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On the double zeta values 

Pierre Cartier 

§0. Introduction 

In a very important recent paper [1], F. Brown solved long standing 
conjectures about multiple zeta values (here abbreviated as MZV). In 
particular, he showed that any such series 

(1) 

(with integers n1 2:: 1, ... , nr-1 2:: 1, nr 2:: 2) can be expressed as a lin
ear combination with rational coefficients of special values ((m1, ... , ms) 
where each mi is 2 or 3. The uniqueness of such a linear combination is 
beyond reach for the moment, but F. Brown [1], after A. B. Goncharov 
[2] has promoted the MZV's to motivic multizeta values (m ( n 1, ... , nr), 
and shown that the (m(m1, ... , ms)'s with mi in {2, 3} form a rational 
basis of the space of the motivic MZV's. 

In the course of his proof, he needs an identity of the form 

k 

(2) H(a, b) = L af'b ((2i + 1) H(k ~ i) 
i=l 

with k =a+ b + 1 and1 

(3) H(m) := ((2, ... , 2), H(a, b) := ((2, ... , 2, 3, 2, ... , 2). 
'"-v--" '"-v--" '"-v--" 

m a b 

F. Brown was not able to give an explicit formula for the rational co
efficients af'b, but this was supplied by D. Zagier [5], thus completing 
the proof by F. Brown. It is known since Euler that, for a given in
teger m;::: 1, the numbers H(m)/rr2m, ((2m)/n2m and ((2)m/n2m are 
all rational, and ((0) = ~~. So in the statement of formula (2), one 
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could replace H(k- i) by ((2k- 2i) or by ((2)k-i, without loosing the 

rationality of the coefficients a~,b. 
Let us remind the definition of the weight 

of the MZV ((n1 , ... ,nr)· In particular ((n) is of weight n. From his 
result, D. Zagier deduces that, for a given odd weight w = 2k + 1 (with 
k 2': 1), the following two families of k real numbers 

(B1) H(a,b) for a2':0, b2':0, a+b=k-1 

(B2 ) ((2k + 1), ((2i + 1) ((2k- 2i) for 1:::; i:::; k- 1 

generate the same vector subspace Dw of JR. over the rational numbers. 
D. Zagier has announced that the same space is generated by another 
family of k numbers, namely 

(B3 ) ((2k + 1), ((2i, 2k- 2i + 1) for 1:::; i:::; k- 1. 

In this paper, we shall first prove a slightly weaker statement namely 
that, modulo the simple zetas ((n), the products of two simple zetas and 
the double zetas of a given odd weight w generate the same vector space 
over Q in R On the one hand, the following formula 

(4) ((m) ((n) = ((m, n) + ((n, m) + ((m + n) 

(a particular case of the so-called "stuffie formula") enables us to express 
the product of two simple zetas in terms of double zetas. We shall prove 
the converse formula 

(5) ((m, n) 

= ~ (1 + (-1)n)((m)((n) + ~ [(-1t (m~n) -1] ((m+n) 

(m+n-3)/2 

_ ( _ 1) n ~ [ ( m +: ~ ~i - 1) + ( m + ~ = ~i - 1)] X 

x ((2i) ((m + n- 2i) 

form 2': 1, n 2': 1 and m+n odd. Once this is proved, a simple arithmetic 
proof, used already by F. Brown and D. Zagier, enables to conclude that 
the families (B2 ) and (B3 ) generate the same vector space over Q. 

Our proof is purely algebraic and rests on the use of the stuffie for
mula (4), the shuffie formula (59) and the sum formula (62) of double 
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zeta values2 , in conjonction with the manipulation of suitable generat
ing series. It is generally expected that the three families (B1 ), (B2 ) 

and (B3 ) of k real numbers are linearly independent over the field IQ 
of rational numbers. That is, the vector space D 2k+l is of dimension k 
over IQ. For the time being, using results of A. B. Goncharov [2] and 
F. Brown [1], one can promote the double zetas ((m, n) to motivic ones 
(m ( m, n) and show that the motivic families ( Bf'), ( B!J') and ( B3') form 
three basis of the motivic space D!J'k+l· Since our proof rests on the 
regularized double shuffle relations only, and since the motivic versions 
of these formulas are known (see I. Souderes [4]), our proof of formula 
(5) extends litterally to the motivic case. 

§1. Review of the stuffie relation 

Let us repeat this relation 

(6) ((m) ((n) = ((m, n) + ((n, m) + ((m + n) (form 2: 2, n 2: 2), 

and the definitions of the numbers occuring in it 

(7) 
1 

((m) = L km' 
k>O 

1 
((m,n) = L km£n · 

O<k<£ 

The standard proof is simple: write ((m) ((n) as a double series 
L k'} en extended over the domain of pairs of integers k > o, e > o. 
k>O 
£>0 

Then split this summation as the sum of three subsummations 

(8) L: =L:+L:+L: 
k>O, £>0 O<k<£ O<R<k O<k=£ 

and (6) follows immediately. 

We give another proof which is based on an integral representation 
for the simple and double zetas. For ((m) with m 2: 2, here is the 

2The formula (62) is a special case of Hoffman's derivation formula. But this 
is also a special case of the so-called "sum formula", which was conjectured by 
Moen (and Hoffman) and proved by Granville and Zagier. However, in this very 
case of double zetas, it was essentially in Euler (In Hoffman's paper "Multiple 
harmonic series" in Pacific Jour. Math. vol. 152 (1992), 275-290, he describes 
as "This was proved in Euler's paper [2] and has been rediscovered several times, 
in particular by Williams [8])". 
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calculation 

((m) L k~ = L [11 xk~l dx] m 

k?:>l k?:':l 0 

Hence 

(9) 

L 1 (x1 ... Xm)k~l dx1 ... dxm 
k?:':l C, 

1 L(xl ... Xm)k~l dx1 ... dxm 
Cm k?:':l 

1 dxl·· .dxm . 

C, 1- X1 ... Xm 

((m) = 1 dx1 ... dxm , 
C, 1- X1 .. . Xm 

where Cm is the unit cube defined by 0 ::::; x1 ::::; 1, ... , 0 ::::; Xm ::; 1 in 
JR. m. A similar calculation yields 

(10) ((m, n) = 1 ( y)( ) dx1 ... dxm+n 
c=+n 1 - Y1 Y2 1 - Y2 

with Yl = X1 ... Xm and Y2 = Xm+l ... Xm+n· All terms in formula (6) 
are integrals over the cube Cm+n of rational functions of x1, ... , Xm+n 
and the proof follows from the following identity for the integrands 

(11) 1 
(1- y1)(1- Y2) 

Y2 + Y1 
(1- Y1 Y2)(1- Y2) (1- Y1 Y2)(1- yl) 

1 
+ 1- Y1 Y2' 

that is 

(12) 1- Y1 Y2 = Y2(1- Yl) + Y1(1- Y2) + (1- y1)(1- Y2). 

We shall now reformulate the stuffie relation using generating series. 
It is convenient to introduce a symbol ((1) to be interpreted as 0. Hence 
we define 

(13) Z[u] = L ((m) um~l 
m?:>l 

and from ((1) = 0, one deduces that Z[O] = 0 and the summation can 
be restricted tom ~ 2. Similarly, let us remark that ((m, n) is defined 
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for m ;::: 1 and n 2': 2. We extend this definition to the case n = 1 by the 
conventions 

(14) ((1,1)=0, 

(15) ((m, 1) = -((m + 1)- ((1, m) (for m 2': 2). 

With this convention, the stuffle formula (6) is valid form 2': 1, n ;::: 1 
and m + n 2': 3. But form= n = 1, one obtains 

(16) ((1) ((1) = 2 ((1, 1) 

without the term ((2). This being understood, we define the generating 
series 

(17) Z[u, v] = L ((m, n) um-1 vn-1. 

m2:1, n2:1 

The stuffie formula can be reformulated as 

(18) 

with 

(19) 

Z[u] Z[v] = Z[u, v] + Z[v, u] + L[u, v] 

L[u, v] := L L ((m + n) um-1 vn-1. 

k2:3 m+n=k 

Notice that, with our conventions, one has Z[O] = Z[O, OJ = 0. To be 
valid, identity (18) requires L[O, 0] = 0, hence the special form of the 
summation for L[u, v], restricted to m ;::: 1, n 2': 1, m + n 2': 3. 

The relation 

m-1 n-1 uk-1 - vk-1 
u v =-----

u-v 
(20) (for k 2': 2) 

m+n=k 

enables one to conclude 

(21) L[u, v] = Z[u] - Z[v] - ((2). 
u-v 

For later purposes, we need to split the series Z[u] and Z[u, v] into 
even and odd parts, as follows: 

Z[u] = Z+[u] + Z_[u] where Z±[-u] = ± Z±[u], 

Z[u,v]=Z+[u,v]+Z-[u,v] where Z±[-u,-v]=±Z±[u,v]. 
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We are interested in Z~ [u, v] which is the generating series for the double 
zetas whose weight w = m + n is odd. From (18) and (21), one obtains 
the final result: 

Z~ [u, v] + Z~ [v, u] + L~ [u, v] 
Z+[u]- Z+[v] 

u-v 

where the annoying constant -((2) in (21) has disappeared. 

§2. Some integration formulas: the simple zetas 

(23) 

Let us define the functions 

Sk(u) = L k~mum~1 
m~2 

for k ~ 1. One derives immediately the following expressions 

(24) Sk(u) 
u 

k(k-u)' 

(25) Sk(u) 
1 1 

----
k-u k' 

(26) Sk(u) 11 (x~u- 1) xk~l dx. 

Since ((m) is equal to I: k~m for m ~ 2, and since by convention 
k~l 

((1) = 0, we can rewrite Z[u] = I: ((m) um~ 1 as I: Sk(u); the series 
m~2 k~l 

is absolutely convergent (for any complex number u distinct from any 
integer k ~ 1) since (24) gives the estimate Sk(u) = oU2) for fixed u. 
Hence Z[u] is a meromorphic function of u, with single poles of residue 
- 1 for u equal to 1, 2, 3, ... From (25) and (26) we derive two important 
representations of Z[u], namely 

(27) Z[u] = "' (-1 - ~) , ~ k-u k 
k~l 

(28) 11 x~u 1 
Z[u] = - dx. 

0 1-x 

From this integral formula, one derives immediately 

(29) 
1 

Z[u + 1] = Z[u]--. 
u 
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Introducing the classical psi function 

(30) 
d 

1j; ( s) = ds log r ( s) ' 

one can translate the relation (27) as3 

(31) Z[u] = 1/;(1) - 1/;(1 - u) . 

Thus the formulas (28) and (29) correspond to well-known properties of 
the psi function. 

The integral (28) is convergent in the neighborhood of x = 0 when 
the real part Re( u) of u satisfies Re( u) < 1. By well-known properties 
of Mellin transforms, Z[u] is holomorphic in the half-plane Re(u) < 1 
and extends as a meromorphic function to the complex plane C. The 
correction -1 to x-u ensures that the integral is convergent in the neigh
borhood of x = 1. We shall meet similar, but more complicated, phe
nomena for the double integrals representing the double zetas, which are 
regularized Mellin transforms. In a later study of multiple zeta values, 
we shall have to develop systematic regularization procedures which are 
inspired by the well-known methods in quantum field theories. 

§3. Some integration formulas: the double zetas 

We shall give another proof of the stuffie formula in the form (18). 
For this purpose, we need suitable double Mellin transforms, namely 

(32) L[u, v] 

(33) Z[u, v] 

{1 t x-u y-v - 1 dx dy 

Jo Jo 1- xy 

1111 x-u y-v -x-u - y-u + 1 
y ( )( ) dxdy- L[u,O]. 

o o 1- y 1- xy 

(A) Proof of formula (32): 

Recall that the constant term of L[u, v], as defined by formula (19), 
is 0. We modify this by putting L[u, v] = L[u, v] + ((2), that is 

(34) L[u, v] = L ((m + n) um-1 vn- 1 . 

3Let us recall that -1{1(1) is the Euler constant /E· 
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Since ((2) is equal to J0
1 J0

1 ~':'_~t as we saw in Section 1, formula (9), we 
have to prove the following relation 

(35) 
_ 1111 x-u y-v 
L[u,v] = dxdy. 

o o 1-xy 

Using the definition of ((m + n) as 2:: k-m · k-n, inserting this in (34), 
k:::1 

and rearranging the triple series, we obtain 

(36) 
_ 2: 1 1 
L[u,v] = -k- · -k-. 

-u -v 
k:::l 

On the other hand, 
series 2:: xk- 1 yk- 1 

k:::1 

in the integral (35) develop -1 1 as a geometric -xy 

and integrate term by term. We obtain the same 

series as in ( 36). Q.E.D. 

An immediate corollary of (32) is the following: 

(37) L[u, v] - L[u, 0] - L[O, v] = x - y - dx dy. 1111 ( -u 1)( -v 1) 

o o 1- xy 

Let us give now two new proofs of formula (21), that is 

(38) -L[ ] = Z[u] - Z[v] u,v . 
u-v 

The first one uses series, that is (36) for L[u, v] and (27) for Z[u]. Then 
our relation reduces to the obvious relation 

For the second proof, use the integral representation (35) for L[u, v] and 
the general integration formula 

r1 rl rl !1 d 
(40) Jo Jo f(x,y)dxdy= Jo dz z f(x,~) :, 
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to get 

L[u,v] ~ xv-u-1dx 11 -vd 11 
0 1- z z 

[ 1 z-v dz . 1 - zv-u 

} 0 1- z v- u 

{1 z-V - z-U dz 

Jo (1-z)(v-u) 

1 11 z-v - 1 1 11 z-u - 1 
-- dz- -- dz 
v-u 0 1-z v-u 0 1-z 

and we conclude by (28). 

(B) Proof of formula (33): 
Using the definition (17) of Z[u, v] and the convention ((1, 1) = 0, 

we split the summation into two subseries, that is Z[u, v] =A+ B with 

( 41) A 

( 42) B 

L ((m, n) um-1 vn-1' 

m:0:1,n:0:2 

L ((m, 1) um-1. 
m:0:2 

To compute A, replace ( ( m, n) by its definition 2:= k-m g-n, inter
O<k<R 

change the summations 2:= with 2:= and perform the easy summations 
m,n k,£ 

over m and n. We get therefore 

( 43) 

We introduce now the integral representations 

(44) -- = x-u xk- 1 dx 1 11 
k- u 0 ' 

(45) 1 1 11 -v R-1 --- = (y - 1) y dy 
£- v £ 0 

and interchange integration and summation. Using the series expansion 

(46) L xk-1 Ye-1 = Y 
O<k<R (1- y)(1- xy) ' 
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we conclude 

(47) 1111 X-u(y-v _ 1) 
A= y dxdy. 

0 0 (1 - y) (1 - xy) 

To evaluate B, let us go back to the definition 

(48) ((m, 1) = -((m + 1)- ((1, m). 

By definition, the series- 2::: ((m + 1)um-1 is equal to -L[u,O] (see 
m::0:2 

formula (19)). It remains to sum the series 

( 49) C = L ((1,m)um- 1 . 

m::0:2 

Returning to the definition ((1,m) = 2::: k- 1 e-m, a simple manipu
O<k<P 

lation of series yields C = 2::: k- 1 Se(u). By using the integral repre
O<k<£ 

sentations 

interchanging integration and summation and using formula ( 46), we 
end up with 

(51) 1111 y-u -1 
C = y dxdy. 

o o ( 1 - y) ( 1 - xy) 

We have therefore 

Z[u, v] =A+ B =A- C- L[u, 0] 

and we conclude by using formulas (47) and (51). Q.E.D. 

(C) Proof of the stuffie formula: 

Putting 

(52) Z[u, v] := Z[u, v] + L[u, OJ, 

the stuffie formula amounts to 

(53) Z[u, v] + Z[v, u] = Z[u] Z[v] - L[u, v] + L[u, 0] + L[O, v] . 

(Note L[O,v] = L[v,O]:) 
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Using (28) and (37), we evaluate the right-hand side of this relation 
as the integral 
(54) 

B[u, v] = {1 
{

1 
(x-u- 1)(y-v- 1) [( )\ ) - - 1-] dx dy. 

Jo Jo 1 - x 1 - y 1 - xy 

On the other hand, while symmetrizing Z[u, v] + Z[v, u] we can replace 
in the integral (33) the term -y-u by -y-v, hence Z[u, v] + Z[v, u] is 
the sum of the two integrals A[u, v] and A[v, u], where 

(55) A[u, v] := ( f\x-u- 1)(y-v- 1) ( )r ) dx dy. J o J o 1 - y 1 - xy 

We calculate A[v, u] by exchanging the integration variables x, y, hence 

(56) 1111 X A[v, u] = (x-u- 1)(y-v- 1) ( )( ) dx dy. 
o o 1- x 1- xy 

From all these relations, it follows that the stuffie formula (53) is equiv
alent to A[u, v] + A[v, u] = B[u, v]. This follows immediately from the 
relation 

(57) 
1 1 y X ...,....--....,....,.-.........,- = -- + + -,----...,--:----:-

(1 - x) (1 - y) 1 - xy (1 - y) (1 - xy) (1 - x) (1 - xy) · 

This is an identity among rational functions that we met already in 
Section 1, formula (11). Q.E.D. 

Remarks. a) In this section, u and v are complex variables. If we 
assume lui < 1, lvl < 1, all series are absolutely convergent. Exchanging 
summation and integration rests on the general principle 

(58) £I: ti(t) dt =I:£ ti(t) dt 

" ' 
which is guaranteed by the assumption 

L £1fi(t)1 dt < +oo . 
• 

Then we can proceed through analytic continuation for general values 
of u and v. Notice that Z[u, v] is a meromorphic function with poles 
located at u = k or v = k fork= 1, 2, .... 
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b) Using geometric series, the right-hand side R(x, y) offormula (57) 
can be written as 

R(x,y)= L xkyC+ L xkyC+ L xkyc. 
O~k=C O~k<C O~C<k 

Using once again the splitting principle for double series, we get 

k';:>O, £';:>0 

k R 1 1 
X y =--·--

1-x 1-y 
R(x,y) = 

This is formula (57)! 

§4. Review of the shuffle formula 

We shall use the following special case of the shuffle formula 

(59) ((m) ((n) Ln (m + n - i - 1) 1 (. _ .) 
1 -, z, m + n z m-

i=1 

When m 2': 2 and n 2': 2, all zeta values occuring there are defined 
by convergent series and integrals4 , and our proof shall be via integral 
representations. We want to extend the validity of formula (59) to the 
exceptional cases where m or n is equal to 1. For instance, for m = 1, 
we obtain the specialization 

n-1 

(60) 0 = 2((1,n) + L ((i,n + 1- i) + ((n, 1) 
i=2 

for n 2': 2, according to our convention ((1) = 0. Recall that ((n, 1) is 
defined in terms of convergent zeta values by the relation (15), that is 

(61) ((n, 1) = -((1, n)- ((n + 1). 

Hence (60) reduces to 

n-1 

(62) ((n + 1) = L ((i, n + 1- i) (for n 2': 2) . 
i=1 

4We call them convergent zeta values! 
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This is a special case of the sum formula. 

(A) Proof of the shuffle formula: 

We introduce the abbreviation 

(63) 
xm-1 

Ym(x) = (m _ 1)! 

To calculate the integral 

(64) 100 dx 
Im := Ym(x) --, 

o ex- 1 

use the series expansion 

(65) _1_ = "'""""e-kx 
ex - 1 ~ ' 

k2':1 

integrate term by term using the well-known relation 

(66) 100 Ym(x) e-kx dx = k-m, 

hence Im = 2::: k-m = ((m). We conclude5 

k2':1 

(67) {oo Ym(x) --f!- = ((m). Jo e -1 

A similar calculation yields 

103 

For m ~ 2, Ym(x) is divisible by x, and since e"'- 1 is continuous up 
to x = 0, the integral (67) converges up to x = 0 (the convergence for 
x = oo is guaranteed since the integrand is O(e-x/2 )). Similarly, the 
integral (68) converges for m ~ 1 and n ~ 2. 

We need a general integration formula. In the plane with coordinates 
u, v let us consider the domain D defined by u > 0, v > 0. Up to a set 
of measure 0, it splits as D = D 1 U D 2 where 

D1 = {0 < u < v}, D2 = { 0 < v < u} . 

5This is a special case of the well-known integral representation of Riemann's 
zeta function! 
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The changes of coordinates u = y, v = x+y for D1 and u = x+y, v = y 
for D 2 reduce these inequalities to x > 0, y > 0, hence the relation 

(69) 1= 1= f(x,y)dxdy 1= 1= f(y,x+y)dxdy 

+ 1= 1= f(x + y, y) dx dy. 

From (67), we obtain by multiplication 

r= r= dx dy 
(70) ((m) ((n) = Jo Jo Ym(x) Yn(Y) (ex_ 1)(eY _ 1) 

form 2-. 2, n 2- 2. Using the integration formula (69), this transforms as 
((m) ((n) = Im,n + In,m where 

r= r= dx dy 
(71) Im,n := Jo Jo Ym(Y) Yn(X + y) (eX+Y- 1)(eY- 1) . 

A simple calculation using the binomial formula yields the following 
algebraic identity 

(72) Ym(Y) Yn(X + y) = ~ ( m +:: ~ ~- 1) Yi(x) Ym+n-i(Y). 

Inserting this into the integral (71) and using ( 68) gives the result 

(73) Im,n = ~ (m +;: ~ ~ - 1) ((i, m + n- i). 

We conclude the proof of formula (59) using ((m) ((n) = Im,n + In,m· 
Q.E.D. 

(B) Proof of the sum formula: 

We have to show that the sum 

n-1 

(74) Sn := L ((i, n + 1- i) = ((1, n) + ((2, n- 1) + ... + ((n- 1, 2) 
i=l 

is equal to ((n + 1) for n > 2. An equivalent form of the binomial 
theorem is the formula 

n 

(75) Yn(x + y) = L Yi(x) Yn+l-i(Y), 
i=l 
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hence by subtraction 

n-1 

(76) L Yi(x) Yn+l-i(Y) = Yn(x + y)- Yn(x). 
i=l 

Using formula (68), we obtain 

(77) . . 100 1oo dx dy 
((z,n+1-z)= Yi(x)Yn+l-i(Y)(x+ )( )' o o e Y- 1 eY- 1 

Summing and using (76), we conclude 

Here is a slight difficulty: we cannot split this integral as a difference of 
two integrals since the integral J0A e:1_!_ 1 diverges like J0A dJ. We put a 

regularization factor6 by replacing dy by yEdy for a small E > 0. 

Let us introduce therefore 

roo roo YE dx dy 
(79) Sn,E := Jo Jo [Yn(X + y)- Yn(x)] (ex+y _ 1)(eY _ 1). 

It is now legitimate to split this integral as a difference of two integrals. 
The first one is 

1oo 1oo Yn(x + y) yE --'-----'-- . -- dx dy 
0 0 ex+y - 1 eY - 1 

which is transformed, according to (69), into7 

roo roo Yn(x) . ___![___ dx dy- roo roo Yn(x) . (x + y)" dx dy. 
} 0 } 0 ex - 1 eY - 1 } 0 } 0 ex - 1 ex+y - 1 

Inserting this into (79) yields 

(80) 

6 All known proofs of the sum formula seem to require some kind of limiting 
process! 

7Since in general one has JJ g(x,y) dxdy = JJ g(y,x)dxdy, we can rewrite 
f0

00 f0
00 f(y, x + y) dx dy as f0

00 f0
00 f(x, x + y) dx dy in formula (69). 
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with the definition 
(81) 

y" 
F"(x, y) = (ex- 1)(eY- 1) 

P. Cartier 

(x + y)" y" 
( ex+y - 1) ( eY - 1) · 

It is now legitimate to go to the limit c -7 0. According to (78) and 
(79), one has Sn = lim Sn "' hence 

c:--+0 ' 

(82) 

where F(x, y) is the limit of F"(x, y) for c -7 0. From (81) one observes 
that F(x,y) is of the form H(ex,eY) with 

1 1 1 
(83) H(a, b) := (a- 1)(b- 1) (ab- 1)(a- 1) ( ab - 1) ( b - 1) · 

We are back to our old friend expressed in formulas (11) and (57). It is 
immediate that H(a, b) is equal to abl__ 1 , hence by (82), we obtain 

(84) 1oo 1oo dxdy 
Sn = . Yn (X) x+ · 

o o e Y-1 

This last integral is easy to evaluate: develop ex+;_ 1 as 2: e-kx · e-ky 
k2:1 

according to (65), then use formula (66) to derive 

(85) Sn = 2::>-n · k-1 = ((n + 1). 
k2:1 

Q.E.D. 

(C) Generating series: 

We remind the reader of the definitions 

Z[u] L ((m)um-1 

m:0:2 

L[u,v] 2:: ((m + n) um-1 vn-1 
m;:::l, n2:1 

m+n2:':3 

Z[u,v] 2:: ((m, n) um-1 vn-1 

m2:1, n2:1 
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and of the convention ((1, 1) = 0. One has 

(86) Z[u,u+v]= L ((m,n)um-l(u+vt-1, 
m2l,n21 

hence expanding via the binomial theorem, one obtains 
(87) 

Z[u,u+v]= L um-lvn-lf(m+:~;- 1)((i,m+n-i). 
m21, n21 i=l 

Treating Z[v, u+v] in a similar way, we conclude that the shuffle relation 
(59) is therefore equivalent to 

(88) Z[u] Z[v] = Z[u, u + v] + Z[v, u + v]. 

The sum formula (62) takes the equivalent form8 

(89) Z[u, u] = Z[u, 0] + L[u, OJ. 

We leave it as an exercise to the reader to prove these two relations using 
the integral representations for these generating series (see formulas (32) 
and (33)). 

§5. The main formulas 

Using generating series, and keeping only the odd part, we reformu
late the stuffle and the shuffle relations respectively as 

(90) Z_ [u, v] + Z_ [v, u] = A[u, v] 

(91) Z_[u,u+v] + Z_[v,u+v] = B[u,v] 

using the definitions 

(92) A[u,v] := Z+[u] Z_[v] + Z+[v] Z_[u]- _z+-'-'['----'u]'----z_+-"[v--=-] 
u-v 

(93) 

We introduce two other functions 

(94) C[u, v] := A[u, v] + A[u- v, u] - A[v- u, v] 

8This relation obtains immediately by putting v = 0 in the relations (18) 
and (88). Hence it is not a new relation. 
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(95) D[u, v] := B[-u, v] + B[v- u, u]- B[u- v, v]. 

Using the stuffle relation (90), we calculate 

(96) C[u, v] Z_[u,v] + Z_[v,u] + Z_[u- v,u]- Z_[v- u,v] 

Z_[v,v- u] + Z_[u,u- v]. 

Similarly, using the shuffle relation, we obtain 

(97) D[u, v] Z_ [u, v]- z_ [v, u]- Z_ [u- v, u] + Z_ [v- u, v] 
+ Z_[v,v- u] + Z_[-u,v- u]. 

By adding, this yields 

(98) C[u,v] + D[u,v] = 2 Z_[u,v] + Z_[u,u- v] + Z_[-u,v- u]. 

Since the function z_ [u, v] is odd, the last two terms cancel, and there
fore 

(99) 2 Z_ [u, v] = C[u, v] + D[u, v] . 

We can refer to the definitions (92) to (95) of the functions A[u, v] 
to D[u,v] to derive an explicit form for Z_[u,v]. Here is the final result: 

(100) Z_[u,v] = Z+[u] Z_[v] + Z+[u- v] Z_[u]- Z+[u- v] Z_[v] 

+ ~ [- Z+[u]- Z+[v] + Z+[u- v]- Z+[u] _ Z+[v- u]- Z+[v]]. 
2 u-v v u 

Another proof is as follows: check that the function z_ [u, v] defined by 
this formula is odd (which is obvious) and verify that it satisfies the 
stuffle equation (90) as well as the shuffle equation (91). The reason
ing leading to equation (99) shows that there exists a unique function 
satisfying these conditions. 

Let us introduce now the antisymmetric double zetas 

(101) ry(m, n) := ((m, n)- ((n, m) 

and their generating series9 

(102) H[u, v] = Z[u, v] - Z[v, u]. 

9Read H[u, v] as "eta" and Z[u, v] as "zeta" using the upper case greek 
letters! 
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We split it into an even part H+[u,v] and an odd part H_[u,v]. From 
formula (100), one derives 

(103) H_[u,v] Z_[u,v]- Z_[v,u] 

Z+[u] Z_[v]- Z+[v] Z_[u] 
+ 2Z+[u- v] (Z_[u]- Z_[v]) 

+ 
Z+[u- v]- Z+[u] Z+[v- u]- Z+[v] 

v u 

It is more convenient to slightly modify this generating series by intro
ducing the new series 

We have the following variant of formula (103) 

(105) H_[-u,v] Z+[u] Z_[v] + Z+[v] Z_[u] 

- 2Z+[u+v](Z_[u]+Z-[v]) 
(u+v)Z+[u+v]-uZ+[u]-vZ+[v] 

+ uv 

Noticing that the first term Z+[u] Z_ [v] + Z+[v] z_ [u] is simply the odd 
part of the product 

Z[u] Z[v] = L ((m) ((n) um- 1 vn- 1 

rn~l 
n2:1 

and that u z+ [u] is equal to 2: ((2k+ 1) u 2k+ 1 ' we transform the relation 
k;;>1 

(105) into10 

(106) ( -1t 77(m, n) = ((m) ((n) + (m ~ n) ((m + n) 

ln/2J . 
-2 ~ (m+;,-=_;z- 1)((2i)((m+n-2i) 

Lm/2J . 
-2 ~ (m+~=~z- 1)((2i)((m+n-2i) 

10 As usual we denote by L x J the integer part of a number x, that is x = 
LX J + e with 0 -<:; e < 1. 
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in the case of a odd weight m + n = 2k + 1 with k ;::: 1. 

From the stuffie relation (6) and definition (101) of 77(m, n), one 
derives 

(107) 
1 

((m, n) = 2 [77(m, n) + ((m) ((n)- ((m + n)]. 

This proves the final formula announced as (5) in the introduction 

(108) 

((m, n) 

= ~ (1 + (-1)n)((m)((n) + ~ [(-1)n (m~n) -1] ((m+n) 

m+n-3 

_ ( _ 1) n t [ ( m + ~ ~ ~i - 1) + ( m + ~ = ~i - 1)] 

x ((2i) ((m + n- 2i) 

in the case of an odd weight m + n = 2k + 1. 

We urge the reader to check the formula (106) against the numerical 
data given in tables I and II. 

§ Appendix A. Examples and tables 

Weight 3: 

With our convention ((1) = 0, the stuffie formula takes the form 

(109) 0 = ((1) ((2) = ((1, 2) + ((2, 1) + ((3) 

while the shuffle formula takes the form 

(110) 0 = ((1) ((2) = 2 ((1, 2) + ((2, 1). 

One derives 

(111) { ((1, 2) = ((3) 
((2,1) = -2((3). 

The formula ((1, 2) = ((3), that is explicitely 

(112) 
1 1 

I: k(k + j)2 = I: k3 
k~l k>l 
j~l -
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is a famous result of Euler. For the antisymmetric double zetas ry( m, n) = 
((m, n)- ((n, m), one derives 

(113) { ry(1, 2) = + 3 ((3) 
ry(2,1) = -3((3)0 

Weight 5: 

Stuffie relations: 

((1) ((4) 

((2) ((3) 

Shuffle relations: 

((1) ((4) 

((2) ((3) 

((1,4) + ((4, 1) + ((5) = 0 

((2, 3) + ((3, 2) + ((5) 0 

2 ((1, 4) + ((2, 3) + ((3, 2) + ((4, 1) = 0 

3 ((1, 4) + 2 ((2, 3) + ((3, 2) 

+ 3 ((1, 4) + ((2, 3) 

6 ((1, 4) + 3 ((2, 3) + ((3, 2) 0 

We have 4 linear relations for 4 unknown quantities ((1, 4), ((2, 3), 
((3, 2), ((4, 1)0 Here is the solution 

((1, 4) 2 ((5) - ((2) ((3) 

((2, 3) - 121 ((5) + 3 ((2) ((3) 

((3, 2) ~ ((5) - 2 ((2) ((3) 

((4, 1) - 3((5) + ((2) ((3) 0 

In matrix form, this is written as 

((1, 4) 
((2,3) 
((3,2) 
((4, 1) 

From this we derive 

((5) 
2 

-11/2 
9/2 
-3 

((2) ((3) 
-1 
3 

-2 
1 

ry(1, 4) - ry(4, 1) = 5 ((5)- 2((2) ((3) 

ry(2, 3) = - ry(3, 2) = - 10 ((5) + 5 ((2) ((3) 0 
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The case of weight 7 can be treated similarly. In table I, I give in 
matrix form the results for the weights 3, 5, 7. To make use of this table, 
recall the relations 

(114) 
1 

((m, n) = 2 [77(m, n) + ((m) ((n)- ((m + n)] 

for m ::0: 1, n ::0: 1 

k-l 

(115) 77(1, 2k) = (2k + 1) ((2k + 1)- 2 I: ((2i) ((2k- 2i + 1) 
i=l 

hence 

k-l 

(116) ((1, 2k) = k ((2k + 1)- I: ((2i) ((2k- 2i + 1). 
i=l 

If we solve the linear stuffie and shuffie relations without imposing 
((1) = 0, we get an extra term -((2k) ((1) in 77(1, 2k), hence a cor
rection - ~ ((2k) ((1) for ((1, 2k) and ((2k, 1). This explains the last 
column in our tables. 

Table I 

Antisymmetric double zetas in weight 3, 5, 711 

Weight 3 

Weight 5 

7](1, 4) 
7](2,3) 
7](3,2) 
7](4,1) 

7](1, 2) 
7](2,1) 

((5) 
5 

-10 
10 
-5 

((3) 
3 

-3 

11Calculated directly by the author. 

((2) ((1) 
-1 
1 

((2) ((3) 
-2 

((4) ((1) 

5 
-5 
2 

-1 
0 
0 
1 
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Weight 7 

((7) ((2) ((5) ((4) ((3) ((6) ((1) 
77(1, 6) 7 -2 -2 -1 
77(2, 5) -21 9 4 0 
77(3,4) 35 -20 -1 0 
77(4,3) -35 20 1 0 
77(5,2) 21 -9 -4 0 
77(6,1) -7 2 2 1 

Table II 

Antisymmetric double zetas in weight 9, 11 12 

Weight 9 

((9) ((2) ((7) ((4) ((5) ((6) ((3) ((8) ((1) 
77(1, 8) 9 -2 -2 -2 -1 
77(2, 7) -36 13 8 4 0 
77(3, 6) 84 -42 -12 -1 0 
77(4,5) -126 70 9 0 0 
77(5,4) 126 -70 -9 0 0 
77(6,3) -84 42 12 1 0 
77(7,2) 36 -13 -8 -4 0 
77(8,1) -9 2 2 2 1 

Weight 11 

((11) ((2) ((9) (( 4) ((7) ((6) ((5) ((8) ((3) ((10) ((1) 
1J(1, 10) 11 -2 -2 -2 -2 -1 
1](2, 9) -55 17 12 8 4 0 
1](3, 8) 165 -72 -30 -12 -1 0 
1J( 4, 7) -330 168 41 8 0 0 
1](5, 6) 462 -252 -42 -1 0 0 
1](6, 5) -462 252 42 1 0 0 
17(7,4) 330 -168 -41 -8 0 0 
7](8, 3) -165 72 30 12 1 0 
1J(9, 2) 55 -17 -12 -8 -4 0 
1](10, 1) -11 2 2 2 2 1 

12Calculated by the author using tables of Minh et al. 
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§ Appendix B. A compendium of useful formulas 

B.l. Simple zetas 

k::::l 

r)Q xm-1 dx 

} 0 (m- 1)! ex- 1 

r dxl ... dxm . 
} Crn 1 - X1 ... Xm 

Here m ;:::: 2, and Cm is the unit cube in the space ffi.m, defined by 
the inequalities 0 ::; x 1 ::; 1, ... , 0 ::; Xm ::; 1. To be supplemented by 
((1) = 0. 

B.2. Generating series for simple zetas 

L k2(ku- u) 
k::::l 

rl rl x-u -1 dxdy 
Jo Jo 1- xy 

roo roo eux - 1 dx dy 
Jo Jo ex+y- 1 

Z[u] u(L[u] + ((2)). 

(notice ((1) = 0) 
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B.3. Double zetas 

((m, n) 
O<k<£ 

roo roo xm-1 yn-1 dx dy 

} 0 } 0 (m- 1)! (n- 1)! (eX+Y- 1)(eY- 1) 

r Xm+1 · · · Xm+n dx1 ... dxm+n 
Jc=+n (1- X1 ... Xm+n)(1- Xm+1 ... Xm+n) . 

Herem~ 1 and n ~ 2. To be supplemented by 

((1, 1) = 0, ((m, 1) = -((m + 1)- ((1, m) for m ~ 2. 

B.4. Generating series for double zetas 

Z[u,v] 

"'"""' (-1-. _1 ___ 1_. ~ _ ~. _1_ + _!_) _ L[u] 
0 k-u £-v k-u £ k £-u k€ 

O<k<R 

1111 x-u y-v - x-u - y-u + 1 
y ( ) ( ) dx dy - L[u] o o 1- xy 1- y 

1oo 1oo (eux+vy _ eux _ euy + 1) 
( + )( ) dxdy-L[u]. 

0 0 ex Y - 1 eY - 1 

B.5. Rational functions 

"'"""' k-1 R-1 0 X y 
O<k=R 

"'"""' k-1 R-1 0 X y 
O<k<R 

"'"""' k-1 R-1 0 X y 
O<R<k 

1 

1- xy 

y 

(1- y)(1- xy) 

X 

(1- x)(1- xy) 

1 1 1 y X 
--·--=--+ + . 
1 - x 1 - y 1 - xy ( 1 - y) ( 1 - xy) ( 1 - x) ( 1 - xy) 
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B.6. Stuffie relation 

((m) ((n) = ((m, n) + ((n, m) + ((m + n) 

for m ~ 1, n ~ 1, except m = n = 1 

{ 
Z[uJ Z[vJ = Z[u, vJ + Z[v, uJ + L[u, vJ 
L[u, vJ = Z[uJ - Z[vJ - ((2). 

u-v 

B. 7. Other expressions for L[u, vJ 

L[u,vJ = 

L[uJ 

L[u, vJ - L[uJ - L[vJ 

2: ( k ~ u · k ~ v - :2) 
k~1 

[1 [1 x-u y-v - 1 dx dy 

lo lo 1- xy 

1= 1= eux+vy - 1 
---~dxdy 

o o e+Y- 1 

L[u, OJ = L[O, uJ 

1111 (x-u- 1)(y-v- 1) 
~--~~----~dxdy 

o o 1-xy 

1=1= (eux- 1)(evy- 1) 
-'-------:-'--'---------'- dx dy. 

o o ex+y- 1 

B.8. Shuffle formula and sum formula 

((m) ((n) 

((n + 1) 

Z[uJZ[vJ 
L[uJ 

Ln (m + n - i - 1) ~"(. _ .) 
1 ., ~,m + n ~ m-

i=1 

n-1 

L ((i, n + 1- i) 
i=1 

Z[u,u + vJ + Z[v,u + vJ 
Z[u, uJ - Z[u, OJ . 



On the double zeta values 

B.9. Structure of double zetas 

((m, n) + ((n, m) = ((m) ((n)- ((m + n) 

((m, n)- ((n, m) = ry(m, n) 
1 

((m, n) = 2 (ry(m, n) + ((m) ((n)- ((m + n)) 

k-1 

((1, 2k) = k ((2k + 1)- :z:::: ((2i) ((2k- 2i + 1) 
i=1 

k-1 

117 

((2k, 1) = -(k + 1) ((2k + 1) + :z:::: ((2i) ((2k- 2i + 1) + ((2k) ((1) 
i=1 

ry(1, 2k) = -ry(2k, 1) = (2k + 1) ((2k + 1) 
k-1 

-2 :z:::: ((2i) ((2k- 2i + 1)- ((2k) ((1). 
i=1 

Notice that ((1) = 0 according to our conventions! In all these formulas 
m ~ 1, n ~ 1 and k ~ 1. The case m = n = 1 is to be omitted. 

B.lO. The main formulas 

( -1)n ry(m, n) ((m)((n)+ (m~n)((m+n) 
L n/2 J . 

- 2 ~ ( m + ~ ~ ~~- 1) ((2i) ((m + n- 2i) 

Lm/2J . 
- 2 ~ ( m + ~ = ~z- 1) ((2i) ((m + n- 2i) 

((m,n) 
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In these formulas m ;?: 1, n ;?: 1 and m + n is odd, m + n ;?: 3. 

B.ll. Generating series 

+ 

Z_[u,v] = Z+[u] Z_[v] + Z+[u- v] Z_[u]- Z+[u- v] Z_[v] 

! [- Z+[u]- Z+[v] + Z+[u- v]- Z+[u] _ Z+[v- u]- Z+[v]]. 
2 u-v v u 

H_[u,v] 

H_[-u,v] 

H[u, v] = Z[u, v] - Z[v, u]. 

z_ [u, v] - z_ [v, u] 

Z+[u] Z_[v]- Z+[v] Z_[u] 

+ 2Z+[u-v](Z-[u]-Z_[v]) 

+ 
Z+[u- v]- Z+[u] Z+[v- u]- Z+[v] 

+ 

v 

Z+[u] Z_[v] + Z+[v] Z_[u] 

2 Z+ [u + v] (Z_ [u] + Z_ [v]) 

u 

(u + v) Z+[u + v]- u Z+[u]- v Z+[v] 
uv 

Acknowledgements. This paper grew out of a collaboration with 
D. Zagier and F. Brown. D. Zagier informed us about the progress 
of his work on double zetas. On the other hand, F. Brown supplied the 
tables which enabled us to calculate table II above, and suggested to use 
the antisymmetric form 

ry(m, n) = ((m, n)- ((n, m). 

From our tables and by similarity with D. Zagier's tables, it was easy 
to guess the patterns and to discover the formulas with binomial coeffi
cients. 

Added in proof (April 2011). I just received the final version of Zagier's 
paper [5]. The main formula (5) is stated there, and its proof is very 
similar to our proof. The fact that the families ( B 2 ) and ( B 3 ) generate 
the same vector space over CQl is also proved, and the proof rests on the 
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arithmetical method of Brown and Zagier mentioned in the introduction. 
What is not in Zagier's paper are the antisymmetric double zetas, the 
motivic version and the integral formulas for the generating series. 
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