
by showing that the properties that fake liftings must satisfy are so 
restrictive that they cannot possibly simultaneously hold. In [SailO], 
this is applied to give a proof that Zjp is a local Oort group, and also 
to show that certain Z j p 2 -extensions lift to characteristic zero (these 
results were already known-see §6). 
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§5. Obstructions to lifting 

In §1.1, we discussed some obstructions to the (global) lifting prob
lem. In this section, we will discuss the Katz-Gabber-Bertin obstruction, 
or KGB obstruction ([CGH09]), which is the most effective way of show
ing that a particular local lifting problem does not have a solution. 

5.1. The KGB obstruction 

Let A/k[[t]] be a G-extension, where G ~ P ><J Z/m, with P a p
group and p f m. A theorem of Katz and Gabber ([Kat86, Theorem 
1.4.1]) states that there exists a unique G-cover Y -+ lP'k that is etale 
outside t E {0, oo }, tamely ramified of index m above t = oo, and 
totally ramified above t = 0 such that the extension of complete local 
rings at t = 0 is given by A/k[[t]]. This is called the Katz-Gabber cover 
associated to A/k[[t]]. By Theorem 3.1 and Proposition 6.1 (which does 
not depend on anything in this section), the G-cover f : Y-+ lP'l lifts to 
characteristic zero iff the extension A/k[[t]] does. 

Let R/W(k) be finite, and let K = Frac(R). Suppose fR: YR-+ lP'k 
is a lift off to characteristic zero. Since genus is constant in flat families, 
the genus ofY is equal to that ofYK := YRxRK. Furthermore, if H:::; G 
is any subgroup, then YR/ H is a lift of Y / H with generic fiber Y K / H, 
and the genus of Y / H is equal to that of Y K /H. 

Definition 5.1. Let A/k[[t]] beaG-extension with associated Katz
Gabber G-cover Y -+ lP'l. Then the KGB obstruction vanishes for 
A/k[[t]] if there exists a G-cover X -+ lP'1 over a field of characteris
tic zero such that, for each subgroup H <;: G, the genus of Y / H is equal 
to the genus of X/ H. Equivalently (by the Hurwitz formula), the degree 
of the ramification divisor of Y/ H -+ lP'k is equal to that of X/ H -+ lP'1 

for each subgroup H <;: G. Equivalently, the degree of the ramification 
divisor of Y -+ Y / H is equal to that of X -+ X/ H for each subgroup 
H <;:G. 

Clearly, if A/k[[t]]lifts to characteristic zero, its KGB obstruction 
must vanish. If G ~ P ><J Z/m as above and the KGB obstruction 
vanishes for all G-extensions A/k[[t]], then G is called a KGB group for 
k. 

The following classification of all the KGB groups is due to Chin
burg, Guralnick, and Harbater. 

Theorem 5.2 ([CGH09], Theorem 1.2). The KGB groups for k 
consist of the cyclic groups, the dihedral group Dpn for any n, the group 
A4 (for char(k) = 2), and the generalized quaternion groups Q2= of 
order 2m form~ 4 (for char(k) = 2). 
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Remark 5.3. There is another obstruction, called the Bertin ob
struction ([Ber98]), that was proven in [CGH09] to be strictly weaker 
than the KGB obstruction. Since it is also more difficult to describe, we 
will not discuss it here. 

Since any local Oort group must be a KGB group, one can ask which 
of the KGB groups are local Oort groups. The generalized quaternion 
groups were shown not to be local Oort groups in [BrW09]. The ob
struction developed in [BrW09] to show this is called the Hurwitz tree 
obstruction, and has to do with the non-existence of a kind of generalized 
Hurwitz tree (for basics on Hurwitz trees, see §7.3). 

The group A4 was announced to be a local Oort group in [BoW06]. 
The group Dp was shown to be a local Oort group by Bouw and Wewers 
([BoW06]) for p odd and by Pagot ([Pag02]) for p = 2. We will discuss 
dihedral groups more in §7. 

For cyclic groups, a major guiding problem in the field is the Oort 
conjecture. 

Conjecture 5.4 (Oort Conjecture). Any cyclic group is a local Oort 
group for any field k. 

If the cyclic group G has vp(IGI) = 0 (resp. vp(IGI) = 1, resp. 
vp(IGI) = 2), then G is a local Oort group by Proposition 6.1 (resp. 
[OSS89], resp. [GM98]). These results, along with the Oort conjecture 
in general, will be discussed in detail in §6. We note that the Hurwitz 
tree obstruction to the Oort conjecture was shown to vanish in [Bre09, 
Ch. 4]. 

We also have the following strengthening of the Oort conjecture: 

Conjecture 5.5 (Strong Oort Conjecture). If G is a cyclic group, 
then any G-extension A/k[[t]]lifts over W(k)[(IGI], where (IGI is a prim
itive IG!th root of unity. 

In fact, the results in [OSS89] and [GM98] prove the strong Oort 
conjecture for vp(\GI) .'S 2. 

Remark 5.6. In seems plausible that all Dpn might be local Oort 
groups for any k of characteristic p, but no case has been proven with 
n > 1 and no one has been willing to conjecture this. See Question 5.11. 

Remark 5. 7. The Oort conjecture was originally phrased in [Oor87, 
§7] as the global statement that "it seems reasonable to expect that 
[lifting] is possible for every automorphism of an algebraic curve." 

5.2. Non-KGB groups 

For a group G that is not a KGB group, we can ask when a G
extension has vanishing KGB obstruction. In this section, we will focus 
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on two of the simplest cases, namely G = Z/p x Z/p, for p > 2, and 
G = Z/pn ><1 Z/m, when p f m. We will use the fact that any n-tuple 
of generators (91, ... , 9n) of G such that 91 · · · 9n = id gives rise to a 
G-cover of lP'k branched at n points for any algebraically closed field 
K of characteristic zero (see, e.g., [CH85]). The branching indices of 
the n branch points are the orders of 91, ... , 9n, respectively (in fact, 
the inertia groups above these points are conjugates of the cyclic groups 
generated by the 9i)· The n-tuple (91 , ... , 9n) is called a branch cycle 
description of the G-cover. 

Proposition 5.8. Let m 1 and m2 be the first and second lower 
jumps of a Z/p x Z/p-extension A/k[[t]]. If the KGB obstruction for 
A/k[[t]] vanishes, then m 1 = -1 (mod p). The converse is true unless 
p = 3 and m 1 = m2 = 2. 

Proof. (cf. [GM98, I, Theorem 5.1]) The degree of the ramification 
divisor of the Katz-Gabber cover 9 : Y---+ lP'~ associated to A/k[[t]] is the 
same as the degree of the different of A/ k[[t]], which is 6 = ( m 1 + 1) (p2 -

1) + (m2 - ml)(p -1) by (4.1). Now, each branch point of a Z/p x Z/p
cover in characteristic zero is branched of index p, and thus contributes 
p(p- 1) to the degree of the ramification divisor. Thus, for the KGB 
obstruction to vanish, we must have p(p- 1) lb. This is equivalent to 
pI m2 + 1. Since m1 = m2 (mod p) ([Ser79, IV, Proposition 11]), we 
have m 1 = -1 (mod p). 

Conversely, suppose m 1 = -1 (mod p) (and thus m 2 = -1 (mod p) 
as well). Consider a branch cycle description of the form 

(9o,1, · · · , 9o,r0 , 91,1, · · ·, 91,r2, · · · , 9p,1, · · · , 9p,rp) 

corresponding to branch points 

(xo,1, ... ,xo,ro,x1,1, ... ,x1,r2' ... ,Xp,1, ... ,Xp,rp), 

where ro = · · · = rp_ 1 = m~+ 1 and rp = m~+ 1 . Write G := Z/p X Z/p 

additively, such that (1, 0) is an element of Gm2 • Then we can take each 
9i,j to be a non-identity multiple of (i, 1) for 0 ~ i ~ p- 1, and each 
9p,j to be a non-identity multiple of (1, 0). We leave it as an exercise to 
show that, unless p = 3 and m 1 = m 2 = 2, these choices can be made 
so that I:i,j 9i,j = (0, 0). This gives rise to a G-cover X ---+ lP'k, with 
char(K) = 0. 

Suppose H is a subgroup of G. We calculate the degrees of the 
ramification divisors Rx of X ---+ X/ H and Ry of Y ---+ Y/ H. If H 
is trivial, then these degrees are both zero. If H = G, then IRy I = 
( m 1 + 1) (p2 - 1) + ( m 2 - ml) (p - 1) by the same calculation as earlier 
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in the proof, and it is easy to see that IRxl = (m1 + 1 + m 2 +1 )(p2 - p), 
p 

which is equal to IRYI· 
Now assume H has order p. The H-cover X ~ X/ H is ramified 

exactly at the ramification points above those xi,j for which gi,j gen
erates H. Since p points of X lie above each Xi,j, we obtain IRxl = 
(m2 + 1)(p- 1) if His generated by (1, 0), and (m1 + 1)(p- 1) if not. 

If the Hj are the higher ramification subgroups for the lower num
bering for Y ~ Y/H at the ramified point, and the GJ are the higher 
ramification groups for Y ~ IP'L then HJ = H n GJ ([Ser79, Proposition 
2]). By (4.1), we have IRYI = 2::: >o IHJ -11- Note that H n GJ ~ '!Ljp J_ 
for j ::::; m 1 , and is trivial when j > m 1 , except if H is generated by 
(1, 0), in which case Hj ~ '!Ljp for m 1 < j ::::; m 2 . So one sees that 
IRYI = (m2 + 1)(p -1) if His generated by (1,0), or (m1 + 1)(p- 1) 
if not. Thus, the G-cover X ~ IP'1 causes the KGB obstruction to van
ish. Q.E.D. 

Proposition 5.9. Let G = '!Ljpn ><1 Z/m, where G is not cyclic and 
p f m. Consider a G-extension A/k[[t]] with first positive lower jump h. 
Then the KGB obstruction for A/k[[t]] vanishes iff h = -1 (mod m). 
Furthermore, for this to happen, we must have that the conjugation ac
tion of 'll/m on '!Ljpn is faithful. 

Proof. ( cf. [Bo W06, Proposition 1.3]) Let g : Y ~ IP'l, be the Katz
Gabber cover associated to A/k[[t]]. Let f : X ~ IP'k- be a G-cover in 
characteristic zero. Now, Y/('lljpn) ~ IP'l, is a Z/m-cover, branched 
at two points, so Y/('ll/pn) must have genus 0. Thus, iff is to be a 
witness to the vanishing of the KGB obstruction, then the Z/m-cover 
X/(Zjpn) ~ IP'k- must have genus 0. Since any element of PGL2(K) of 
finite order is conjugate (after a possible extension of K) to a diagonal 
element when char(K) = 0, such an element acts on IP'1 with exactly two 
fixed points. Thus X/('ll/pn) ~ IP'k- must be branched at two points with 
order m. Since G is not cyclic, any element of G with order divisible by 
m in fact has order m. So the G-cover f must have two branch points 
of index m, along with some branch points of p-power index. Consider 
j : X/(Z/pn-l) ~ IP'k-. The degree of the ramification divisor of this 
branched cover is 2(mp- p) + r(mp- m), where r is the number of 
branch points of f with index pn (these points are branched of index p 
in j). 

Now, the first positive upper jump for A/k[[t]] is h/m, and since the 
upper numbering is preserved under quotients ([Ser79, Proposition 14]), 
the first positive upper jump for AZ/pn-l /k[[t]] is hjm. So the first lower 

jump for AZ/pn-l /k[[t]] is h. The degree of the different of this extension 
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is then mp - 1 + h(p - 1), by ( 4.1). Thus the degree of the ramification 
divisor of Y/(Z/pn- 1 ) --+ lP');, is (mp- p) + mp- 1 + h(p- 1). Equating 
this to 2(mp- p) + r(mp- m) yields h = -1 +rm, soh= -1 (mod m). 
Furthermore, it is well-known (see, e.g., [Pri02, Lemma 1.4.1(iv)]) that 
(h, m) = 1 implies that the action of Z/m on the p-Sylow subgroup of 
G/(Z/pn- 1 ) is faithful. Thus the action of Z/m on Zjpn ~ G is faithful. 

Conversely, suppose h = -1 (mod m) (so the action of Z / m on 
Zjpn is faithful). Let the positive upper jumps for A/k[[t]] be u1 = 
h/m, u2, ... , Un· By [OP10, Theorem 1.1], we have that mu1 = · · · = 
mun = -1 (mod m). Consider a branch cycle description of the form 

(/'1,/'2,91,1, · · · ,g1,rt,92,1, · · · ,g2,r2' · · · ,gn,1, · · · ,gn,rn) 

corresponding to branch points 

where r 1 = u1 + ~ and ri = Ui - Ui-1 for 2 :S i :S n. We choose /'1 and 
1'2 to be elements of G of order m, and for 1 :S i :S n, we choose each 
9i,j to be an element of G of order pn-i+1 . By choosing 11 correctly, we 
can ensure that 1112 f1 .. gi 1· is the identity. This gives rise to a G-cover 

't,J ' 

X --+ lP'k, with char(K) = 0. 
Suppose H is a subgroup of G of order pn' m 1. We calculate the 

degrees of the ramification divisors Rx of X --+X/ H and Ry of Y --+ 
Y/H. We get a contribution ofpmin(n',n-i+1) -1 to IRxl at each of the 
mpi-1 points of X lying above an Xi,J, for any j. We get a contribution of 
m' -1 to IRx I at each point above z1 or z2 whose inertia group intersects 
H nontrivially. The pn subgroups of G of order m are all conjugate and 
disjoint except for the identity element, and each one is the inertia group 
at one point above z1 and one point above z2 . Furthermore, H contains 
pn' subgroups of order m', each one contained in a unique subgroup of 
orderm of G. So the total contribution to IRx I for the points above z1 
and Z2 is 2pn' ( m' - 1). We have shown: 

n 

IRxl = 2pn' (m'- 1) + L rimpi-1(pmin(n',n-i+1)- 1). 

i=1 

In characteristic p, the tamely ramified point of Y --+ lP');, contributes 
pn' (m' -1) to IRYI for the same reasons as in the last paragraph. Using 
Herbrand's formula, the higher ramification filtration of Y --+ lP');, at the 
wildly ramified point for the lower numbering has one group of order 
pnm, and mpi-1 ( Ui- Ui-d groups of order pn-i+1 for 1 :S i :S n, where 
we set u0 = 0. If the HJ are the higher ramification subgroups for 
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Y ---+ Y j H at this point, and the Gj are the higher ramification groups 
for Y ---+ lP'L then HJ = H n G J ( [Ser79, Proposition 2]). By ( 4.1), the 
contribution to IRy I at this point is I::j;::>O IHJ - 11. Note that if j > 0, 
then IHJ I is the smaller of the order of the p-Sylow subgroups of H and 
Gj. We conclude that 

n 

IRYI = pn' (m' -1) +pn' m' -1+ L mpi-l(ui -Ui-l)(prnin(n',n-i+l) -1). 
i=l 

Some rearrangement shows that IRxl = IRYI· Thus the KGB obstruc
tion vanishes. Q.E.D. 

Remark 5.10. If pis odd, then any action of the dihedral group 
Dpn satisfies the condition of Proposition 5.9 ([Pri02, Lemma 1.4.1] or 
[OPlO, Theorem 1.1]). So Proposition 5.9 shows that Dpn is a KGB 
group for p odd. 

Question 5.11. Does every Zjpn ><J Z/m-action satisfying the con
dition of Proposition 5.9 lift to characteristic zero? 

Question 5.11 has a positive answer for n = 1 (Theorem 7.1). For 
n > 1, however, I am not aware of a single G-extension in this form that 
is known either to lift or not to lift. But there are D 4-extensions that 
are known to lift from characteristic 2 to characteristic zero ([Bre08]). 

5.3. Weak Oort groups 

A group G is called a weak Oort group for k if there exists a G
extension Ajk[[t]] that lifts to characteristic zero. For instance, we men
tioned above that D4 is a weak Oort group for any algebraically closed 
field k of characteristic 2. Clearly, any local Oort group is a weak Oort 
group. We will content ourselves here to state two results about weak 
Oort groups, one positive and one negative. The first is due to Matignon: 

Proposition 5.12 ([Mat99]). The group (Zjp)n is a weak Oort 
group for all primes p and positive integers n. 

Note that, if n > 1 and p is odd, then we can build a (Z/p)n
extension with a (Z/p) 2-subextension that has nonvanishing KGB ob
struction (Proposition 5.8). Thus (Zjp)n is not an Oort group (or even 
a KGB group) by Theorem 5.2 (one also sees it is not an Oort group 
from the example in §1.1). For p = 2, we have that (Zjp)n is not an 
Oort group for n > 2 by the example in §1.1. 

The second result follows from [CGH09, Theorem 1.8]. 

Proposition 5.13. If G contains an abelian subgroup that is neither 
cyclic nor a p-group, then G is not a weak Oort group. 
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§6. Cyclic groups 

Throughout §6, we take R to be a large enough finite extension of 
W(k), and K = Frac(R). Let D = SpecR[[T]] be the open unit disc. If 
L is any field of characteristic p, we say that x E L is a pth power if the 
equation yP - y = x has a solution in £. In this case y is called a pth 
root of x. 

The purpose of §6 is to discuss progress toward the Oort conjecture 
(Conjecture 5.4). 

6.1. Reduction to case of cyclic p-groups 

Cyclic groups of prime-to-p order are local Oort groups: 

Proposition 6.1. Suppose x is any K -point of D. If A/k[[t]] is a 
7Ljm-extension, with p f m, then it lifts to a 7Ljm-extension AR/ R[[T]]. 
We can choose this lift so that iff : Spec AR --+ D is the induced map 
on schemes, then the generic fiber of f is branched only at x. If no 
branching behavior is specified, we can take R = W ( k). 

Proof. By Kummer theory, we may assume without loss of gen
erality that A is given by k[[t]][y]j(ym - t). Think of x as an ele
ment of R with v(x) > 0 (see §A.1). Then choose AR to be given by 
R[[T]][Y]/ (Ym - (T- x)). The reduction of AR is as desired. If x is not 
specified, then the lift R[[T]][Y]/(Ym-T) is defined over W(k). Q.E.D. 

Remark 6.2. Proposition 6.1, along with the local-global principle 
(Theorem 3.1), gives another proof of Proposition 2.2. 

Using Proposition 6.1, we can reduce the local lifting problem for 
cyclic groups to the p-group case: 

Proposition 6.3. Let G ~ 7Ljmpn, where p f m. If 7Ljpn is a local 
Oort group, then G is a local Oort group. 

Proof. Let H be the unique subgroup of G of order m and let H' 
be the unique subgroup of order pn. Given a G-cover f : Y --+ Spec k[[t]], 
let g : X --+ Spec k[[t]] (resp. g' : X' --+ Spec k[[t]]) be the unique quo
tient 7L/m-extension (resp. '1Ljpn-extension). Then the normalization of 
X Xspeck[[t]] X' is isomorphic toY. By assumption, g' lifts to a 7Ljpn
cover gk : Xk --+ D, with generic fiber gk. By Proposition 6.1, g lifts 
to a 7L/m-cover gR : XR --+ D, and we can choose g so that the unique 
branch point of the generic fiber gK of gR is branched of index pn in the 
generic fiber gk of g'. 

Let X~ be the normalization of XR Xv Xk. Then the canonical 
map fR : X~ --+ D is clearly a birational lift of f. The degree of the 
different of g (and of g K) is m - 1. Let 6 be the degree of the different 
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of g' (and of gk ). Using our assumptions on the branch loci of 9K and 
gk, one calculates the degree of the different of the generic fiber fK of 
f R to be mt5 + m- 1. On the other hand, the higher ramification groups 
(H')i for the upper numbering at the unique ramification point of g are 
the same as the corresponding groups Gi for f, as long as i > 0 ([Ser79, 
IV, Proposition 14]). Also, I(H')0 1 = pn and G0 = mpn. Applying 
Herbrand's formula shows that IHbl = pn, IGol = mpn, and IHII = Gmi 
for i ;::: 1. Then ( 4.1) shows that the degree of the different of f is 
also mt5 + (m- 1). By Proposition 4.8, we conclude that fR is a lift of 
f. Q.E.D. 

Remark 6.4. For any i E N, let (i be a primitive ith root of 
unity. One would like to claim that if the strong Oort conjecture (Con
jecture 5.5) holds for Zlpn, then it also holds for Zlmpn, for any m 
with p f m. However, if the lift of g' in Proposition 6.3 can be done 
over W ( k) [ (pn], then the lift of f in Proposition 6.3 can be done over 
W ( k) [ (pn, (m] = W ( k) [ (mpn] only if gk has a branch point of index pn 
defined over Frac(W(k)[(mpn ]). It does not seem clear that this must be 
the case. 

6.2. Zlpn-extensions in characteristic p 

In attempting to prove the Oort conjecture, it is useful to have a 
somewhat explicit form for all Zlpn-extensions of k((t)). It is well
known, by Artin-Schreier theory, that any ZIp-extension of k ( ( t)) is 
given by an equation yP - y = f(t), where f(t) is not a SJth power in 
k((t)). It is clear that f(t) must have some term with negative degree, 
as otherwise, letting j = f- f(O), we have that a- j- jP- jP2 

- ••• 

is a SJth root off, where a is a SJth root of f(O). In fact, after a change 
of variable in t, we may assume f(t) = r1, and in this case j is the 
unique upper jump in the higher ramification filtration of the extension 
(see Proposition 6.5 below). 

It is less well-known that there is an explicit form for all Zlpn
extensions of k( ( t)), written as successive Artin-Schreier extensions. 
The higher ramification filtration (and thus the degree of the different) 
can also be read off from this form. 

Proposition 6.5. There exist explicit polynomials h, ... , fn-1 over 
lFP in 1, ... , n- 1 variables respectively, such that for any given Zlpn
extension Llk((t)), there is a choice ofx1, ... ,xn E k((t)) such that 
L I k( ( t)) is given (possibly after a change of variable in t) by adjoining 
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Y1, ... , Yn satisfying 

yf- Y1 

Y~- Y2 

Y~- Yn 

Furthermore, we can choose x 1 = rj, for some j :2 1 not divisible by p, 
and we can choose x2 , ... , Xn to be polynomials in r 1 with no terms of 
degree divisible by p. Conversely, every choice of x1, ... , Xn in this form 
gives a distinct Zjpn-extension. If (u1, ... , un) are the upper jumps of 
Ljk((t)), then u 1 = j, and fori> 1, we have ui = max(deg(xi),pui_l). 

We can pick a generator O" of Zjpn such that O"Pi-l Yi = Yi + 1 for 
1 :::; i :::; n. 

Proof. That the equations and action of O" can be chosen in this 
form is originally due to Schmid ([Sch36]), see also [OPlO, §3]. The 
formula for the upper jumps was proven by Garuti ([Gar02, Theorem 
1.1]). Q.E.D. 

Proposition 6.5 has the immediate corollary: 

Corollary 6.6. The upper jumps ( u 1 , ... , un) of the extension above 
satisfy ui :2 pui-1 for 2 :S i :S n. If ui > pui-1, then p f Ui. 

Remark 6. 7. The Artin-Schreier-Witt theory (detailed in [OP10, 
§3] and [Lan02, pp. 330-331]) says that for any field L of characteristic 
p, there is an association between truncated Witt vectors x E Wn(L) 
of length nand Z/pn-extensions of L. Furthermore, x,y E Wn(L) are 
associated to the same extension iff there exists z E Wn(L) with x- y = 

F(z)-z, where F: Wn(L)-+ Wn(L) is the Frobenius map. If L = k((t)), 
then the length n Witt vector ( x 1 , ... , Xn) E Wn ( L) is associated to the 
extension in 6.5. 

6.3. Lifting Z/p-extensions 

The following proposition solves the local lifting problem for Z/p
extensions. 

Theorem 6.8. The group Zjp is a local Oort group. In particular, 
any G-extension Ajk[[t]] lifts over W(k)[(p], where (p is a primitive pth 
root of unity. 

Proof. By Proposition 6.5, A is the normalization of k[[t]] in 
Ljk((t)), where Ljk((t)) is given by yP- y = ru 1 , and u 1 is the upper 
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jump. Let R = W(k)[(p], and let >. = (p- 1. Then v(>.p-l + p) > 1. 
Consider the integral closure AR of R[[T]] in the Kummer extension of 
Frac(R[[T]]) given by 

ZP = 1 + ).PT-ul. 

Making the substitution Z = 1 + >.Y, we obtain 

(.\Y)P + p.\Y + o(pPf(p-l)) = ).PT-ul, 

where o(pPf(p-l)) represents terms with coefficients of valuation greater 
than p~l. This reduces to yP - y = ru 1 • So we have constructed a 
birational lift. 

The degree of the different of A/k[[t]] is (u1 + 1)(p- 1), by Lemma 
4.3. On the other hand, the generic fiber of Spec AR -+ Spec R[[T]] is 
branched at exactly u 1 + 1 points in the unit disc (T = 0 and T equals 
each u 1 th root of- ).P). Since the ramification is tame, the degree of the 
different of A/ R[[T]] is ( u1 + 1) (p- 1) as well. By Proposition 4.8, our 
birationallift is an actual lift. Q.E.D. 

Remark 6.9. Theorem 6.8, along with Proposition 6.3 and the 
local-global principle, shows that, for G ~ Zjpm with p t m, all G
actions on curves lift to characteristic zero. The original proof of this 
is due to Oort-Sekiguchi-Suwa ([OSS89]), and is global in nature. In 
particular, the proof relies on intricate calculations involving extensions 
of group schemes and deformations of generalized Jacobians. The local 
proof above, due to Green and Matignon ([GM98]), is much simpler, 
once one admits the local-global principle. 

6.4. Sekiguchi-Suwa Theory 

Underlying the calculation in the proof of Theorem 6.8 is the so
called "Kummer-Artin-Schreier theory" in degree p. Its generaliza
tion to degree pn by Sekiguchi and Suwa ([SS94], [SS99]) is called the 
"Kummer-Artin-Schreier-Witt theory." While a full accounting of the 
theory is well beyond the scope of this paper, we will give a brief exposi
tion below. For a more detailed exposition (although still not as detailed 
as the papers of Sekiguchi and Suwa), see [MRTll]. 

6.4.1. Kummer-Artin-Schreier theory. Phrased in the language of 
group schemes, Kummer theory (of degree p) studies torsors under the 
group scheme f.lp, whereas Artin-Schreier theory studies torsors under 
the group scheme Z/p in characteristic p. Now, if A/k[[t]] is a Z/p
extension with a lift AR/ R[[T]], then AR/ R[[T]] is a torsor under a 
finite, fiat group scheme over R whose generic fiber is /1p and whose 
special fiber is Z/p (of course, if R contains the pth roots of unity, then 
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f.Lp "'=' Zjp, but it is more natural to think of the generic fiber as f.Lp)· 
These are rank p subgroup schemes of Gm and Ga, respectively. So in 
order to understand lifts of Z/p-extensions, one approach is to study 
group schemes over R whose generic fiber is Gm and whose special fiber 
is Ga. 

For any f.L E m, the maximal ideal of R, consider the group scheme 

1 
Q(!") := Spec(R[x, --]) 

1 +f.LX 

with comultiplication law 

co inverse 

(X, y) H f.LXY + X + y, 

X 
XH----

1 +f.Lx' 

and counit x H 0. There is a map from Q(!") --+ Gm := R[x, ~] given 
by x --+ 1 + f.LX, which is an isomorphism on the generic fiber. Indeed, 
a good way to think about the R-points of Q(!") is as elements of R 
with multiplication defined by x * y = z, where z is such that 1 + f.LZ = 
(1 + f.LX)(l +f-LY)· Clearly, the special fiber of Q(!") is isomorphic to Ga. 

Suppose R contains the pth roots of unity. Let f.L = .A as in the proof 
of Theorem 6.8, so f.L = (p -1, where (p is a nontrivial pth root of unity. 
Then there is a group scheme morphism 'ljJ : g(.>-.) --+ g(V) given by 

(6.1) 
(1+.Ax)P-1 

XH ,\P , 

and this map is surjective in the etale topology. Note that 'ljJ is the map 
that makes the following diagram commute, where the vertical arrows 
are the maps to Gm in the previous paragraph: 

So the generic fiber of 'ljJ is isomorphic to the pth power map on Gm,K 
and the special fiber of '1/J, after a similar calculation to the proof of 
Theorem 6.8, is the map x H xP- x on Ga,k· Since R contains the pth 
roots of unity, the kernel of 'ljJ is the constant group scheme Zjp. Thus 
we have an exact sequence of etale sheaves over R: 

(6.2) 0 --+ Zjp--+ gC.>-.) --+ gWl --+ 0. 
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The generic fiber of (6.2) is just the Kummer exact sequence over K, 
whereas the special fiber is just the Artin-Schreier sequence over k. 

Proposition 6.10. Suppose R contains the pth roots of unity. If B 
is a fiat local R-algebra, then any unramified Zjp-cover Spec C ---+Spec B 
is given by a Cartesian diagram of the form 

Specc~gC>.J 

l l~ 
Spec B ---- gCVJ. 

That is, C ~ B[Y]/( (H>.;r-l -X), with X E B. 

Proof. The short exact sequence (6.2) gives an exact sequence 

0---+ g(>.P)(B)jQ(>.)(B)---+ H 1 (SpecB, Zjp)---+ H 1 (SpecB, gC"l). 

But H 1 (SpecB,Q("l) = 0 ([SS94, Theorem 2.2]), so Z/p-torsors over 
Spec Bare in one-to-one correspondence with elements g(AP) (B)jQ(>.) (B). 
Such elements can be interpreted exactly as elements X E B, where X 1 

is considered equivalent to X 2 if (1 + )..P Xl)/(1 + )..P X 2 ) = (1 + >.Y)P for 
some Y in B. The proposition follows by the standard expression of the 
coboundary map from degree 0 to degree 1 in etale cohomology. Q.E.D. 

Remark 6.11. If 1r is a uniformizer of R, and B = R[[T]](1r)' then 
B is a local R-algebra with residue field k((t)). The lift exhibited in 
Theorem 6.8 comes (birationally) from choosing X = T-u 1 in Proposi
tion 6.10. So in some sense, we can say that our lift of a Z/p-extension 
comes from the Kummer-Artin-Schreier theory. In §6.5, we will discuss 
how lifts of Z/p2-extensions come from the Kummer-Artin-Schrier-Witt 
theory described below. 

6.4.2. Kummer-Artin-Schreier- Witt theory. The point ofKummer
Artin-Schreier-Witt theory (or Sekiguchi-Suwa theory) is to generalize 
the exact sequence (6.2) to a sequence of group schemes with kernel 
Zjpn, and to generalize Proposition 6.10 to Z/pn-covers. In this sec
tion, we will concentrate on the theory itself, and in §6.5, we will show 
how this is applied to the lifting problem. 

Assume that R contains the pnth roots of unity. We seek an exact 
sequence of group schemes over R whose generic fiber is the Kummer-like 
sequence 

(6.3) 
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where the surjection ¢n is given by 

and whose special fiber is the Artin-Schreier-Witt sequence 

(6.4) 

Here Wn is the scheme of length n Witt vectors over k, which is ann-fold 
extension of Ga's, and fP is the map F- Id, where F is the Frobenius 
map. In the Kummer-like sequence, since R contains the pnth roots 
of unity, we have f.lpn ~ '!Ljpn, and we can think of the injection as 
sending 1 to ( (p, (P2, ... , (p"), where each (pi is a pith root of unity and 

j-i c;j = (pi for j 2 i. 

Proposition 6.12 ([8894], Theorem 7.1 or [8899], Theorem 8.1). 
For each positive integer n, there exists a fiat group scheme Wn over R 
(called a Kummer-Artin-8chreier-Witt group scheme) that fits into the 
exact sequence 

(6.5) 

of group schemes over R. The special fiber of ( 6. 5) is isomorphic to 
the Artin-Schreier-Witt exact sequence (6.4) over k, and the generic 
fiber is isomorphic to the Kummer-like exact sequence (6.3) over K. 
Furthermore, Wn is an n-fold extension of g(>-) 's, and as a scheme is 
given by 

for explicitly determined polynomials F 1 , ... , Fn_ 1 . Also, Vn is ann-fold 
extension of g(AP) 's, and as a scheme is given by 

for explicitly determined polynomials G1 , ... , Gn_ 1 . 

Remark 6.13. While there is an explicit algorithm to calculate the 
polynomials Fi and Gi, the calculation gets extremely complicated as 
n gets large. Indeed, for n = 3, determining G2 in [8899] takes five 
pages. Likewise, the proof of Proposition 6.12 requires extraordinarily 
complicated calculations. 
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Remark 6.14. There are morphisms Wn --t (Gm)n and Vn --t 

(Gm)n, given by 

oJn) : (Y1, ... , Yn) 

c--+ (1 + .\Y1, F1 (Y1) + .\Y2, ... , Fn-l (Y1, ... , Yn-d + >-Yn) 

and 

j3(n) : (X1, ... , Xn) 

f--7 (1 + ).P xl, Gl (Xl) + ).P x2, 0 0 0 'Gn-l(Xl, 0 ° 0 'Xn-d + ).P Xn), 

respectively. These maps are isomorphisms on the generic fibers, and 
the diagram 

(6.6) 

commutes, where cPn is given by (6.3) and '1/Jn is given by (6.5). 

We state the generalization of Proposition 6.10: 

Proposition 6.15 ([SS94], Theorem 3.8 or [SS99], Theorem 3.8). 
Suppose R contains the pnth roots of unity. If B is a fiat local R-algebra, 
then any unramified Zjpn-cover SpecC --t SpecB is given by a Carte
sian diagram of the form 

SpecC----"3>-Wn 

! !~n 

Proof. One shows that H 1 (Spec B, Wn) = 0 ([SS94, Theorem 3.6]), 
and then the proof is the same as that of Proposition 6.10. Q.E.D. 

6.5. Lifting Z/p2-extensions 

The aim of this section is to sketch the proof of the following theorem 
of Green and Matignon: 

Theorem 6.16 ([GM98], Theorem 2). The group Zjp2 is a local 
Oort group. Moreover, any Zfp2 -extension of k[[t]]lifts over W(k)[(p2]. 
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Green and Matignon do this by making the diagram in Proposi
tion 6.15 more explicit in the case n = 2. More specifically, they take 
R = W(k)[(p2] and B = R[[T]](1r)' where 7f is a uniformizer of R, and 
write down a specific morphism Spec B --+ V2 . By Proposition 6.15, this 
gives an unramified Zlp2-cover SpecC--+ Spec B. They then show that 
C' I R[[T]], where C' is the integral closure of R[[T]] in Frac( C), reduces 
to a specific Zlp2-Galois extension Alk[[t]] (in fact, it is an extension in 
the form of Proposition 6.5 where x2 = 0). Thus C' I R[[T]] is a lift of 
Alk[[t]]. Lastly, they show how, given a lift of Alk[[t]], one can lift all 
other Zlp2-extensions of k[[t]]. 

We start by constructing the map Spec C --+ Spec B. Let .A = (p - 1 
where (pis a nontrivial pth root of unity, let 7f = (P2 -1, where (;2 = (p, 

and let f-l = 7f- 1r2 12 + · · · + ( -1)P1fp~l I(P- 1). Note that f-l and 7f are 
both uniformizers of R. Recall that 

and 
1 1 

Vn ~ SpecR[X1,X2, 1 + .\PX1 , Gl(Xr) + .\PX/ 

We have F1(Y1) = expp(f-LYr) and G1(X1) = expp(f-LPXr), where expP 
is the truncated exponential including terms up through degree p - 1. 
The formula for F1 comes from [SS94], and Green and Matignon derive 
the formula for G1, although it can also be determined from [SS99]. 
Moreover, by [SS94, Theorem 7.1], there is a commutative diagram of 
group schemes over R: 

where the 1/;/s are from Proposition 6.12, the left horizontal arrows are 
given by x2 = 0 and y2 = 0, the map (h is from (6.3), the map aJ2) 
is given by (Y1,Y2) f--t (1 + .AY1,F1(Y1) + .AY2), and (3(2) is given by 
(Xl' X2) f--t (1 + ),P xl, Gl (XI)+ ),P X2) (the right hand square is nothing 
but (6.6), for n = 2). From this diagram, we see that the map 1/;2 : W2 --+ 
v2 is given by the equations 

(1 + .\Yr)P 

(F1(Yr) + .AY2)P(1 + .AYI)~ 1 

1 + .AP x1 

G1(1/JI(Yr)) + _APX2. 
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Note that 1j;1 is the same as 1j; from (6.1), that is, 1j;1(YI) = (H.A~~JP~l. 
Let a : SpecB -+ V2 be given by X 1 -+ r~u1 and X 2 -+ 0. Then, in 
Proposition 6.15, we have 
(6.7) 
C ~ B[Y1, Y2]/(1/J1(YI)- T~u1 , (F1(YI) + ..\.Y2)P- (1 + ..\.Y1)G1(T~u 1 )), 

and Spec C -+ Spec B is an unramified cover, which must reduce to some 
Z/p2-cover of k((t)) if tis the reduction ofT. 

An intricate calculation ([GM98, Lemmas 5.2, 5.3]) shows that (6.7) 
in fact reduces to the the 7L/p2-extension A/k((t)) in Proposition 6.5 
with Xl = rul and X2 = 0, which has upper jumps (ul,pul). By 
Lemma 4.3, the degree of the different of this extension is 

Now, if we let Z1 = 1 + ..\.Y1 and Z2 = F 1(YI) + ..\.Y2 , then we can 
write the equations for C as 

(6.8) 

Letting C' be the normalization of R[[T]] in Frac( C), we see that 
Spec( C' Q9 R K) -+ Spec( R[[T]] Q9 R K) is branched of order p2 at u1 + 1 
points (the zeroes and poles of 1 + ).PT~u1 in the open unit disc around 
T = 0) and of order pat (p -1)ul points (the zeroes of G1(T~u 1 ), or 
expp(pPT~u1 ), in the open unit disc around T = 0). Since char(K) = 0, 
the degree of the different of this extension is also 

(p2 - 1)(u1 + 1) + p(p- 1) 2u1. 

By the different criterion (Proposition 4.8), C' / R[[T]] is a lift of A' /k[[t]], 
where A' is the integral closure of k[[t]] in A. 

Green and Matignon then show ([GM98, Lemma 5.4, Theorem 5.5]) 
that C can be deformed so as to find a lift of the integral closure of 
k[[t]] in the 7L/p2-extension A/k[[t]], corresponding to x1 = ru1 and x 2 

arbitrary in Proposition 6.5. This is a subtle calculation, and we remark 
that the nai"ve approach (i.e., choosing a : Spec B -+ V2 to send X2 to a 
lift of x 2 instead of to 0) fails because the different criterion is no longer 
satisfied in general. We will discuss this further in §6.6. 

6.6. A different approach to lifting Z/pn-extensions 

6.6.1. The general form. Since the explicit polynomials Fn and Gn 
involved in Sekiguchi~Suwa theory (Proposition 6.12) get very compli
cated when n gets large, it is difficult to generalize the methods of Green 
and Matignon to show that 7L.jpn is a local Oort group. In (as of yet 
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unpublished) work of Stefan Wewers and the author, a different, less 
explicit approach is taken. The starting point is equation (6.8). Gener
alizing this, it is clear that if R contains the pnth roots of unity, then 
any Z/pn-extension of Frac(R[[T]]) can be given by equations 

(6.9) 

Zf = H1(T) 

Z~ = Z1H2(T) 

where Hi(T) E Frac(R[[T]]) for 1 :S i :S n. The Galois action of a 
generator of Zjpn sends Zi to (p,zi, where (pi is a pith root of unity 

j-i n 

and (:j = (p' for j :::>: i. This is isomorphic to the extension ZP = 

H 1(T)H2(T)P · · · Hn(T)Pn-l in standard Kummer form. 
The next proposition gives a somewhat explicit criterion for when a 

birationallift of a cyclic extension is an actual lift. 

Proposition 6.17. (i) Let A/k[[t]] be a Zjpn-extension with 
upper jumps ( u 1 , ... , un). Suppose AR/ R[[T]] is a birational lift 
of A/k[[t]] given by normalizing R[[T]] in the extension of frac
tion fields given by (6.9). If the Hi are polynomials in r- 1 , if 
deg H1 = u1, and if deg Hi = Ui- Ui-1 fori> 1, thenAR/ R[[T]] 
is a lift of A/k[[t]]. 

(ii) Suppose that AR/ R[[T]] is the normalization of R[[T]] in the ex
tension of fraction fields generated by ( 6. 9), where the Hi are 
polynomials in r-1 with deg H1 = U!, deg Hi = Ui - Ui-1 for 
2 :S i :S n - 1, and deg Hn = (p - 1 )un-1. Suppose further 
that the Zjpn- 1-subextension BR/ R[[T]] of AR/ R[[T]] reduces to 
a :Z:jpn-1-extension B/k[[t]] with upper jumps (u1, ... , Un-1)· If 
the reduction A/k[[t]] of AR/R[[T]] to characteristic p gives a 
separable extension of fraction fields, then A is integrally closed 
and the upper jumps of A/k[[t]] are (u1, ... ,un-1,PUn-1)· Thus 
AR/ R[[T]] is a lift of some Zjpn-extension Ajk[[t]]. 

Proof. To (i): If T =xis in the open unit disc D, and i is minimal 
such that T = x is a zero of Hi(T- 1 ), then the branching index of 
T = x in Spec(AR 0R K) ---+ Spec(R[[T]] 0R K) is at most pn-i+1 . 

Clearly T = 0 is the only pole of any Hi(T- 1 ), and has branching index 
at most pn. Thus, the zeroes of H1 (T-1) in D, as well as T = 0, are 
branched of index at most pn. The zeroes of H 2 (T-1) that are not 
zeroes of H 1 (T-1) are branched of index at most pn- 1 , etc. Since Hi 
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has at most deg Hi zeroes, it follows that the degree 5'7 of the different 
of (AR &JR K)/(R[[T]] &JR K) satisfies 

(6.10) 
n 

5'7 :S; (pn- 1)(u1 + 1) + 2_)pn-i+1- 1)pi-1(ui- Ui-d· 
i=2 

By Lemma 4.3, the right-hand side is the degree 58 of the different of 
A/k[[t]]. By the different criterion (Proposition 4.8), we have 5'7 =58 , 

and our birational lift is an actual lift. 

To (ii): As in part (i), the degree 5'7 of the different of (AR&JRK)/(R[[T]] 
&J RK) satisfies 

(6.11) 5'7 :S; (pn -1)(u1 + 1) + (~(pn-i+l -1)pi-1(ui- Ui-1)) 

+ (p- 1)pn-1((p- 1)un_l). 

Let (u1, ... , un) be the upper jumps of A' /k[[t]], where A' is the integral 
closure of A. Then the degree of the different of A' /k[[t]] is 

n 

5~ := (pn- 1)(u1 + 1) + 2...)Pn-i+1 - 1)pi-1(ui- Ui-1), 
i=2 

by Lemma 4.3. If 5s is the degree of the different of A/k[[t]], then 
5~ :S; 58 = 5'7. But, by Corollary 6.6, we have 5~ ~ 5'7, with equality iff 
Un = pun_ 1 . So 58 = 5~, which means that A = A' and the Ui are as 
desired. Q.E.D. 

Remark 6.18. Since 5'7 =58 in both cases above, we have equalities 
in (6.10) and (6.11), so each of the zeroes of each Hi(T-1) must be 
simple and must lie in the open unit disc around T = 0. This means 
that, up to scaling by a constant, each polynomial Hi(T-1) is of the 
form a0 + a1T-1 + · · · + aN;r-N; with v(a0) = 0 and v(aj) > 0 for 
j > 0. Furthermore, the zeroes of all of the Hi(T-1) must be pairwise 
distinct. 

Note that Propostion 6.17(ii) applies to Green and Matignon's lift 
in (6.8), as G1 (~/!l(Yl)) = expp(pPT-u1 ). In fact, Proposition 6.17(i) 
applies to Green and Matignon's lifts for general Z/p2-extensions (this is 
how they prove that the birational formulas they write down are actually 
lifts). So it seems reasonable, given an Z/pn-extension, to look for a lift 
in the form of (6.9) satisfying the conditions of Proposition 6.17(i). 
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Furthermore, Proposition 6.17 suggests a framework to attack the 
lifting problem for cyclic extensions: 

Framework 6.19. Suppose A/k[[t]] is a Z/pn-extension with upper 
jumps (u1, ... , un)· Let B/k[[t]] be the ::.Z.jpn-1-subextension. Assume 
by induction that we have a lift BR/ R[[T]] of B / k[[t]] given by equations 
in the form of (6.9), where the Hi are polynomials in r-1 with degH1 = 
u1, and deg Hi = ui - Ui-1 for 2 ~ i ~ n - 1. 

Step 1: We seek a polynomial Hn in r-1 of degree (p- 1)un_1 
so that the reduction of (6.9) is separable. By Proposition 6.17(ii), 
the equations (6.9) then lift some Z/pn-extension with upper jumps 
(u1, ... , Un-1,PUn-d whose ::.Z.jpn-1-subextension is B/k[[t]]. 

Step 2: If we can find such an Hn, then the goal is to replace Hn 
by a polynomial of degree Un - Un- 1 in order to give a birational lift 
of A/k[[t]], using an argument along the lines of that of Green and 
Matignon. This will be an actual lift by Proposition 6.17. 

6.6.2. Depth and separability. Framework 6.19 forces us to under
stand when an extension of R[[T]] has separable reduction. In Appendix 
B, the notion of the depth of a cyclic Z/pn-extension AR/ R[[T]] is dis
cussed. This is a non-negative number that is 0 iff the extension has 
separable reduction. 

Fix a Z/pn-extension AR/ R[[T]], corresponding to a morphism fR : 
Spec AR-+ Spec R[[T]], birationally given by equations in the form (6.9). 
For each i, 1 ~ i ~ n, let (AR)d R[[T]] be the unique Z/pi-subextension, 
and let (JR)i be the corresponding morphism. For each rational r 2 0, 
let ar be an element of a finite extension of R of valuation r, and enlarge 
R so that it contains ar. Then Dr := Spec R[[a;:-1T]] is the open disc 
of radius larl (§A.1). Note that D = Do. The restriction of any (iR)i 
to the disc Dr corresponds to making a substitution U = a; 1T in the 
H 1(T-1), ... ,Hi(T-1), and viewing the equations (6.9) as giving an 
extension of R[[U]]. We denote the depth of such an extension by oi(r), 
and we view Oi as a function of r. Our goal is to find H 1, ... , Hn such 
that On(O) = 0. 

The following result is unpublished, but is known to the experts. It 
can essentially be derived from [Obu09a, §5.3], where the depth is called 
the "effective different." 

Lemma 6.20. Let (iR)i and ar be as above. For each 1 ~ i ~ n, 
the depth oi is a piecewise-linear function of r. The right-derivative of 
oi at r is less than or equal to vi ( r) - 1, where vi ( r) is the number of 
branch points of the generic fiber of (iR)i with valuation greater than 
r (in terms of the coordinate T ). Equality holds iff the special fiber of 
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(JR)i lvr is smooth (i.e., the integral closure of R[[a; 1T]] in Frac((AR)i) 
has integrally closed reduction). 

Let us now place ourselves in Framework 6.19 and use the notation 
therein. We will make the further assumption (for the remainder of 
§6.6.2) that the zeroes of H1, ... , Hn_ 1 (and thus the branch points of 
the generic fiber of (JR)n-d all have valuation greater than un-tCP-1). 
This assumption is essential (in fact, its necessity is the reason that we 
do not have a full proof that Zjpn is a local Oort group), as it has 
the consequence that Dn-1 ( un-t CP-1)) = P~ 1 . This follows from Lemma 
6.20. Then, [Wewll, Proposition 6.1(iii)] shows that, no matter what 
we pick for Hn, we will have Dn(un-tCP-1)) = P~ 1 (here Dn-1 and Dn 

play the roles of band 5 in [Wewll]). 

Lemma 6.21. If we pick Hn of degree (p- 1)un_1 in r- 1 (as in 
Framework 6.19) so that all of its zeroes are simple and have valuation 

( _ 1), then Dn(O) = 0 iff the special fiber of fR is smooth. 
Un-1 P 

Proof. By Remark 6.18, we see that fR has a total of pun_ 1 + 
1 branch points on the generic fiber (corresponding to the zeroes of 
H 1 (T-1 ), ... , Hn(T- 1 ), which are all simple and distinct, and the unique 
shared pole T = 0). Since Dn(un-tCP-1)) = P~ 1 , Lemma 6.20 shows that 
Dn(O) = 0 iff the special fiber of fR is smooth. Q.E.D. 

The next proposition is a major result in [OWll]. 

Proposition 6.22. Given Hn as in Lemma 6.21, we can adjust Hn, 
while keeping its degree and the valuation of its zeroes the same, so that 
the special fiber of fR becomes smooth. 

Very rough sketch of proof. If fR is not smooth, there is a mini
mum r ~ 0 corresponding to a maximal disk Dr such that (JR) lvr 
is smooth. One can show using [Wewll, Proposition 6.1] that r ~ 

( _ 1). One then shows that if r > 0 and R is taken large enough, 
Un-1 P 

then one can adjust Hn as in the proposition to decrease r (we think of 
r as depending on Hn)· This involves solving differential equations over 
k, which in turn reduces to solving systems of linear equations over lFw 
Amazingly, these systems are overdetermined yet still always have solu
tions! Lastly, one independently shows that there is some particular Hn 
as in the proposition where r takes a minimum (and Hn can be realized 
over some finite extension R/W(k)). This minimum must be 0, and this 
is the Hn we seek. Q.E.D. 

Remark 6.23. Note that this proof is non-constructive. In partic
ular, we have no control over how large we must take R. 
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Corollary 6.24. Suppose B /k[[t]] is a Zjpn- 1-extension with upper 
jumps ( u1 , ... , Un- I) that lifts to characteristic zero, and that the lift to 
characteristic zero is in the form of ( 6. 9} with H 1, ... , H n-1 polynomials 
in r-1 with deg H1 = U1 and deg Hi = Ui ~ Ui-1 for 2 ::; i ::; n ~ 1. 
Suppose further that all the zeroes of H1 (T-1 ), ... , Hn-1 (T-1) have val
uation greater than ( _1). Then there is a Zjpn-extension Ao/k[[t]] 

Un~l P 

with upper jumps (u 1, ... ,un_1,pun-d and a Zjpn- 1-subextension 
B j k[[t]] that lifts to characteristic zero. 

Proof. Follows from Step 1 of Framework 6.19, Lemma 6.21, and 
Proposition 6.22. Q.E.D. 

6.6.3. Lifting general extensions. By Corollary 6.24, we can, under 
mild hypotheses, extend a lift of a Zjpn-1-extension B/k[[t]] to a lift of 
some Z/pn-extension A0 /k[[t]] with minimal possible nth upper jump. 
The extension A0 /k[[t]] can be written in the form of Proposition 6.5, 
where deg Xn < pun_1. Its lift can be written in the form of (6.9) with 
Hn a polynomial of degree (p ~ 1)un_1 in r-1. Our goal is now to show 
that we can, in fact, extend our lift of B/k[[t]] to lift any Z/pn-extension, 
A/k[[t]] (with B/k[[t]] as the Zjpn-1-subextension) no matter what the 
upper jump. In particular, if the nth upper jump of A/k[[t]] is Un, we 
wish to replace Hn with a polynomial of degree Un ~ Un-1 in r-1 that 
yields a birationallift of A/k[[t]]. By Proposition 6.17 (i), this gives an 
actual lift of A/ k[[t]]. 

Let us recall that our lift of the Z/p-extension given birationally by 
yP ~ y = rul was given by the equation ZP = 1 + )..PT-u1 (§6.3). Now, 
suppose we were to replace rul by rul + q(r1 ), where q has no terms 
of degree divisible by p. If Q(T-1) is any lift of q(r1) to R[T-1] that 
preserves the degree, the argument of Theorem 6.8 easily carries through 
to show that ZP = 1 + )..P(T-u1 + Q(T-1)) gives a lift of the extension 
given by yP ~ y = ru1 + q(r1 ). 

The general situation is similar. In fact, in [OW11], we prove the 
following result: 

Proposition 6.25. Suppose Ajk[[t]] is obtained from A0 jk[[t]] as 
above by replacing Xn in Proposition 6.5 with Xn +q(r1 ), where q has no 
terms of degree divisible by p. If Q(T-1) is any lift of q(r1) to R[T-1], 
then replacing Hn by Hn + )..PQ(T-1) in (6.9} gives a birational lift of 
Ajk[[t]]. 

Unfortunately, we cannot apply Proposition 6.17(i) in general. For 
instance, if deg q > PUn-1, then deg q = Un, thus deg Q 2:: Un and 
deg(Hn + )..PQ) 2:: Un· But to apply Proposition 6.17(i), we would need 
deg(Hn + )..PQ) = Un ~ Un-1· However, it turns out that there is some 
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polynomial H~ of degree Un - Un- 1 in r-1 , as well as some lift Q of 
q to R[[T]], such that the ratio of H~ to Hn + A.PQ is a pth power 
in Frac(R[[T]]). Replacing Hn by H~ must give the same extension 
of Frac(R[[T]]) as replacing Hn by Hn + A.PQ. By Proposition 6.25, 
replacing Hn by H~ gives a birationallift, and by Proposition 6.17(i), 
this is an actual lift. Thus we have completed step 2 of Framework 6.19. 
Explicitly: 

Proposition 6.26. Suppose B/k[[t]] is a Zjpn- 1-extension with 
upper jumps ( u1, ... , Un-1) that lifts to characteristic zero, and that the 
lift to characteristic zero is in the form of (6.9) with H 1 , ... , Hn_ 1 sat
isfying the assumptions of Corollary 6.24. Then any 1Zjpn-extension 
A/k[[t]] with Zjpn- 1-subextension B/k[[t]]lifts to characteristic zero. 

However, in order to continue the induction, it is necessary that 
the zeroes of H~(T- 1 ) have valuation greater than un(~- 1 ). In our 
construction of H~, this is regrettably not always the case. The best we 
can do so far is the following: 

Lemma 6.27. Suppose that there is no a E pZ such that Un -

PUn-1 < a :'::: (un - PUn-d ( un~,';n-l). Then the lift of A/k[[t]] in 

Proposition 6. 26 can be accomplished in the form of ( 6. 9) with Hn a 
polynomial in r-1 of degree Un -Un-1 and the zeroes of Hn(T- 1) having 
valuation greater than un(~- 1). 

Using Lemma 6.27, we can state our strongest result about the local 
lifting problem for Zjpn. 

Theorem 6.28 ([OW11]). Let A/k[[t]] be a 1Zjpn-extension with 
upper jumps ( u1, ... , un). Then A/ k[[t]] lifts to characteristic zero so 
long as, for each i, 3 ::; i ::; n- 1, there does not exist ai E p!Z with 

Proof. The cases n = 1 and n = 2 are given by Theorems 6.8 
and 6.16. Furthermore, the lifts given explicitly in Theorem 6.8 and by 
Green and Matignon for Theorem 6.16 are in the form of (6.9) where 
deg H1 = u1, deg H2 = u2 -u1, and the zeroes of H1 (T-1) and H 2(T-1) 
have valuation greater than u, (~- 1 ) and u2 (~- 1 ), respectively. The proof 
then follows by repeatedly applying Proposition 6.26 and Lemma 6.27 

Q.E.D. 

Remark 6.29. (i) The condition in Theorem 6.28 is vacuous 
for n = 3, so Zjp3 is a local Oort group. 
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(ii) The condition is satisfied if ui = pui-l for all i 2: 3. In particular, 
it holds for all "minimal" sets of upper jumps (u1,Pu1, ... ,pn-lul). 

(iii) The example p = 5, n = 4, (u1 , ... ,u4 ) = (1,5,34,170), and 
a3 = 10 shows that the condition is not always satisfied. 

(iv) The condition is somewhat strange: for a Z/p4-extension, the 
only upper jumps that need to be checked are the second and 
third! Because of this strangeness, it seems reasonable to believe 
that the condition is not necessary, and that the Oort conjecture 
still holds. 

(v) Our proof gives no insight into the ring R necessary for lifting 
to characteristic zero. To show that a lift is possible over R = 
W ( k) [ (pn] will require new techniques. 

§7. Metacyclic groups 

Throughout §7, G ~ Zjp ~ Z/m with p f m and G not cyclic. 
Also, R/W(k) is a large enough finite extension and K = Frac(R). Let 
D = Spec R[[T]] be the open unit disc. Bouw, Wewers, and Zapponi 
have proven the following theorem (although they did not phrase it in 
terms of the KGB obstruction). 

Theorem 7.1 ([BWZ09], Theorem 2.1). A G-extension A/k[[t]] 
lifts to characteristic zero iff its KGB obstruction vanishes. In other 
words, A/k[[t]]lifts exactly when the (unique) positive jump in the higher 
ramification filtration for the lower numbering of A/k[[t]] is congruent 
to -1 (mod m). 

The following corollary immediately follows from Theorems 5.2 and 
7.1. 

Corollary 7.2. For odd primes p, the dihedral group Dp is a local 
Oort group. 

Note that, as a consequence of Proposition 5.9, the KGB obstruction 
can only vanish if the conjugation action of Z/m on Zjp is faithful. In 
particular, we must have mi(P- 1). In light of this, we view the mth 
roots of unity as living in (Z/p)x <:::; P. 

7.1. An explicit lifting example 
We present an example of a G-extension that lifts to characteristic 

zero, due to Green and Matignon. 

Proposition 7.3 ([GM99], IV Proposition 2.2.1). Let p be an odd 
prime. The Dp-extension of k[[t]] given birationally by the equations 

(7.1) 
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lifts to characteristic zero (in fact, one can take R = W(k)[(], where ( 
is a primitive pth root of unity). 

Proof. There are elements a, c E Dp with 

a(x) = x, a(y) = y + 1, c(x) = -x, c(y) = -y. 

Let (p be a primitive pth root of unity, and let A = (p - 1. We claim the 
extension of R[[T]] given birationally by equations 

(7.2) (X+ A; )2 = T, ZP = 1 + Ap x-l 

gives a lift, under the automorphisms 

1 
a(X) =X, a(Z) = (pZ, c(X) =-X- AP, c(Z) = z· 

A straightforward calculation verifies that the given actions of a and 
c indeed preserve the equations (7.2). It is also clear that the actions 
of a and c generate a dihedral group. Upon making the substitution 
l+AY = Z, we see that the equations (7.2) reduce to the equations (7.1), 
as in the proof of Theorem 6.8. Since c(Y) = 1+ry and a(Y) = (Y + 1, 
we see that the action of Dp in characteristic zero reduces to the action 
of Dp in characteristic p. Lastly, one checks that the unique positive 
lower jump on the special fiber is 1 (Proposition 6.5), so the degree of 
the different in characteristic p is 3p - 2 by ( 4.1). The generic fiber is 
branched at T = ( ->-; )2 of index p and at T = 0 of index 2, so the degree 
of the different is also 3p - 2. By the different criterion (Proposition 
4.8), the equations (7.2) give a lift. Q.E.D. 

Remark 7.4. Similar examples are given in [GM99, Proposition 
2.2.2] of Z/p ><1 Z/(p- !)-extensions that lift, for any p. In general, 
however, it is not known how to find explicit equations for lifting G
extensions, where G ~ Z/p ><1 Z/m. 

7.2. Structure theorems 

Our first step toward the proof of Theorem 7.1 is a structure result 
completely classifying G-extensions of k( ( t)). 

Lemma 7.5 ([Pri03], Lemma 2.1.2, [Pri02], Lemma 1.4.1 (iv)). Sup
pose L/k((t)) is a G = Z/p ><1 Z/m-extension with unique positive lower 
jump h. Then, up to a change in the parameter t, we have 

L ~ k((t))[u, y]/(um- t, yP- y-u-h). 



396 A. Obus 

Furthermore, given a primitive mth root of unity (m (viewed as an ele
ment of (Zip)x ), we can choose elements O" E G of order p and c E G 
of order m such that the Galois action is given by 

O"(u) = u, O"(y) = y + 1, c(u) = (mu, c(y) = (;;,hy. 

Also, we have cO"c- 1 = O"c:::,. 

In particular, up to isomorphism, there is only one C-extension of 
k((t)) with given positive lower jump. 

A more general structure theorem, this one in characteristic zero, 
will be useful for the proof of Theorem 7 .1. In particular, we can clas
sify certain C-extensions B I R[[T]]{T-1 }. Note that R[[T]]{T-1 } is a 
complete discrete valuation ring with residue field k( ( t)), and if 1r is a 
uniformizer of R, then 1r is also a uniformizer of R[[T]]{T-1 }. As we 
will see, we only care about such extensions for which B is abstractly 
isomorphic to R[[U]]{U-1 } (these correspond to extensions in which R 
is algebraically closed). Fix such an isomorphism. 

We need three invariants to classify such extensions. The first is 
the different of the extension. For the second, let O" E G be an order p 
element. Then urg) -1 can be written as 1rn f(U), where f(U) has coef
ficients of nonnegative valuation and at least one coefficient of valuation 
zero. The conductor of B I R[[T]]{T-1 } is the valuation of the reduction 
of f(U) to k((u)) (where u has valuation 1). Lastly, if c E G generates 
a subgroup C of order m, then c(T) =aT (mod T 2 ), where a reduces 
to a nonzero element a E kx. This gives a character C -+ kx, which is 
called the tame inertia character. 

Lemma 7.6 ([BoW06], §2, in particular Proposition 2.3). The dif
ferent, conductor, and tame inertia character of G-extension of 
R[[T]]{T-1 } are well-defined. Up to a change in the parameter T, there 
is at most one G-extension R[[U]]{U-1 } I R[[T]]{T-1 } with a given dif
ferent, conductor, and tame inertia character. This works even if G is 
cyclic. 

A C-extension of R[[T]]{T-1 } with degree of different o, conductor 
h, and tame inertia character>. is said to be of type (o, h, >.). 

Remark 7.7. Unfortunately, Lemmas 7.5 and 7.6 do not hold if 
Zip ><1 Zlm is replaced by Zlpn ><1 Zlm, for n > 1. See Remark 7.14. 

7.2.1. Outline of proof. We outline the proof of Theorem 7.1, which 
will depend on results from §7.3. 

Proof of Theorem 7.1. Recall from §4.2 that if ARI R[[T]] is a lift 
of the C-extension Alk[[t]], then AR is abstractly isomorphic to R[[U]], 
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the ring of functions on an open unit disc. Furthermore, for any faithful 
G-action on R[[U]] by continuous R-linear automorphisms (that is, a 
G-action on the open unit disc), the fixed ring R[[U]] 0 is abstractly 
isomorphic to R[[T]]. In Proposition 7.9 (using Definition 7.10), we show 
that a faithful G-action on the open unit disc Spec R[[U]] with separable 
reduction and positive conductor h at the boundary gives rise to a so
called Hurwitz tree with conductor h. In Proposition 7.11, we reverse 
this process, showing how a Hurwitz tree with conductor h gives rise to 
a G-action on the open unit disc. By Corollary 7.12, the G-extension 
R[[U]]/ R[[T]] associated to such a G-action reduces to a G-extension 
Ah/k[[t]] with unique positive lower jump h. 

In Proposition 7.13, we construct, for each h = -1 (mod m), a Hur
witz tree of conductor h, thus yielding a lift of a G-extension Ah/k[[t]] 
with unique positive lower jump h. Note that any G-extension A/k[[t]] 
with positive lower jump his isomorphic to Ah/k[[t]] (Lemma 7.5). Since 
we have constructed a lift of Ah/k[[t]], there must also be a lift of A/k[[t]]. 
This completes the proof of Theorem 7.1. Q.E.D. 

7.3. Hurwitz trees 

Suppose G acts faithfully on the open unit disc V = Spec R[[U]] 
by R-automorphisms with no inertia above a uniformizer of R (that is, 
the action reduces to a faithful G-action on Speck[[u]]). The idea of a 
Hurwitz tree is to break the disc V up into smaller discs, punctured discs, 
and annuli upon which G acts, to isolate the salient features of these 
actions in combinatorial form, and to keep track of how they connect 
with each other. Henrio gave the first major exposition of Hurwitz trees 
([Hen99]), dealing with the case of a Z/p-action on an open disc. The 
concept was extended by Bouw and Wewers to encompass G-actions. For 
the basic facts about discs and annuli that we will use, see Appendix A.l. 
Our concept of Hurwitz tree is more restrictive than that of [BoW06], 
in that what we call a Hurwitz tree is called a "Hurwitz tree of different 
0" in [Bo W06]. 

Throughout §7.3, let Vx be the generic fiber of V. Clearly, G acts 
on Vx. Let a be an element of G of order p. 

7.3.1. The Hurwitz tree associated to a G-action on the open unit 
disc. Let 8V = Spec R[[U]]{U- 1 } be the boundary of V. Then a G
action on V gives a G-action on 8V, with some conductor h. Then 
[GM98, I, Claim 3.3] shows that the number of (geometric) fixed points 
of the action of a on Vx ish+ 1. We may assume that R (and K) are 
large enough so that the fixed points y1 , ... , Yh+l of a are all defined over 
K. We assume further that h > 0, so there are at least two fixed points. 
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Lastly, we assume that G acts without inertia above a uniformizer of R. 
Now, let yst be the stable model of lP':k corresponding to the marked 
disc (V; y1 , ... , Yh+d (see §A.3-this is essentially the minimal stable 
model of lP':k that separates the specializations of the Yi and oo, where 
VK c::;; lP':k is viewed as being the open unit disc centered at 0). Let Y be 
the special fiber of yst. If oo is the specialization of the point oo E lP':k 
to Y, then let V = Y\ { oo}. The set of points of lP':k that specialize to 
V is a closed disc E, strictly contained in V. In fact, E is the smallest 
closed disc containing all the points Yl, ... , Yh+ 1· 

Let t;st be the model of E whose special fiber is V. Since the points 
Yl, ... ,Yh+l are permuted by G, we have that G acts on t;st. Further
more, since a- E G fixes each Yi, it follows from the stability of Y that a
must fix the special fiber V of t;st pointwise. 

Let V' = Vl(o-), that is, 

V' = Spec R[[U]] (a) ~Spec R[[T]] 

for some parameter T. Then V' is an open unit disc with generic fiber 
v~. Let Zl, ... 'Zh+l be the images of Yl, ... 'Yh+l under the canonical 
map V ---+ V'. As above, we let zst be the stable model of lP':k corre
sponding to the marked disc (V'; z1 , ... , Zh+l), with special fiber Z. If 
oo' is the specialization of oo to Z and W = Z\ { oo'}, then we define 
E' and (E')st in analogy to E, t;st in the previous paragraph. We have 
E' = E I (a-) and (E')st = Est I (a-). Note that the map t;st ---+ (E')st re
duces to a purely inseparable map V ---+ W on the special fiber, as a
fixes V pointwise. 

We build the Hurwitz tree corresponding to the G-action on V as 
follows (note that we will not explicitly define a Hurwitz tree until the 
next section). Consider the dual graph r of Z, whose edges E(r) and 
vertices V(r) correspond to the irreducible components and nodes of Z, 
respectively. An edge connects two vertices if the corresponding node 
is the intersection of the two corresponding components. We append 
another vertex and edge v0 and e0 so that e0 connects v0 to the vertex 
corresponding to the component containing oo'. 

If e =f. e0 is in E(r), then Ee is defined to be the thickness of the 
corresponding node of Y (§A.l). We set Ee0 to be the thickness of the 
open annulus V\E. If v =f. v0 is in V(r), then let r/ be the generic point 
of the component Sv of Z corresponding to v, and let TJ be the point of Y 
lying above r/. Then the extension Ovst I O:zst , gives an inseparable 

,7] ,1] 

extension on residue fields and satisfies the conditions of Proposition 
B.l. We set bv to be the valuation of the different of this extension 
(Proposition B.l) and Wv to be the corresponding deformation datum 
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(§B.2). We have that Wv is a meromorphic differential form on Sv. We 
set Ov0 = 0, and we do not define Wv 0 • 

Lastly, we note that if we choose a subgroup C ~ Z/m c:;; G, then C 
acts on V', E', and (E')st. SoC acts on Z, as well as on r. Also, if c E C, 
then c* (We( v)) is a differential form on the component corresponding to 
v. 

Definition 7.8. The data consisting of the group C c:;; G, the curve 
Z, the marking oo', the specializations z1 , ... , Zh+I of z1 , ... , Zh+I to Z, 
the graph r, the differential forms Wv for V E V (r) \ { Vo}, the numbers 
Ov for v E V(r) and Ee for e E E(r), and the C-action on Z, comprise 
the Hurwitz tree of the G-action on V. 

7.3.2. Hurwitz trees in general. The data of Definition 7.8 satisfy 
many compatibilities. We will define a general Hurwitz tree to be a 
collection of data in the form above satisfying these compatibilities. 

Proposition 7.9. The data in the Hurwitz tree of Definition 7.8 
satisfy the following properties: 

(i) Z has genus 0 and is stably marked by oo, z1 , ... , zh+I (i.e., each 
irreducible component contains at least three points that are either 
marked or singular). 

(ii) For each v E V(r), we have that Ov is rational and satisfies 0 :0::: 

Ov :0::: 1, with Ov = 0 iff V = Vo. 

(iii) For each v E V (r) \ { v0 }, the divisor of Wv is supported at the 
marked points and the singular points ofZ. In particular, Wv has 
simple poles at any of the points z1 , ... , Zn+I on the component 
of Z corresponding to v. 

(iv) If Ov = 1, then Wv is logarithmic. Otherwise, Wv is exact. 
(v) If e E E(r), then Ee is a positive rational number. 

- -1 -II 

(vi) If a node z of Z lies on two components S and S corresponding 
to vertices v' and v" of r, then ord-zwv' + ord-zwv" = -2. 

(vii) In the situation of (vi), if v' -=/: v0 and the node z corresponds to 
an edge e E E(r), then 

Ov'- Ov" = (p -1)Ee(ordzWv' + 1). 

(viii) The action of C fixes oo' and permutes the points z1 ... , Zh+I· 

(ix) If C-z c:;; C is the stabilizer of a node z of Z, then the charac
ters describing the action of C-z on the tangent spaces of the two 
components of Z intersecting at z are inverse to each other. 

(x) If x is the conjugation character of C on Z/p c:;; G (§B.2), then 
c*wc(v) = x(c)wv for all c, v. 
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Proof. Parts (i), (iv), and (v) follow from the definitions. Part (ii) 
follows from Proposition B.l. Part (iii) follows from [Wew03, Proposi
tion 1.7]. Parts (vi) and (vii) follow from [Hen99, Chapter 5]. Parts 
(viii) and (ix) follow because the Hurwitz tree comes from an action of 
G. For a proof of part (x), see [BoW06, Proposition 3.4]. Q.E.D. 

Definition 7.10. Suppose Z is a semistable curve over k of genus 0 
with smooth distinct marked points oo', z1 , ... , zh+l· Let r be the dual 
graph of Z, with an extra vertex v0 (called the root vertex) and an ex
tra edge e0 connecting vo to the vertex corresponding to the component 
containing oo'. Suppose that each vertex v E V(r) has an associated 
meromorphic differential form Wv on the corresponding component ( un
less v = v0 ) and an associated rational number bv. Suppose that each 
edge e E E(r) has an associated thickness Ee· Lastly, suppose that the 
group C ~ Z/m acts on Z (thus on r), and has an injective character 
X : C -+ lF; such that c*wc(v) = x(c)wv. If this data satisfies parts 
(i)-(x) of Proposition 7.9, then it is called a Hurwitz tree of type ( C, x). 
The conductor of this Hurwitz tree is defined to be h. We denote the 
Hurwitz tree by (Z; oo'; z1, ... , Zh+l; wv; bv; Ee)· 

Note that, as was mentioned at the beginning of §7.3.1, the conduc
tor of a G-action on the open unit disc at the boundary is equal to the 
conductor of its associated Hurwitz tree. 

7.3.3. Lifting Hurwitz trees. The mainresult of this section is the 
following: 

Proposition 7.11 ([BoW06], Theorem 3.6). Suppose we are given 
a Hurwitz tree T = (Z; oo'; Zl, ... ) Zh+l; Wv; bv; Ee) of type (C ~ Z/m, x) 
with conductor h > 0, and x an injective character C -+ JF;. If G ~ 
Zjp><JxC, then there is a G-action on the open unit disc D =Spec R[[U]], 
with no inertia above a uniformizer of R, whose associated Hurwitz tree 
{Definition 7.8} is T. In particular, the conductor of the action of G at 
the boundary 8D = Spec R[[U]]{U- 1 } is h. 

Very rough sketch of proof. The edges e E E(r) of the graph r 
of T correspond to open annuli Ae, whereas the vertices v E V(r) 
(other than the root vertex) correspond to (possibly punctured) closed 
discs Uv, each Uv being a closed disc with r v - 1 open discs of the same 
radius removed, where rv is the number of edges incident to v (see §A.2). 
These annuli and punctured discs fit together to form the open unit disc. 
Furthermore, for each Uv, we can use bv and Wv to construct a Z/p-cover 
of Uv. Because of the compatibility properties of the bv, Wv, and Ee in 
the definition of Hurwitz tree, we can glue in Z/p-covers of the annuli 
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Ae to form an open unit disc. This disc has a Z/p-action, and it turns 
out it even has a faithful G-action that satisfies the requirements of the 
proposition. Q.E.D. 

More detailed version of proof. Maintain the notations from the 
sketch above. Let ZR be a model of lP'k with special fiber Z (i.e., a 
flat R-scheme whose special fiber is Z and whose generic fiber is lP'k) 
such that the specialization of oo is oo'. Write Z for the formal comple
tion of ZR at Z. Now, if v E V(f) is a vertex other than the root vertex, 
then the irreducible component Sv of Z corresponding to v contains rv 
points BI, ... , Brv from among oo' and the singular points of Z. These 
correspond to the edges of r incident to v. If U v C::: S v is the complement 
of these points, then the formal subscheme Uv C::: Z that lifts U v (§A.4) 
is a projective line with rv open discs D~ I, ... , D~ r corresponding to 
'Uh, ... , Wrv removed (alternatively, we ca~ view Uv ~~ a closed disc with 
rv- 1 open discs removed, see §A.2). Write Uv = Spf Av. In [BoW06, 
§3.4], the data 6v and Wv are used to construct a Z/p-extension Bv/Av, 
where Bv is abstractly isomorphic to Av. Thus, the formal scheme 
Vv := Spf Bv can also be viewed as a formal projective line Y with 
rv open discs Dv,I, ... , Dv,rv removed, with each Dv,i lying above the 
respective D~,i· 

If Cv C::: C is the stabilizer of v, then the action of Zjp on Bv 
extends to an action of Gv := Zjp ><1 Cv C::: G on Bv, thus on Vv· 
Each Dv,i has a boundary 8Dv,i· If Cv,i C::: Cv is the stabilizer of 
the edge of r corresponding to D~,i' then Gv,i := Zjp ><1 Cv,i acts on 
8Dv,i· This gives rise to a Gv,i-cover 8Dv,i --+ 8Dv,i/Gv,i· It is shown 
([BoW06, Lemma 3.3(iii), Proposition 3.9]) that this extension is of type 
(6v, hv,i := -ordwJwv) - 1, a), where a : Cv,i --+ (lFp) x is the unique 
character such that a-hv,i = xlcv,i (note that hv,i is called hi in [BoW06, 
Proposition 3.9]. There is a sign error in that paper which explains why 
our hv,i is their hi). 

Now, suppose e E E(f) is an edge with stabilizer Ce· Consider the 
two vertices VI and v2 incident to e. Assume for the moment that neither 
VI nor v2 is the root vertex. Then we have seen that there is a Ge := 
Zjp ><1 Ce-cover of boundaries of open discs associated to each of VI and 
v2, namely, the covers 8Dv1 ,i --+ 8Dv1 ,i/Ge, and 8Dv2 ,j --+ 8Dv2 ,j/Ge 
for the correct i and j corresponding to e. Suppose these covers are 
of type (6I, hi, ai) and (62 , h2 , a 2 ), respectively. By (vi) of Proposition 
7.9, we have h2 =-hi. This gives us that a 2 = a;-I. By (ii) and (vii) 
of Proposition 7.9, we have 0 <::: 6I, 62 <::: 1 and 
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In this situation, [BoW06, §3.5] exhibits an open annulus Ae with thick
ness Ee and Ge-action such that one boundary is of type (6I, hi, a:I) 
whereas the other is of type (6I + (p- 1)Eehi, -hi, a:;-I). By Lemma 
7.6, one can identify the boundaries of Ae with 8Dv1 ,i and 8Dv2 ,j in 
a Ge-equivariant way, and thus we can glue Ae to Vv 1 and Vv2 while 
respecting the Ge-action. 

Alternatively, If e is the edge e0 , incident to VI and the root vertex 
vo, then [BoW06, §3.5] constructs an annulus Ae0 of thickness Ee0 with 
one boundary of type (6I, hi, a:I) and the other of type (0, -hi, a:]""I). 
Again, this annulus can be glued along its first boundary to Vv 1 while 
respecting the Ge-action. We know that -hi is just ordcx:/ (wv1 ) + 1, 
which by [BoW06, Lemma 3.3(i)] is equal to h. 

By gluing the annuli Ae for all e E E(r) to the Vv for all v # Vo E 
V(r) as above, we obtain an open disc D. The G-action on D is given 
by having G permute the Vv and Ae just as it permutes V(r) and E(r), 
and having the stabilizers Gv and Ge of each vertex and edge act as in 
the construction. One checks that the G-action gives rise to the original 
Hurwitz tree T Q.E.D. 

Corollary 7.12. If D s=: Spec R[[U]] is the open disc with G-action 
corresponding to the Hurwitz tree in Proposition 7.11, then the reduction 
of the extension R[[U]]/ R[[U]] 0 to characteristic p has unique positive 
lower jump h. 

Proof. By Proposition 7.11, the group G acts on R[[U]]{u-I} with 
conductor h. The reduction of R[[U]]/ R[[U]] 0 to characteristic p is a 
G-extension whose associated extension of fraction fields is the reduc
tion of R[[U]]{u-I} / R[[U]]{u-I }0 . By the definition of conductor and 
the lower numbering, the reduction of R[[U]]/ R[[U]] 0 has unique lower 
jump equal to the conductor of R[[U]]{u-I }/ R[[U]]{U-I }0 , which is 
h. Q.E.D. 

7.3.4. Constructing Hurwitz trees. In order to complete the proof of 
Theorem 7.1, we need only show: 

Proposition 7.13. If C s=: Z/m, if x : C --+ lF; is an injective 
character, and if h > 1 satisfies h = -1 (mod m), then there exists a 
Hurwitz tree of type ( C, x) with conductor h. 

Proof. If h < p, we give the construction from [BWZ09, Proof of 
Proposition 1.4]. We take Z to be smooth, so that the graph r will only 
have two vertices v0 and VI, one edge e0 incident to both, and v0 is the 
root vertex. Set 6v0 = 0, 6v 1 = 1, and Ee0 = h(pl_I). Write h = rm- 1. 
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Consider Z1, ... , Zr E JF; such that the elements 

Zi,j := (/nzi, 1 ::; i ::; r, 0 ::; j ::; m- 1 

are pairwise distinct (note: h "/= p -1). Here (m is an mth root of unity, 
which we think of as an element of JF;. Take oo and the zi,j to be the 
marked points. Then set 

dz 
Wv, = TIT ( m- m). 

i=l z zi 

One shows that this is logarithmic ([BWZ09, Lemma 1.5]). It has a zero 
at oo of order rm - 2 = h- 1. Lastly, if c is a generator of Z I m, take the 
action of c on Z to be given by c* z = (mz. It is then an easy exercise 
to verify properties (i)-(x) of Proposition 7.9. 

If h > p, then we cannot take Z to be smooth, and the construction 
is more complicated. See [BWZ09, Proof of Theorem 2.1] and [BoW06, 
Theorem 4.3]. Q.E.D. 

Remark 7.14. The methods used to prove Theorem 7.1 work 
equally well to show that all Zip-extensions of k[[t]] lift to character
istic zero (this is the subject of Henrio's thesis [Hen99]). Of course, 
one would like to extend these methods to lift Zlpn- and Zlpn ><1 Zlm
extensions of k[[t]] for which the KGB obstruction vanishes. Indeed, 
there is a notion of Hurwitz tree for actions of Zlpn ><1 Zlm on the open 
unit disc (see [BrW09]). However, there is currently no good analogue 
of Lemma 7.6 for groups with cyclic p-Sylow subgroups of order greater 
than p. Without such an analogue, the gluing that is essential for the 
proof of Proposition 7.11 cannot be performed. 

§Appendix A. Non-archimedean geometry 

We briefly discuss the constructions and objects in non-archimedean 
geometry that are used in this paper, taking a rather na'ive perspective 
throughout. For a thorough introduction to formal and rigid geometry, 
see e.g. [BGR84], or for a quick overview see [Gar98] and [Hen98]. 
Throughout this appendix, let RIW(k) be finite, and let K = Frac(R). 

A.l. Discs and annuli 

We call the scheme Spec R[[T]] the open unit disc (by abuse of lan
guage, the term "open unit disc" is used regardless of R). For any al
gebraically closed field extension K' I K where K' has an absolute value 
extending that of K, the K'-points of SpecR[[T]] correspond to the el
ements bE K' with lbl < 1, by plugging in T = b (these are the values 
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at which all power series in R[[T]] converge). By abuse of language, we 
will call this set of K'-points the open unit disc as well (we will do the 
same for the closed disc and annuli described below). 

The scheme Spec R{T} is the closed unit disc (recall that R{T} 
is the subring of R[[T]] consisting of power series for which the co
efficients tend to 0, see §1.4). For K'/K as above, the K'-points of 
Spec R{T} correspond to the elements b E K' with lbl S 1, by plugging 
in T = b. The boundary of the open (or closed) unit disc is the scheme 
SpecR[[T-1]]{T}. Note that this scheme has no K-points. The ring 
R[[T- 1]]{T} is a complete DVR with residue field k((r 1 )). 

If a E K such that Ia I = r, then Spec R[[a- 1T]] (resp. Spec R{ a-1T}) 
is the open (resp. closed) disc of radius r. This is isomorphic to the open 
(resp. closed) unit disc under the map T f--t a- 1T. 

The open annulus of thickness E is SpecR[[T, U]]/(TU- a), where 
a E R is such that v(a) = E (recall that we always set v(p) = 1). For 
K' / K as above, the K'-points of Spec R[[T, U]]/(TU- a) correspond to 
those b E K' with Ia I = p-c < lbl < 1 (or, stated in terms of the valuation 
on K', that 0 < v(b) < E), by plugging in T = b. The open annulus 
has two boundaries, one given by SpecR[[T]]{T-1 } and one given by 
Spec R[[U]]{U- 1 }. Note that two open annuli over R are isomorphic if 
and only if they have the same thickness. 

A.2. Semistable models of curves 

Let X R --+ Spec R be a semistable curve with smooth generic fiber 
X and special fiber X. If x E X, then x is either a smooth point or a 
node. Ifx is smooth, then Spec OxR,x is isomorphic to an open unit disc, 
whereas if xis a node, then Spec OxR,x is isomorphic to an annulus of 
some thickness E, which is an intrinsic property of the singularity x E X R 

(see, e.g., [Ray99, §2.1.1]). 
If X is a projective line, we can give more detail. First assume that 

XR is smooth. Then there are (many) elements T in the function field 
of X such that K(T) ~ K(X) and the local ring at the generic point of 
the special fiber of XR is the valuation ring of K(T) corresponding to 
the Gauss valuation. We say that T is a coordinate of XR (note that 
there can be many different coordinates for a given model). If T is a 
coordinate of XR, if a, b E R, and if c E K, then T = a and T = b 
coalesce on the special fiber iff v(a- b) > 0, and T = oo and T = c 
coalesce on the special fiber iff c tj. R. 

Conversely, if T is any rational function on X such that K(T) ~ 
K(X), there is a smooth model XR of X such that Tis a coordinate of 
XR. 
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Now, drop the assumption that XR is smooth. Then X is a tree
like configuration of IP'~ 's. Each irreducible component W of the special 
fiber X of XR corresponds to a smooth model of X, and thus to (many) 
coordinates T. Such aT is called a coordinate on W in this case. 

Let XR be a semistable model for X = IP':k. Let K be an algebraic 
closure of K. Suppose x is a smooth point of X on the irreducible 
component W. LetT be a coordinate on W such that T = 0 specializes 
to x. The complete local ring of x in XR is isomorphic to R[[T]]. The 
set of points of X(K) that specialize to xis the open unit disc v(T) > 0. 

Now, let x be a nodal point of X, lying on an irreducible component 
W. Suppose T is a coordinate on W such that T = 0 specializes to 
the connected component of X\{x} not containing W\{x}. Then the 
complete local ring of x in XR is isomorphic to R[[T, U]]j(TU - pE) 
where E is the thickness of the annulus corresponding to x. The set of 
points of X(K) that specialize to x E X is the open annulus given by 
0 < v(T) <E. 

Suppose T is a coordinate on a component W of X, and suppose 
T = oo specializes away from W. Let U be the subset of W consisting 
of smooth points of X. Then the set of points of X ( K) that specialize 
to U is a punctured closed unit disc, that is, a closed disc with an open 
unit disc removed for each point of (X\ { oo}) \ U. 

A.3. Stable models and marked discs 

Let X = IP':k, and suppose we are given x1, ... , Xr E X(K), with 
r ;::: 3. Then there is a unique semistable model xst for X over R 
such that the specializations of x 1 , ... , Xr to the special fiber X of X st 

are pairwise distinct, and such that each irreducible component of X 
contains at least three points that are either singular or specializations 
of an Xi· The R-curve xst is called the stable model of the marked curve 
(X;x1, ... ,xr)· 

Consider the open unit disc V := SpecR[[T]], and suppose we are 
given x 1 , ... , Xr in V(K), with r 2 2. From §A.l, we can think of 
x1 , ... , Xr as elements of the maximal ideal of R. Let X st be the stable 
model of the marked curve (IP':k;oo,xl, ... ,xr), with special fiber X 
(thinking of IP'1 ( K) as K U { oo}). We will call X st the stable model 
oflP'k- corresponding to the marked disc (V;x1, ... ,xr). Let oo be the 
specialization of oo to X. Note that the set of points of IP'1 ( K) that 
specialize away from oo form a closed disc. In particular, each point in 
this closed disc is an element of the maximal ideal of R (although some 
elements of the maximal ideal of R might specialize to oo). 
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Example A.l. Let R = W(JF5 )[a]/(a2 -5), and consider the marked 
open unit disc ('D; 0, 5, 10, 25, 5a, 5 + 5a). Then the stable model of 
X = IP'k corresponding to our marked disc has a special fiber X with 
four irreducible components X1, X2, X3, and X4, as in Fig. 1 (the 
specializations of the marked points are marked with overlines in Fig. 
1). 

10 

25 

Fig. 1. The special fiber X 

The following table shows where the K-points of X specialize. 

Subscheme V of X 
X1\X2 
X1 nx2 
X2\(X1 UX3) 
x2nx3 
X3\(X2UX4U{oo}) 
X3nx4 
X4\X3 
00 

Points of X ( K) that specialize to V 
{xl v(x);::: 2} 
{xl ~ < v(x) < 2} 
{xl v(x) = n 
{xl1 < v(x) < n 
{xi v(x) = 1 !\ v(x ,.-- 5) = 1} 
{xl1 < v(x- 5) < n 
{xi v(x- 5);::: n 
{xl v(x) < 1} 
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A.4. Formal schemes 

Corresponding to each disc or annulus from §A.2, there is a formal 
disc or annulus. In particular, if a disc or annulus is given by Spec A, 
then the corresponding formal disc or annulus is Spf A. In fact, if X is 
the formal completion of XR at its special fiber (the "formal projective 
line"), then any subscheme V <;;: X lifts to a (canonical) formal sub
scheme V <;;: X, regardless of the genus of X. For instance, take any 
(Zariski) open subscheme VR of XR such that V is a closed subscheme 
of VR. Then Vis the formal completion of VR at V, viewed as a formal 
subscheme of X via the inclusion VR--+ XR. 

§Appendix B. Depth and deformation data 

B.l. Depth 

Maintain the notation R and K from Appendix A. For any R-scheme 
X in this appendix, write XK for its generic fiber and xk for its special 
fiber. Likewise, for an R-algebra A, write AK for A C59R K and Ak for 
A C59R k. We assume throughout that R contains the pth roots of unity. 

Given a G-extension B/R[[T]], it is important in §6.6.2 to know how 
far its reduction is from being separable. In particular, if the reduction is 
separable, then B j R[[T]] is at least a birationallift of the normalization 
of the reduction. The most basic interesting case is when G ~ Zjp. We 
start off by stating a general structure theorem about Z/p-extensions of 
certain R-algebras. 

Proposition B.l ([Hen99], Chapter 5, Proposition 1.6). Let X = 
Spec A be a fiat affine scheme over R, with relative dimension ::; 1 and 
integral fibers. We suppose that A is a factorial R-algebra that is com
plete with respect to the 1r-adic valuation (for 1r a uniformizer of R). 
Let YK --+ XK be a non-trivial etale Zjp-cover, given by an equation 
yP = f, where f is invertible in AK. Let Y be the normalization of X 
in K (Y K); we suppose the special fiber of Y is integral (in particular, 
reduced). Let 'TJ (resp. ry') be the generic point of the special fiber of X 
(resp. Y ). The local rings Ox, 11 and CJY,1J' are thus discrete valuation 
rings with uniformizer 1r. Write o for the valuation of the different of 
CJY,1J' /Ox, 11 • We then have two cases, depending on the value of o (which 
always satisfies 0 ::; o ::; 1): 

• If o = 1, then Y ~ SpecB, with B = A[y]j(yP- u), for u a 
unit in A, not congruent to a pth power modulo 1r, and unique 
up to multiplication by a pth power in Ax. We say that the 
Zjp-cover YK --+ XK has multiplicative reduction. 
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• IfO:::; 6 < 1, then 6 = 1 ~ n(P~ 1 ), where n is an integer such 
that 0 < n:::; ej(p ~ 1). Then Y ~ SpecB, with 

B= A[w] 
( (1rnw+l)P-l ~ ) ' 

1rpn U 

for u a unit of A, not congruent to a pth power modulo 1r. Also, 
u is unique in the following sense: If an element u' E Ax could 
take the place of u, then there exists v E A such that 

1fpnu1 + 1 = (1rpnu + 1)(7rnV + 1)P. 

If 6 > 0 (resp. 6 = 0), we say that the Zjp-cover YK --+ XK 
has additive reduction (resp. etale reduction). 

Note that the map Yk --+ Xk above is separable iff 6 = 0. 

Definition B.2. (i) If 6 is as in Proposition B.1, then the num
ber pr:_l 6 is called the depth of the extension B /A (or of the map 
y--+ X). 

(ii) If X is as in Proposition B.1, let YK --+ XK be a Z/pn-cover that 
can be broken up into a tower of Z/p-covers YK = Tn --+ Tn-l --+ 
· · · --+ T1 --+ To = XK. Assume that for all i, 1 :::; i :::; n, the 
maps Ti+ 1 --+ Ti and the normalization Ai of X in Ti satisfy the 
properties of Proposition B.1 (with Ai playing the role of X and 
Ti+l --+ Ti playing the role of YK--+ XK ). Then for each Ti/Ti-1, 
we can define 6i as in Proposition B.l. If the normalization of X 
in K(YK) is Y = SpecB, then the depth of B/A (or of Y--+ X) 
is defined to be 

This is called the effective different in [Obu09a] and [Obu10]. 

B.2. Deformation data 

Let Y --+ X = Spec A be a degree p finite extension as in Proposition 
B.1, let 6 and u be as in Proposition B.1, let u be the reduction of u 
to Ak, and assume 6 > 0. Then the Z/p-cover Y --+ X gives rise to 
a meromorphic differential form won SpecAk as follows: if YK--+ XK 
has multiplicative reduction, set w = duju. If YK --+ XK has additive 
reduction, set w = du. One verifies that w is independent of the choice 
of u, and w is called the deformation datum corresponding to the map 
Y--+ X. See [Hen99, Chapter 5] for more details. 
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Furthermore, suppose that the natural Z/p-action on Y extends to 
a Z/p ><1 Z/m action on Y, with p f m, which descends to a Z/m-action 
on X. Let X : Z/m -+ IF; be the character given by ccrc- 1 = crx(c), 

for c E Z/m and cr any generator of Zjp. Then, for any c E Z/m, we 
have c*w = x(c)w (this is mentioned in [Wew03, p. 999], and proven in 
[Obu09b, Construction 3.4]). 

Remark B.3. The deformation datum w is important in construct
ing Hurwitz trees, see §7.3.1. In particular, it is a characteristic p object 
that helps retain information that is lost when a branched cover is re
duced from characteristic zero. Deformation data are also extremely 
important in the proof of Theorem 6.28 by Wewers and the author, as 
they are used to construct the differential equations mentioned in the 
proof of Proposition 6.22. 

Remark B.4. The depth and deformation datum of a map Y-+ X 
are the two components of Kato's differential Swan conductor, defined in 
[Kat87] (also see [Bre09, Chapter 1], especially §1.4, for an exposition). 

Acknowledgements. I thank David Harbater and Stefan Wewers for 
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