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Combinatorics of the double shuffle Lie algebra

Sarah Carr and Leila Schneps

Abstract.

In this article we give two combinatorial properties of elements sat-
isfying the stuffle relations; one showing that double shuffle elements
are determined by less than the full set of stuffle relations, and the other
a cyclic property of their coefficients. Although simple, the properties
have some useful applications, of which we give two. The first is a gen-
eralization of a theorem of Thara on the abelianizations of elements of
the Grothendieck-Teichmiiller Lie algebra grt to elements of the double
shuffle Lie algebra in a much larger quotient of the polynomial alge-
bra than the abelianization, namely the trace quotient introduced by
Alekseev and Torossian. The second application is a proof that the
Grothendieck—Teichmiiller Lie algebra grt injects into the double shuf-
fle Lie algebra 0s, based on the recent proof by H. Furusho of this
theorem in the pro-unipotent situation, but in which the combinatorial
properties provide a significant simplification.

§1. The cyclic property

Write Y for the alphabet {y1,y2,93,...} and U for the alphabet
{u1,us2,us, ...}, where y; and u; are given the weight 4, and these two
alphabets are related by the expression

(1)
~ 1
urtug e = log(Ityiyn++) = (ityat- )5 (Wtyat )+,
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with the parts of equal weight on each side identified, so that

U1 =M
(2) U2 = Y2 — %y%
_ 1 1 1,3
Uz =Yz — 3Y1Y2 — Y291 + 5Y7 .-

Let Q[U] be the non-commutative polynomial ring freely generated by
the u;, and Q[Y] be that generated by the y;.

Definition 1.1. For any two sequences a = (a1,...,a,) and b =
(b1,...,bs) of integers a;,b; > 1, define the shuffle of a and b, sh(a,b),

to be the list (i.e. a set which may contain repeated elements) of se-

quences obtained as follows. We write by = ar41,...,bs = Grys,; for any
permutation o € Syis such that o(1) < - <o(r) ando(r+1) < ... <
o(r+s), we define the sequence (a,-1(1), .-, Go-1(r4s)). Note that these

sequences may not all be distinct: the shuffle sh(a,b) is the complete
list, with repetitions, of these sequences.

Similarly, for any two sequencesa = (aq,...,a.) andb = (by,...,bs)
of integers a;,b; > 1, define the stuffie of a and b, st(a,b), to be the list
of sequences obtained as follows. We again write by = ar41,...,bs =

arys as above. Following Furusho’s notation, let ShS (r,8) denote the set
of surjective maps o : {1,...,r+s} —» {1,...,N}, N < r+s, such that
o(l)<...<o(r)ando(r+1) < ... < o(r+s). For each o € Sh=(r,s),
we define the sequence ¢ (a,b) = (c1,...,¢en) by

ap +bi—r if o (@) = {k, 1} withk <r <l
¢ =< ag if o7(i) = {k} with k <r
br—r if o71(i) = {k} with k > r.

Again, it may happen that ¢®(a,b) = ¢"(a, b) even if ¢ # 7, so that the
stuffle st(a, b) may contain repeated elements: it is given by the list

st(a,b) = [¢?(a, b)| o € Sh=(r,s)].

For any sequence a = (a1,...,a,), we write u, for the associated
word s = Uq, - Uq, € Q[U], and Ya = yq, - -+ Yo, for the associated
word in Q[Y]. We define the shuffle of two words u, and uy, in Q[U] as
the list

sh(ua, un) = [uc|c € sh(a, b)],

and the stuffle of two words y, and yp, in Q[Y] as the list

5t(Ya, Yb) = [yec|c € st(a, b)].
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Example. Let a = b = (2). Then sh((2),(2)) = [(2,2),(2,2)], so
shuz, uz) = w(2,2) +u(2,2) = 2u3, and st((2), (2)) =1[(2,2),(2,2),(4)], so
st(y2,Y2) = 2y(2,2) + Y4 = 2y5 +ya. For any word w and any polynomial
f, we write (f|w) for the coefficient of w in f. We say that a polynomial
fY in the variables u; satisfies the shuffle relations if

> (fYlwy=0

wESsh(ua,up)

for all pairs of words ua, up,. A polynomial f¥ in the variables y; is said
to satisfy the stuffle relations if

> (fFlw)=o.

WESt(Ya,Yb)

Let A denote the coproduct defined on Q[U] by A(u;) = u; ® 1 +1 Q@ w;
for each i > 1, and setting yo = 1, let A, denote the coproduct defined
on Q[Y] by

k
(3) As(yr) = Zyz ® Yk—i-
i=0

We introduce the following notation. Let ¢ : QU] — Q[Y] be the map
given by sending u; to the right-hand side of the corresponding equality
in (2) for all 4 > 1. If fY is a polynomial in the variables u;, i.e.
Y € Q[U], we write f¥ = «(fY) € Q[Y]; similarly if we are given a
polynomial f¥ in the variables y;, we write fV = (= 1(fV).

It follows easily from the definitions that if f¥ is a polynomial in
the y;, then

(4) (A =AU,

Indeed, it can be checked directly for f¥ = y;, i > 1, and then follows
by the multiplicativity of the coproducts. We have

o) - () 217 (20)
= exp(z u;t") ® exp (Z u;t?)

=A (exp(z u,t’)) .
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The results gathered in the following lemma are well-known (see [9] for
example).

Lemma 1. Let fU € Q[U], and write f¥ =171 (fY) as above. Then
the following are equivalent:
(i) fU lies in the Lie algebra Lie[U] C Q[U], the free Lie algebra on the
Uj .
(ii) U satisfies the shuffle relations for all pairs of words ua,up € Q[U].
(i) A(fU) = fP@1+1 fU.
(i) A(f¥)=f"@1+1@ V.
(v) f¥ satisfies the stuffie relations.

We do not reproduce the proof in full detail. The equivalence of (i)
and (iii) is shown for example in [10]. The equivalence of (ii) and (iii)
follows from a direct computation which shows that the shuffle sums of
the coefficients of fU are equal to coefficients of the terms of A(fY), i.e.
for all non-trivial sequences a, b, we have

(6) (AU ua@up) = > (fle).

cesh(a,b)

Similarly, (iv) and (v) are equivalent because again, a direct computa-
tion shows that the stuffle sums of the coefficients of f¥ are equal to
coefficients of A, (fY), i.e. for all non-trivial sequences a, b, we have

(7) (A (lga®ye) = > (fMo).

cest(a,b)

Finally, the equivalence between (iii) and (iv) follows from (1), or from
(5). The following lemma is also well-known, but we give its short proof
here.

Lemma 2. For every word w in the variables ui, us, ... havingd > 1
letters, set w? = w;; - - ui usy - ui;_, for 1< j < d; in particular
w! = w, but note that the wi are not necessarily all distinct if w has

symmetries. Then for any linear combination [ of expressions of the
form g, h] = gh — hg where g and h are non-trivial words in the u;, we
have

M&

(8)

(flw?) =0 for all w.
j=1

In particular, this holds for every f € Lie[U] of degree > 1.
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Proof. Then the only words to appear with non-zero coefficient in
the polynomial f = gh — hg are the words gh and hg, and we have
(flgh) = 1 and (f|hg) = —1. All other words appear with coeflicient
zero, and furthermore gh is a cyclic permutation of hg, so (8) holds for
f. Then (8) obviously holds for all linear combinations of expressions of
the form gh — hg by additivity. In particular, every element of Lie[U]
apart from the u; themselves is such a linear combination. Q.E.D.

We now come to the definition and proof of the cyclic property of
polynomials in the y; satisfying the stuffle relations. This proof is due
to J. Ecalle! and was initially done for stuffle polynomials and given in
terms of moulds, a context in which it appears very naturally (as does the
equivalence of (ii) and (v) in Lemma 1). Here, the stuffle result appears
in the corollary, and the theorem itself is stated in a more general case,
suggested by the referee. We only consider polynomials in the y; or the
u; which are homogeneous of a given weight n, which means that all the
monomials y;, -+ - y;,. (Or u;, ...u; ) appearing with non-zero coefficients
satisfy ¢1 + -+ + 2, = n.

Theorem 1. Let fU be a polynomial in the u; (i > 0), of homo-
geneous wetght n, which is a linear combination of expressions of the
form [g,h] = gh — hg where g and h are non-trivial words in the u;.
Let f¥ = 1(fY) be the same polynomial written in the variables y;. For
every word w = y;, -y, 0 they;, (1 >0), set n =141 + -+ +i4, and
for1 < j <d, setw? = Yi; ** Yig¥is =" Yi;_1, SO the w? are the cyclic
permutations of w = w'. Then fY satisfies the cyclic property

fY|wj (=) (fY|y,) for all w.

HM&

Proof. From the expression (1), we know that

(9) (fYIun) = (F¥ lyn)-

For any word w =y, -y, in Y, with k1, ..., k- > 0, we write ||w|| =
Yhytootkrs U = Uy + - Uk, a0d |Jvg || = Ugy 44k, Let {{w) denote the
length of a word in the y;, i.e. the number of letters y; in the word. For

IThe statement appears in [4], equation (3.46), in Ecalle’s language. The
proof can be deduced by twisting (2.73) by the flexion unit £ defined by 1/u.
However, in personal communication Ecalle gave a somewhat different, more
direct suggestion, which gave rise to the proof of Theorem 1 given here.
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any word w in the y;, the relation between the alphabets (1) yields the
relation

(10) (f¥|lw) =
H(w) (_1)1(111)71 (_1)l(v2)—1 (_1)l(’vs)_1

2 Z 1{v1) Iwa) vy

S=1 Vo =01V
where the v; are non-trivial words, corresponding to composmon of
power series. Set v/ = v,,; for 1 < j <d,ie. v = Usy o Ugy Uy Uiy -
For the third equality below, we use the fact that for 1 < j < d, we have
0] = Wiy soopiy = Un- Using (10), we find that

(U Mol s,

j=1
d j J 3
_ (—DHeD =1 (—q)Hwz) -1 (—1)ivs)=t
_;; ﬁz D CIRTT (PN 121D
d d g g j
_ (_1)l(v1)41 (_1)1(1;2)—1 (_1)l(vs)—1 U
_2; j}j:” D oD oV HCATRERIEAD!
4 (_1)d-1 )
+ 3 E )
Jj=1

(—1)Heh =1 (mp)ied)-1 (mpied ;
5> D N e ey o A LB Ll

s=2j=1 5_ 'u] 2 l(vs

(—1)d"1(fUlun)
d_d D=1 1\lwh) -1 _ 1)) -1 ) )
>y ¥ ! 11)@{) U B el oAl

s=2 j=1 5 —p .0 U(v3) I(v})

+ (_l)d_l(fylyn)a

where the last equality follows from (9). In order to conclude the proof,
we need to show that the complicated term

l(”1) 1 1 U(v})—1 —1 Wvi)—1
1) (=1) (1)

d d
(=
ZZ Z 1(v)) 1(vd) 1(v3)

s=2 j=1,,j J 1
from the above expression is equal to zero, leaving the desired formula

SRR A

=v]-vi

d
S ) = (=14 (Y yn)-
j=1
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In fact we will show that

(11)
d

UG RE DUUC YL R O PUCHES , :
> Y S S i ey -
J 1 2 Us

Jj=1 vjzvimvs

for each s, 2 < s < d. The point is that this sum breaks up into smaller

sums over cyclic permutations of words, so that it is zero by Lemma 2.
Let

(12) GO 311 121

be a term appearing in this sum. Then we only need to show that for
every 1 <1 < s, the term

(13) TN ol 12 o] llof_y]])

appears with the same coefficient, since these words are exactly the cyclic
permutations of the word ||v]]|-- - ||v]|, each |{v]|| being a single ug.
The term (13) appears in the double sum (11) as

(14) Y 1 g 1] T2 1),

with j' = j+1(v]) 4 --- +1(v]_,) (where j and j are considered mod d
and between 1 and d), and v = v{/ -
vil is determined by Z(Uk ) = 1(v],,_,) (and i and k are considered mod
s and between 1 and s). Thus, (13) and (14) are equal. Furthermore,

the coefficients of (12) and (14) in (11) are obviously equal, because the

. vgl where the grouping into pieces

set, of lengths of the pieces v,i and the set of lengths of the pieces vi, are
equal for 1 < k < s. Thus the double sum (11) breaks up into cyclic
subsums each of which is zero by Lemma 2. This concludes the proof of
Theorem 1. Q.E.D.

The following corollary is an immediate consequence of Theorem 1,
since by Lemma 1, f¥ is a polynomial in the y; satisfying the stuffle
relations if and only if fU = +~!(fY) is a Lie polynomial in the wu;,
which thus satisfies the hypothesis of Theorem 1.

Corollary 1. Let f¥ be a polynomial in'Y of homogeneous weight
n > 0 satisfying the stuffle relations. Then with notation as in Theorem
1, we have

d
S ) = (DY Tya).

Jj=1
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Our next theorem shows that if a polynomial in the y; satisfies all
the “non-trivial” stuffle relations, then it can be easily modified to obtain
an actual stuffle polynomial.

Theorem 2. Let f¥ be a polynomial in the y; of homogeneous
weight n satisfying the stuffle relations

(15) > (Mle=0

cest(a,b)

for all pairs of sequences (a,b) which are not both sequences of 1’s. Set
g¥ = f¥ —ay?. Then

o= E )+ (7 )

is the unique constant for which g¥ satisfies the stuffle relations for all
pairs, and for this value of a, we have

U )

(9" 1) =

Proof. Assume that fY satisfies (15) for all pairs (a,b) not both

sequences of 1’s. Then by equation (7), we know that the coefficients

of pairs of words ¥, @ yp in A.(fY) are zero whenever a and b are not
both sequences of 1’s. In other words, we can write

A=Y @141 Y+ cyi oy .

i=1
Making the variable change to the u; and using (4), we then have

n—1
A =) =T e1+1e U+ cul @),

i=1

Now, for any monomial u;, - - u;,, the definition of A implies that
A(ug, - -ug,.) is a linear combination of terms of the form uj, ---u;, ®
Uj, ., Uj,, where the list u;,,...,u;, is the same as the list u;,,...,u;,
in a different order. In particular, only terms of the form u} ® ujl with
1+ j = n will appear in A(u}), but inversely, if (i1,...,4.) # (1,...,1),
then no term of that form can appear in A(u;, ...u; ). Thus, if g¥
is a homogeneous polynomial of weight n in the u; with (g¥|u?) = 0,
then (A(gY)|ul ® w]) =0 for all i +j = n. Let k = (fY|u}), and set
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g¥ = fY — ku?, so (¢Y|u}) = 0. Then
AgY) = A(Y) - kAw)"

n—1
= fU®1+1®fU+Zciu§®u?"i—kA(u1)”
i=1
= ¢g®1+10¢Y +kuf ®1+1® kul
n—1
—kA(ul) + Z ciut @upTt
i=1

(16) = ¢0l1+104".

Here, the last equality follows from the fact that since as we just saw,
(A(gY)|ui ®u]) = 0, there can be no terms of the form u$ ®ul in A(gY).
Therefore the terms of that form in the third line above must either be
canceled out by terms of that form in gV ® 1 + 1 ® g, but there are
no such terms since gV does not contain a power of u;, or sum to zero.
Thus they sum to zero, yielding the last equality. Thus, gV = fV — ku?
is an element of Lie[U], and therefore by Lemma 1, ¢¥ = f¥ — ky?
satisfies the stuffle relations.
Let us now show that & = a and that

(9" ) = ﬂ(gylyn)-

Since g¥ satisfies all the stuffle relations, in particular it satisfies the
relation for a = (1), b = (1,...,1) with n — 1 1’s. Here, st(a,b) =
st((1),(1,...,1)) is given by the list

(1D (1), (200 1), (1,2, 1) - (1,0, 1,2)],

S0

Z (gY|yc) =
cest((1),(1,..1))
n(g¥ ly?) + (¥ lyav ™) + (¢¥ lyayeys - -31) + -+ + (¥ [yP 2y2) = 0.

But the sum over the words ygyfﬂ, Y1Y2y1 - - - Y1 etc. is a sum over a
cyclic orbit of words of length d = n — 1, so by the corollary to Theorem
1, it is equal to (—1)""2(g" |y,). Thus we obtain the desired identity

n(g¥ [y?) + (=1)"2(f¥ |yn) = 0.

Plugging into this equation the identity g¥ = fY — kyJ yields the value
k = a given in the statement. Q.E.D.
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§2. First application: a generalization of Ihara’s abelianization
theorem

The applications of Theorems 1 (or its corollary) and 2 to the double
shuffle Lie algebra are straightforward, though they appear to be new
and quite useful. In this section, we use them to give a simple proof
of a quite surprising generalization of a theorem of lhara concerning
the Grothendieck—Teichmiiller Lie algebra grt. Let Lie[z, y] denote the
free Lie algebra on two generators, graded by degree, and let Lie, [z, y]
denote the subvector space of Lie[z,y] consisting of Lie polynomials of
homogeneous degree n.

Definition 2.1. Let Lie P5 denote the Lie algebra of the pure sphere
5-strand braid group. It is generated by z;;, 1 < 1,5 < 5, subject to
the relations z; = 0, xij = xji, @i, z] = 0 of {i,5} N {k, 1} =0,
Ele xi; =0 for each fized j € {1,...,5}, and [z;5, xij + Tk +xj6) =0
for any triple of indices i, j, k.

The weight n graded part gtt,, of the Grothendieck—Teichmailler Lie
algebra get is defined to be the vector space of elements f € Lie,[x,y]
such that
(17)

f(x12,x23) + (@34, Tas) + f(ws1, T12) + f(T23,234) + f(245,251) =0,

where the defining “pentagon” relation takes place in Lie Ps.2 We set
grt = D, >3g0tt,.

Thara proved in [7] that grt is a Lie algebra under the Poisson bracket

(18) {f,9} =[f:9] + Dy(g) — Dy(f),

where for every f € Lie[z,y], Dy denotes the derivation of Lie[z,y]
defined by D¢(z) = 0 and Ds(y) = [y, f]. Now let us proceed to define
the double shuffle Lie algebra. Let A denote the polynomial algebra
A = Q[z,y] on two non-commutative variables z, y, and let B C A
denote the subalgebra generated by y1,v2,¥s,..., where y; = 2" ly.
Set Yo = 1.

Let A be the coproduct on A defined by A(z) =z ®1+1® z and
Aly) =y®1+1®y. Let A, be the coproduct on B defined on the
generators y by equation (1.2). Let Lie,[z,y] denote the homogeneous

2Note that the definition classically contained three separate conditions
on f, but H. Furusho in [5] gave a remarkable proof that the single pentagon
condition implies both the others, making them unnecessary.
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parts of weight n of Lie[z,y]. For any f € Lie,[z,y], considered as a
polynomial in z and y, we write f = f.x + fyy, and set

= 1)"'

fo= gy + ——(fla"Ty)y"

Since f, is a polynomial ending in y, we can rewrite it in the variables
Yk, S0 it lies in B.

Definition 2.2. The weight n graded part 0s,, of the double shuffle
Lie algebra s is defined by

={f e Lien[z,y]|Au(fs) = @1+ 1® fi}.

We set 05 = @pn>305,. It was shown in [9] that ds is a Lie algebra under
the Poisson bracket defined in (18).

By Lemma 1, if f, satisfies A(f.) = f. ® 1 + 1 ® fs, then f, sat-
isfies the stuffle relations. Thus Theorem 1 applies to the elements f,
associated to elements f € 9s. The following statement is an immediate
corollary of Theorem 2 and will be used in §3. For a sequence of strictly
positive integers ¢ = (c1, ..., ¢, ), we use the notation

(Flye) = (flye, -~ Ye,) = (fl™ My -z Ty).

Theorem 3. Let f € Liey[z,y], withn > 3. Then f € 0s if and
only if

(19) S (flye) =0

cest(a,b)

for all pairs (a,b) # ((1,...,1),(1,...,1)).

Proof. Since all the words y. end in y when considered in the vari-
ables  and y, we have (f|yc) = (fyylyc) whenever ¢ # (1,...,1). The
sequence of 1’s can only occur in the stuffle of a and b if both a and
b are themselves sequences of 1’s, so it never occurs in (19), and thus
(19) is equivalent to the hypothesis of Theorem 2 on the polynomial
fyy, where we write f = fox + fyy. Because f is a Lie element we have

(fyyly™) = 0, and therefore the a of Theorem 2 is equal to &R ( Fuylyn),

and Theorem 2 shows that f,y+ = ( Fuylyn)y™ = fu satlsﬁes stuffle,
so f € 0s. The useful point here is that this statement makes it possible
to define elements of double shuffle via conditions on the Lie element f,
making no reference to the much-studied “regularization” f,. Q.E.D.
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Now let us restate the corollary to Theorem 1 directly in the frame-
work of the double shuffle Lie algebra.

Theorem 4. Let f € 0s C Lie[z,y|, let a = (a1,...,aq) be a se-
quence of strictly positive integers, and for 1 < j < d, set

1 ag—1 ay;—1 aj1—1

wj:maj—y...x Yyx Y- x Y.

Then

d
(20) Y (flw?) = (DT (flz" ).

j=1

We will use this theorem to generalize the following theorem, proved
by Ihara in [8].

Theorem 5. (Thara) Let f € grt,, and write f = fox + fyy. For
any f € Q[z,y], let 2P denote the image of f in the abelianization of
this ring; in particular, let X = 2®® and Y = y®®. Then

(21) (Fa)™ = = (Flya) (X + V)" = X" =77,

Furthermore, if n is even, then (flyn) =0, so (fyy)** = 0.

Our purpose in this section is to generalize this result of Thara in
two ways. To begin with, by Furusho’s theorem from [6] (of which a
simplified proof in the Lie case is given in §3), we know that grt injects
into 0s via the map f(z,y) — f(z,—y). One conjectures that these two
Lie algebras are isomorphic, but this is not known. We will prove our
theorem for the a priori larger Lie algebra 0s rather than for grt.

But also, instead of working in the abelianization of Q[z,y], we
prove the result in a much bigger quotient of Q|z,y], namely the trace
quotient Tr{z,y) introduced by Alekseev and Torossian in [1]. The
trace space is the quotient of Q[z,y] modulo the equivalence relation
uv ~ vy for every pair of monomials u,v € Q[z,y]. Although zy = yx
in Tr(z,y), it is not the abelianization; for example, we have z2y? ~
yx2y ~ y?x2? ~ zy’x, but these words are not equivalent to zyzy ~ yryz
which form a separate equivalence class. In fact, the equivalence classes
of words under this relation are exactly the sets of cyclic permutations of
words in z and y. The remarkable fact is that the statement of Thara’s
theorem remains identical, not just when generalized from grt to 0s,
which is natural considering that one believes the two Lie algebras to
be isomorphic, but also when generalized from the abelianization to the
trace quotient; even in this large quotient, all double shuffle elements of
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weight n become equal. In the following statement, we give the analog of
(21), and afterwards we show that as in Thara’s theorem, this expression
is equal to zero if n is even.

Theorem 6. Let g(x,y) € 0s be a homogeneous element of weight
n, and set f(z,y) = g(z, —y). Write f = fyx + fyy and let f,y denote
the image of fyy in the quotient space Tr{x,y) of Qlx,y|. Let T and g
denote the images of x and y in Tr{z,y). Then

(22) T =) (@ + 9" = 2" — 7).

Proof. The polynomial (x+y)™ — 2™ — y™ in Q[z, y] is equal to the
sum of all words of weight n in z and y except for ™ and y™. The image
of this polynomial in T'r(z, y) is thus equal to a linear combination of the
cyclic equivalence classes of these words, where the coefficient of each
equivalence class is equal to the order of the cyclic class:

(23) @+yr-z"—g" =) _|C|C
C

in Tr(x,y), where the sum runs over the cyclic equivalences classes C of
words of weight n different from z™ and y™.

Now consider the image m of fyy in Tr(z,y). The coeflicient of
the cyclic equivalence class C in f,y is exactly given by > co(fyylw),
i.e. we have

(24) Fv =Y (X (o)) C

C weC

in Tr{x,y). We can apply Theorem 4 to compute this coefficient, paying
attention to the fact that the sum in (20) is over the n cyclic permu-
tations of w, even if some of them are repeated. If |C| = n, then the
n cyclic permutations form one copy of the class C, but if |C| < n, as
for instance the class {zyxy, yryz} where |C| = 2 and n = 4, then the
complete list of n cyclic permutations forms n/|C| copies of C. Fix an
clement w' € C ending in y, and let d be the number of y’s in w'. Write
,wl — malAly . Iad_ly and ,wj — ﬂiaj_ly . mad—l,yxal—ly o maj_lfly
for 2 < j < d. Then by Theorem 4 applied to g € ds, we obtain

d d
IC] > (fyylw) = (fuylw?) = (=1)* D _(gyylw’)
i=1 =1

wel
—(gyylz™'y) = (fyylz™y).
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From this we obtain
C
(25) 3 Gple) = g1

wel

Putting this back into (24) yields
A 1 mt m i m et m
foy = —(flz 1y);ICIC:;(f|$ )@+ 7" - @+ D))

by (23), proving the theorem. Q.E.D.

The generalization of Thara’s statement for even n is contained in
the following proposition.

Proposition 1. Let n be even, and let f € 0s,. Then (f|y,) =0,
s0 in particular, fyy =0 in Tr{z,y).

Proof. The statement that (f|y,) = 0 when n is even has been
proved in various forms in various places (for example [11]). The proof
we give here comes from the unpublished thesis [3], and seems worth
reproducing here for its combinatorial interest. We set y; = z* 'y and
compute in terms of x,y. An easy argument by induction on n shows
that for every n > 1, every monomial of weight n and every Lie element
f € Lieyz,y], we have (f|lw) = (=1)" 1(f|%), where % is the word w
written backwards. In particular, for even n, we have (f|yz"2%y) = 0.
The stuffle relation associated to the sequences (1) and (n — 1) is given
by (flyz"2y) + (flz"2y?) + (flz"1y) = 0, so if n is even, we see that

(26) (flz"2y%) = =(fl="""y).

Let us write [xy] for the depth 1 Lie element [z, [z, --- ,[z,y]---]] =
ad(z)(y). The element [z" ly] forms a basis for the 1-dimensional
space Lie, [z,y] of depth 1 elements of Liey[z,y], and the elements
[[z"=72y], [z7y]], 0 < j < [252] -1, form a basis (known as the Lyndon-
Lie basis) for the [2!]-dimensional space Lie? [z,] of Lie elements of
weight n and depth 2. Thus we can write

ngt
(27) =A™+ ) aglle™ Pyl eyl + -

j=0
where A = (f|z"'y). We can expand the Lie brackets [[z"~7=2y], [27y]]
explicitly as polynomials using the binomial identity

[27y] = i (Z) (—1)"Talya? ™,

=0
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and we find that the coefficient of the word 2"~ 2yzy in the Lie bracket
[z 2y], [27y]] is equal to

(28) (—U“{(Z:Z:;) N (n —Jz:—2)]’

where binomial coefficients are considered to be zero whenever the top
entry is zero and the bottom entry non-zero or when the bottom entry
is negative or greater than the top entry.

From this and (27), we obtain

(20) (fla" " 2ya'y) = gmf-f’aj ((Z o S) - (n e 2)) ,

Whereaj=01fj>"—;é
Now we add up the coefficients of all the words of depth 2 in f
ending in y, obtaining

g(flw"‘i‘2yxiy) = §§<—1)i‘jaj ((Z :Z B ;) - (n _]1: B 2))

i=0 j=0

ST (7 ()

(30) = —dag.

Indeed, the term in the sum in (30) for j = 0 is given by

agz 1)’(( _1_2) (n—(l)'—2))
S (2 ) el(57) - ()

= —aop,
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whereas each term in (30) for j > 0 is zero, since if § > 0, then

S(—l)i‘j ((Z:Z:;) - (n —Z~2)>

=0
n—2 . n—2 .y

_ avi—j n—j—2 _ vi—d! n—j —2
;( 2 (n—i—Q ;( 2 n—1-—2

with j'=n—j-2

B () -Eor ()

—_~

i=j i=3"
n—j—2 . n—j —2 .7
n—j—2 / n—j —2
2o X e ()
n-—-j—2 . n—j'—2 .y
mf{n—J—2 rfn—j —2

= o ("I e (ML) =
m=0 m/=0

where the second equality comes from removing the indices in the sums
which give terms equal to zero, the third equality is obtained by rein-
dexing the first sum over m = ¢ — j and the second one over m’ =i — j’,
and the final one is zero since in fact each of the two sums separately is
already zero.

This proves (30), which allows us to easily finish the proof. Indeed,
the n/2 stuffle relations in depth 2 are given by

(flz" " 2yaty) + (flz'ya™ " Py) = —A

for 0 < ¢ < (n —4)/2 (note that when i = (n — 2)/2 the relation is
2(fla(m=2/2yx(n=2)/2y) = — A), and taking their sum thus yields

n—2
neic2, iy (n=2), A n—1
(31) ;(ﬂw ply) =S A- S =4

Comparing this with (30), we see that ag = 2+ A. But (29) shows that
(flz™2y?) = ag, so since A = (f|a"y), we finally obtain

(32 (Flam=22) = " (fe ).

Comparing this with (26), since n # —1, shows that (fla""1ly) =
(flyn) = 0. Q.ED.
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83. Second application: Furusho’s theorem

In this section we use Theorem 2 to give a very simple proof of the
Lie version of an important theorem recently proved by H. Furusho [6]
in the more general pro-unipotent setting. Of course the Lie statement
is implied by Furusho’s proof, but Theorem 2 provides a significant sim-
plication of the proof in the Lie case which seems worth explaining here.

Theorem 7. (Furusho) Let f(z,y) € grt. Then f(x,—y) € 0s.

3.1. Basic setup of the proof.

Furusho’s article [6] gives the complete geometric framework for his
proof, whose essential idea is to adapt the known stuffle-like relations
for double polylogarithms to imply the desired stuffle relations on an
element of Lie Ps satisfying the pentagon relation. We do not explain
this geometric background here. The purpose of the present exposition
is to show that Theorem 2 yields a simplification of the proof of Fu-
rusho’s theorem in the Lie situation of Theorem 3.1, with respect to
the proof that he gives in the pro-unipotent situation in [6]. Therefore
our exposition is as minimal as possible, and self-contained with the ex-
ception of the main background theorem (theorem 3.2 below) following
from Chen’s theory of iterated integrals.

Let Lie Ps be the pure sphere 5-strand braid Lie algebra whose defi-
nition was recalled at the beginning of §2. Recall that it can be generated
by five of the elements x;;. Following Furusho, we fix here the choice of
T12, T23, T34, T45 and Toy as generators. Let Lie PY be the dual Lie coal-
gebra, and write w12, wes, Wsq, w4y, woq for the duals of the corresponding
Tij-

The dual V5 of the enveloping algebra ULie P5 is isomorphic to a
subspace of the freely generated polynomial ring Q = Q|w;;]. A word
in the w;; in this ring is written using the bar-notation [w;, | - - - |wi, ;]
and called a bar-word. Linear combinations of bar-words are called bar-
symbols. Multiplication in the ring Q is commutative, given by the
shuffle operation on words. For example,

wlw'] - [w"] = [wiw'|w"] + wlw”|w'] + W w]w].
The grading on ULie P5 given by letting all z;; be of weight 1 translates

to a grading on Vs given by the lengths of the words in w;;. The w;; can
be identified with differential 1-forms on the moduli space

Mos =~ (P'C —{0,1,00})* — {XY =1}
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as follows:
dX dX _dy
W12——)(—7 w23——“X 1’ w34~Y 1’
dY XdY +YdX
33) SRl e

Let €, denote the subvector space of  consisting of polynomials
in the w;; of homogeneous degree . Then the homogeneous subspace
(Vs)r C £, is characterized by the following property: (P) Let o =
((i1,41); - -, (ir, jr)) denote the r-tuples of pairs (im, jm) € {(1,2),(2,3),
(3,4),(4,5),(2,4)}, and let W =3 _ axlwi, ji |-+ [wi,. 5,.] € 7. Then W
lies in V5 if and only if the (r — 1) sums

Z Qo [wi1,j1| T |wik,jk A wik+1ajk+lt T ‘wir’jr]
el

are equal to zero as elements of (V5)¥* ' @ H3 p(Mo5) @ (V5)$" "1 for
1 < k < r—1, where the w;; are wedged as the differential 1-forms in (33).
For example, w1z Awaz = wsq Awas = 0 and wiz Awss = —wys Awey. More
specifically, (P) can be understood by separately considering triples

T = (k, ((al, bl), ceey (ak_l, bk—l))a ((ak+2,bk+2), ey (ar, bT))>,

where k € {1,...,7 — 1} and the pairs (am,bn) all lie in {(1,2), (2, 3),
(3,4),(4,5),(2,4)}. For every such triple T, let St denote the set of
r-tuples of pairs ((il,jl), R (ir,jr)) such that (im, jm) = (@m, b ) for
1<m<k—1and k+2 <m <r. The condition (P) for W to lie in V;
is then that for each triple T,

E : AoWiy,ji, N Wig i1, juy1 = 0.
o€EST

The Lie coalgebra Lie Py is isomorphic to the quotient of Vs modulo
(shuffle} products. In other words, every shuffle sum of bar-words in
Lie P is equal to zero. In [6], Furusho introduced particular elements
in Vs, called
AN

where X and Y are free commutative variables, and a = (a1,...,a,)
and b = (b1,...,bs) are tuples of strictly positive integers. We will give
a direct recursive definition of these elements here. In order for our
notation to correspond more closely to Furusho’s, we need the following
change of notation with respect to the two previous sections.
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Change of notation. Let a = (aq1,...,0a,) be a sequence of strictly
positive integers. We now define w, to be the word in non-commutative
variables x and y given by

a2f1 a1—1

yx Y.

Wa = xar—ly...x

With this notation, we have wawp = Wpa. Let us now define Furusho’s
symbols, using this new notation.

Definition 3.1. For any element ¢ € Lie[z,y], we write (p|w) for
the coefficient of the word w in the polynomial ¢. Define the element
la € Lie[z,y]" by

(34) la(p) = (—1)" (plwa)-

e The element [ € Lie P’ is the bar-word defined by replacing every x
in the word wa = 2% ~y--- 2%~y by wis and every y by wo3. ® The
element [Y € Lie P is the bar-symbol defined by replacing every z in
the word w, by wys and every y by wss. e The element IZY € Lie Py is
the bar-word defined by replacing every x in the word w, by w1 + wys
and every y by way. ® The element li ’bY is defined recursively according

to the form of the tuples a and b. Let a = (a1,...,a,), b= (b1,...,bs).

fa >1,seta = (a,...,ar —1); ifa, =1 but r > 1, set &’ =
(a1,...,ar—1) (with this notation, zwa = ws). Use the same notation
forb. fr > 1, a = 1and s > 1, set a’ = (ay,...,a,-1,b1) and
b” = (ba,...,bs). The element lf’i’y is defined by:

(35)

[w12|la, b] + [w45|la b’] ifa, >1,bs >1

[wi2]I b] + [W34|sz’,’} ifa, >1,b;=1,8>1
[wlg\la,b]+[w34|lxy] ifa,>1,b,=5=1
[LL)lela, ] [wlg +w23|la,, b”] + [W45|la b’] ifa,=1,r>1,b;>1,8>1
[w23|la, M~ fwiz + w23|la,, 1+ [w45|la’b,] ifa,=1,r>1b;>1s=1
[wgg]la, 1~ fwrz + w23|la/, b,,] + [w34|l:£,/] ifa, =1, r>1,b,=1,5>1
[wa 1 ] [w12 +w23|l§,y] + [wsa |[1ZY] ifa,=1,r>1,b,=1,5s=1
[woallY ] — [w1z + sl ol F lwssllape ] ifar=17r=1bs>1s>1
was|lY] — [wiz + was | EY] + [was|ily ] ifa, =1,r=1b,>1,s=1
[waslly] = iz +waslly)) po] + [waallln ] ifar =10 =1,b,=1,5>1
[was|l¥] — [wiz + was|lXY] + [wsalXY] ifa,.=1,r=1,bs=1,8=1.

e Finally, the element l;/,’t)f is defined by computing { f iDY and then ap-
plying the order 2 automorphism p which exchanges the pair w45 and
w12, and the pair wog and way, while fixing way.
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3

1

Fig. 1
Examples. Let a = (2,1). Then w, = yzy and
150y = [waalwia 4 waswea] = [waalwizlwas] + [waalwas w2l

This polynomial lies in V5 since it satisfies the property (P): indeed, as we
dX A YdX4+XdY | dY p XdY+YdX _ ;

saw above, 5 Ao+ S ASSEET = 0, which ensures that both

the first sum wos Awia +wos Awss and the second sum wig Awag +was Away

are zero.
Now let a = (1), b= (1). We have
l()i’)l’/(l) - [w23|l?§)] — w1z + wasli(i) ] + lwsall{3) ]
= [wos|waa] — [wi2 + waslwaa] + [wsa|waal.

If a=(2) and b = (1), we have

XY XY
l@)) = ln2lli )] + wsall)]
= [wiz|was|wsa] — [wiz|wiz + wag|waa] + [wi2|wsa|wad]
+ [wasawig + waslwaal.

We now introduce the fundamental “stuffie-type” relations satisfied by
these elements of Lie Py .

Definition 3.2. Furusho gives a generalization of st(a,b) to the
Lie P5 situation as follows. Recall from §1 the definition of the set of
maps Sh=(r,s) and the stuffle set st(a,b). Let ST(a,b) be the set of
pairs of sequences o(a,b) = ((c1,...,¢;), (¢jp1,...,cn)), where

(c1,...,en) = ¢ (a,b) € st(a,b)

and j = min(o(r),o(r+s)). Also, for each o € Sh=(r,s), set o(X,Y) =
XY if oY (N) = {r,r + s}, o(X,Y) = (X,Y) if o} (N) = r + 5 and
o(X,Y) = (Y, X) if o L(N) = r.
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Furusho bases the proof of his theorem on the following fundamental
set of stuffle identities.

Theorem 8. For all tuples of strictly positive integers a = (aq, .. .,

a.) and b = (by,...,b,), the elements lfby, l:g, IXY € Lie Py defined
above satisfy the relation

o(X,)Y
(36) >l =0

o(a,b)eST(a,b)

Sketch of proof. The proof of this result follows from Chen’s theory
of iterated integrals. This is explained in more detail in [6] (see also [2]
for some of the proofs), so we only sketch the situation here. In this
theory, the dual elements w;; of the z;; are identified with the 1-forms
on the moduli space My 5 ~ (P* — {0,1,00})? — {XY = 1} to the z;;,
given by the expressions in (33), and (linear combinations of)) bar-words
in the w;; are identified with iterated integrals of the entries along a
path on My s from (0,0) to (X,Y). The condition above defining an
element of V5 is precisely the “integrability” condition of a linear com-
bination of bar-words, ensuring that the value of the integral depends
only on the homotopy class of the chosen path, and Chen’s theory (see
also [2]) shows that the map from Vs to iterated integrals is injective.
An easy computation shows that the iterated integrals associated to the
elements 1Y, la 5 Y and le are single and double polylogarithm func-
tions Lia(XY), Lzab(X Y) and Lia (Y, X) (see [6] for their explicit
expressions), and these are classically known to satisfy the equalities

Z Lia(a,b) (U(X7 Y)) = Lla(X)Lla(Y)
o(a,b)eST(a,b)

Thus by injectivity of the iterated integral map from V3 to functions of
X and Y, we see that

o(X,)Y) _ xyY
D lotamy =k
oceST(a,b)

in V5. Thus when these elements are considered in the quotient Lie Py,
we recover (36). Q.E.D.

3.2. Furusho’s lemma

In §4 of [6], Furusho states and proves two lemmas in the pro-
unipotent situation, making use of a regularization defined in the body
of the paper. The statement of Lemma 3 summarizes the essence of the
the Lie part of Furusho’s statements, but the lemma is slightly stronger
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than the one in [6], in that the hypothesis on a, b in the sixth statement
is weaker than the one there. This is one of the the main points of
simplication of the Lie proof.

Apart from the sixth statement and its proof, the rest of the state-
ments and proofs are exact Lie analogs of those given in [6]. However,
the terminology is different and the proofs there are partly left to the
reader, so in the interest of completeness, we give the full proof in detail
here.

Lemma 3. Let p3 : Bs — F» be the map defined by ps : x12 — z,
ZToa — —y, x;3 — 0. and let the maps i, : Fo — Bs be defined by

1ie () = 2k, 10 (y) = —xr. We have the following siz identities:
Y =laops for all (a,b)
lf,’by ot123 =0  for all (a,b)
Y 0igis =0 for all (a,b)
lii,y 0451 = lap for all (a,b)
l;/f 0ig15 = lap  for all (a,b)
I oigz2 =0 for all (a,b) # ((1,...,1),(1,...,1)).
Proof. Recall thatifa = (ay,...,a,), weset wa = x% 1y . x91 1y

Then la(wa) = (—1)" and la(v) = 0 for all words v # w,. By defini-
tion, lf Y is the bar-word obtained from w, by replacing z by w12 + wys
and y by wgy4. Expand this word out as a polynomial as follows. Let
n =a +---+a, and let I C {1,...,n} be given by I = {a1,a1 +
ag,...,a1 + -+ ar_1,a1 + --- + a,}. Let £ denote the set of distinct
tuples (€1, ..., €,) such that

{ei = (24) iel
¢ €{(12),(45)} je{1,....n}\ L

Then the expansion is given by

l;(Y = Z [we, |-+ |we,]-

(61,...,6n)€£

Thus, IXY takes the value zero on all words of length n in the generators
T12,T23, L34, Ta5, To4 Of Lie Ps except for the ones of the form W =
Tey -+ Le, for (€1,...,6,) €E.

Now, 245 = x12 + 213 + @23 in Lie Py, so p3(z4s) = p3(r12) = @,
and ps3(zeq) = —y, so p3(W) = (—=1)"wa. Thus for every word W =
Tey e, we have [ZY (W) = 1 = lo((=1)"wa) = la(p3(W)). The

8
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words W are exactly the complete set of words such that p3(W) =
(=1)"wa, so if V' is not of the form W, we have I2Y (V) = 0 = [5(p3(V)).
This proves the first statement.

The other statements are proved using induction on the length r + s
of the sequences a and b together, where r,s > 1. Let b = (by, ..., b,),
and consider the second statement. It comes down to saying that for
any pair (a,b), the symbol liiay cannot contain any bar-words in the
two variables w12 and we3 only. The base case, r + s = 2, was computed
in the examples in §3.1:

(37) lé = [waslwss] — [wiz|waa] — [was|waa] + [waa|waal.

Now assume r+s > 2, make the induction hypothesis that l Y contains
no such bar-word when the sum of the lengths of ¢ and d 1s less than
r + s, and fix a pair (a,b) of lengths r and s. Consider the definition
of liiay in (35). A word in w2 and wa3 only would have to come from
the term(s) in each line of (35) of the form [wya|- -] or Jwes| - -]. But
for each such term, the right-hand part of the term is either one of l;‘;’;,
Y XY
a” b’ Y(by),b"
induction hypothesis, or [{Y, I2Y or I¥, which do not contain any such
word by definition. This proves the second statement.

The third statement is equivalent to the second, given the definition
of l:ﬁc , which is obtained from l;f]’DY by applying the automorphism p of
the bar-construction defined in figure 1, since 4123 = p 0 i543.

The fifth statement follows similarly from the fourth by applying p,
8o let us prove the fourth statement. We first note that

(38) 1Y (da51 (W) = Y (ia51 (W) = la(w)

for all sequences b. Indeed, I is a bar-word in w34 and wys only, so in
computing the left hand term one can ignore all the terms containing
T3 O Ty that appear in igs1(w). Similarly, (XY is a bar-symbol in
w12, wss and wayg, S0 in computing the middle member of (38), one can
ignore the wyo that appear there, and all the terms in ¢45; that contain
To3 O T34-

We first take care of the base case a = (1),b = (1), and show
that Zg’)}f(l)(i%l(w)) = l(1,1y(w) for any word w of length 2 in x and
y. We have I(1,1)(2?) = L1,1)(zy) = lq(yz) =0, l1,1)(»*) = 1. By
observing (37) and the equality ws; = weg + waq + w34 in Lie Py, we see
that li{{oy = l()is?/(l) has value zero on the bar-words i451(22) = [was|was],
i451(7y) = —|was|ws1], and i451(yz) = —|ws1|was], since they all contain

none of which contain a word in only w2, wes by the
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an r45 which doesn’t appear in (37). But in is51(y?) = [ws1|ws1], there
appear three words on which l()i’)}’/(l) has non-zero value, namely [wa3|wsa4],
[was|was] and [ws4|was]. The values are 1, —1 and 1 respectively, so
lg’)ff(l)([wg,l]wg,l]) =1=13,1)(y*). This settles the base case.

Make the induction hypothesis that for any pair ¢, d of length r+s—1
and any word v of length r-+s—1, we have lf&y (1451 (v)) = lea(v). Note
that since i451(x) = 245 and 4451 (y) = —T51 = —Ta3 — T2a — T34, for any
one of Furusho’s symbols L, we have

Lss| L] (iasn (w)) = 4 Zliae1(¥)) ifw =av

0 otherwise
| L] (iasn (w)) = 4~ 2451(%) y
(39) 0 otherwise
) _L i v if w = Yv
[w2a|L] (ig51 (w)) = (4151 (v)) y
0 otherwise
L “L Z v lf w = Yv
[w3a| L] (1451 (w)) = (i451(v)) y
0 otherwise.

Fix a,b of lengths r, s, and let us consider the eleven cases of (35); let
Q = {w4s, was, woa, w3q }. Only the terms of (35) starting with an w €
can have a non-zero value on is51 (w), since i451 (w) is a polynomial in the
variables of 2 only. Let us now prove the desired identity l;fi_)yo’i451 = lap
on a case by case basis according to the nature of the sequences a, b as
in (35).

Case 1. The element wio is not in €2, so we only need to consider the
term [w45[l‘f ;3,/ ]. By the first entry of (39), applying this term to i45;(w)
yields 0 if w = yv; but also la, (yv) = 0 since bs > 1, settling the desired
equality for all words starting in y. If on the other hand w = zv, then
we have

135 (g1 (w)) = [was |l iy 1(ias1 (w))
=lap (ia51(v)) by (39)
= lap/(v) by the induction hypothesis

- lab (w)

Case 2. The only relevant term is [w34|l;fi},/], so by (39), if w = zv, we

have lfjay (4451 (w)) = 0 = lap(w) in this case (since by = 1). If w = yv,
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we have

125 (ias1 () = [waally py (ias1 (w))
= 133 (ia51(v)) by (39)
= —lap/(v) by the induction hypothesis

= lab(w)

since w contains one more ¥y than v.

Case 3. There are no relevant terms since [w34|IXY] contains woy.

Case 4. There are three relevant terms:

lwasllap ], —lwaslidinn], [waslsp -
If w = zwv, the first two have value 0, and by (39) the third has value
lif’b},/ (1451(v)) = lap' (v) = lap(w), by the induction hypothesis and the
fact that by > 1. If w = yv, the third has value 0, and by (39) and
induction, the sum of the first two has value —lyp(v) + larp (V) =
0, since the concatenated sequences a’b and a”b” are both equal to
(@1y...,Gr-1,b1,...,bs) when a, = 1, so lii)y(i%l(w)) =0if w = yv.
But we also have [, (w) = 0 in this case, since by > 1.

Case 5. Here the relevant terms are

wasllgb ], —lwasllY ], fwasllZ -

If w = zv, the first two terms take the value zero, so

12 (s (w)) = 133 (iasa (20)) = 153 (151 (v)) = lap () = lan(w)

by the induction hypothesis and the fact that by > 1. If w = yv, the
third term takes the value zero, so

125 (st (w) = 155 (iasa (yv) = =120y (ia51(0)) + 15 (451 (v)).

But [22Y is a bar-word in w12, wss and wag, S0 since ig51(x) = 245 and
1451 (Y} = —T23 — T2q4 — T34, we can ignore the wis in lav and the a3, x34
in i451(v), to obtain XY (i451(v)) = lav(v). Using induction, we have
lf:g(i%l (v)) = lan(v) = lav(v), where the last equality follows since
the concatenation a’b = a” in this case. Thus lff’i)y (i451(v)) = 0. But
this is equal to lap(w) = lap(yv), since b = (b1) with b; > 1, s0 lap can
only take a non-zero value on a word starting with x.
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Case 6. Here the relevant terms are
wasllg ], —lwaslidi o], Twsallp ],

so if w = zv, we have lii)y(i%l(w)) = 0, but also lap(zv) = 0 since
bs = 1, 80 wap, begins with a y. If w = yv, we have
I (a1 (w)) = =12y (ias1 (v)) + 1 (51 (0) = L e (i51.(v)

—lalb(U) + la//b//(’u) — lab/(l})

by the induction hypothesis, but a'b = a”’b” = (a1,...,ar_1,b1,...,bs)
in this case, so this is equal to

—lab (V) = lap(yv) = lap(w).

Case 7. Here the relevant terms are
wasllpp ], —[waslld ], [wsallX™].

If w = zv, we have lﬁi)y(i%l(w)) = 0, but also lap(w) = 0 since b = (1).
If w = yv, we have

25 (ias1(w) = =101 (ias1(v)) + 137 (ias1 (v)) — I (ia51(v))
= ~lap (V) + la(v) — la(v) = ~lan(v)

by induction and because a” = a in this case, as a, = 1 = b;. But
—larb (V) = lap(yv) = lap(w) since a = (aq,...,a,-1,1) and b = (1), so
a’b=(a1,...,a,-1,1) and ab = (a1,...,0,-1,1,1).

Case 8. Here the relevant terms are
Y XY XY
[w23|lb ]7 ‘[w23|l(bl),b“]v [w45|la,b’ ]’
If w = zv, the first and second terms take value zero on w, so

15 (ias1 () = 15 (ia51()) = lap () = lap(w)

by induction and because by > 1. If w = yv, the third term takes value
zero; then lyp (w) = 0 since by > 1, and also

oy (a1 (w)) = =By (1451 () + 1) po(ias1 (v)) = b (v) + Ip(v) = 0

by (38) for the first term and induction for the second.
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Case 9. Here the relevant terms are

lwasllf ], —[wasli Y], [wasllZi ]

If w = zwv, the first and second terms take the value zero, so

li’g(um(w)) = la b (1451(v)) = lap (v) = lab(w)

by induction and because b; > 1. If w = yv, the third term takes value
zero, so we have

157 (51 (w)) = ~1¥ (ia51(0)) + XY (ia51(v)) = 0

by (38). But also lap(yv) = 0 in this case since b = (by) with b; > 1.
Case 10. Here the relevant terms are

[w23|ll;l)/]a _[w23ll()li;})/’b”]’ [W34lli(’i3,/]

Thus, if w = zv, we have lf’i}/(um (w)) = 0, and also lap(w) = 0 since
bs = 1. If w = yv, we have

1253 (ias1(w)) = =1 (51 (0)) + 13 o (51 () = 133 (ias1 (v))
= —lb(’l)) +lp (v) — lap/ (’U) = —lap (V)
= lab(w)

by (38) for the left-hand term, induction for the middle term (since (b;)
concatenated with b” is just b), and induction also for the last term.
The final equality works because by = 1 and w begins with y.

Case 11. This is the case a = (1),b = (1) and was already treated as
the base case for the induction.

This concludes the proof of the fourth statement, which as noted
above immediately implies the fifth by symmetry. To complete the proof
of the lemma, it thus remains only to prove the sixth statement. It is
enough to prove that if (a,b) are not all 1’s, there is no bar-word in just
wo3 and wsy appearing in li’f . Since the definition of l;/’,gc as p applied
to (35), this is equivalent to proving that lff’iay 01934 = 0, i.e. that li’by
has no bar-words in just weg, waq, for pairs (a,b) not all I’s. This is
more convenient as we can stare at (35). The base case for the induction
here is given by l();)),zl) which was computed above and contains no such
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terms, and lﬁ’)Y(z), which is given by

Y
[y = wasllly)] = wiz + wasllf5) ]+ [waslifyy o)
= [woslwas|wsa] — [wiz + waslwiz + was|waa] + [was|was|wsa)

— |was|wiz|waa] — [was|waz|waa] + [was|wsa|waa]

and also contains no such terms. Make the induction hypothesis that
for all a, b not both sequences of 1’s with total length < r+ s, then lX Y
has no bar-words in only ws3, wz4. Consider a pair (a,b), not all Ik s,
of length r 4+ s. The only terms which could occur with only ws3 and
w34 would come from the terms starting with one of these two elements
n (35). Furthermore, those terms in (35) starting with wag or wsq but
followed by a term

(40) XY, XY or ifY

cannot yield bar-words with just wo3 and way, since IZXY always contains

at least one wo4. Thus in each of the eleven cases it is necessary to check
that the remaining “risky” terms (the ones starting with wes or wsy
followed by a term not in (40)), can never yield a bar-word in was, waq.
There are no risky terms in the first case. In the second case, [w34|l§i3,/] is
risky, but in fact it cannot yield a word in ws3, ws4 only by the induction
hypothesis, since a,, > 1 appears in the pair (a,b’). The third case
has no risky terms, and in the fourth, which contains both [w23|l§:§]

and [w23|l§7§),,], we see that bad words cannot appear by induction,
since bs; > 1 appears in both the pairs (a’,b) and (a”,b"”). In the fifth
case, the only risky term is [w23|l§’§], but by induction, this contains
no bad terms since by > 1 appearsj In the sixth case, there are three
risky terms, [wQ3|l§j§], [w23|l§,’?;,,] and [w34|l§i§], but the induction
hypothesis works for all three again because since (a, b) are not all 1’s
and a, = bs; = 1, none of the sequences (a’,b), (a”,b") and (a,b’) can
be all 1’s.

In the seventh case, the risky term is [wggjl ] but again, (a’, b)
cannot be all 1’s since a, = 1 In the eighth case, there are two risky
terms, [wos|lY ] and [w23|l by, b,,] The first term can contain only wag
and waq only if I} = [was| - - |wa4], ie. if b =(1,...,1), which is impos-
sible since by > 1. The second works by induction since the pair b” is
not all 1’s, as b, > 1. In the ninth case, the only risky term is [was|l} ],
which again can only be a word in wo3 and wss if 1Y = [waq] - - - |wadl,
ie. b= (1,...,1), which is impossible since b, = 1 in this case. In
the tenth case, the risky terms are [was|l¥ ], [o.)23|l b)), b,,} and [w34|lf’g,/].
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For either of the first two terms to have a word in we3 and w34 only, the
sequence b would have to be all 1’s, which is impossible since a = (1) in
this case. As for the third term, lf,;j,/ would have to be a word in wqg and
w34 only, which is impossible since by definition w2 and/or wys appear
in this expression. Finally, the last case is excluded because a = (1),
b = (1). This concludes the proof of the sixth and final statement of
the lemma. Q.E.D.

3.3. Proof of Theorem 7

The version of the statement of Furusho’s lemma given in the previ-
ous section, and the proof, are essentially just complete versions of the
Lie part of the proof sketched in [6].

It is in the application of the lemma to the proof of the Lie version
of his main theorem that the simplification is strong.

In [6], the proof of the main theorem is done in the unipotent situa-
tion, by generalizing these lemmas to that situation, defining a notion of
regularization, and using a computation on regularizations due to Gon-
charov. In the Lie situation, however, thanks to Theorem 2 and the
slight generalization of Furusho’s lemma given in the sixth statement of
Lemma 3, none of this is necessary. The desired result stated in Theorem
7 comes out immediately, as follows.

Proof of Theorem 7. Let f € grt,, and let a = (a1,...,a,), b =
(b1,...,bs). Then by Lemma 3, we find that as long as a and b are not
both sequences of 1’s, we have:

Y (f (245, 251) + f(212,228)) = la(f)
lii,Y (f(za5,251) + f(212,223)) = l;(,iny (f (@45, 251)) = lab(f)
l:f (f(245,51) + f (212, T23))
= l:f (f (a3, z32) + f(221,%15) + f(254, Ta3))
= l:’t),((f(ﬂcm,xm)) = lab(f).

So applying (36) to f(z45,251) + f(@12,223) € Lie P5s, we obtain the

following identities for all pairs (a,b) # ((1,...,1),(1,...,1)), where
st(a,b) and ST'(a,b) are as in Definitions 1.1 and 3.2:

(41) 0= Z ligiﬁ) (f(zas5, 51) + f(w12, T23))

o(a,b)eST(a,b)
- Z lc" (a,b) (f) = Z ZC(f)

oeSh=(r,s) cest(a,b)
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Set F(z,y) = f(z,—y), and let F¥ denote the part of F' consisting of
words ending in y, rewritten in the variables y;. Then by (34) and the
fact that all words w. end in y, we have I.(f) = (—1)"(flwe) = (Flwe) =
(FY|we), where ¢ = (c1,...,c,), i.e. 7 is the “depth” of ¢. So (41) yields

> (F¥lwe) =0 for (a,b)# ((1,...,1),(1,...,1)).

cest(a,b)

Thus, FY satisfies the hypothesis of Theorem 2. Note also that
(F¥|y}) = 0 since F is a Lie polynomial. So, setting F, = FY +
%(F {yn)yT, Theorem 2 shows that F, satisfies the stuffle relations
for all pairs (a,b). This means precisely that F = f(x, —y) € 0s, con-
cluding the proof of Theorem 7. Q.E.D.
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