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Abstract.

We discuss how the motivic integration will be generalized to wild
Deligne-Mumford stacks, that is, stabilizers may have order divisible by
the characteristic of the base or residue field. We pose several conjec-
tures on this topic. We also present some possible applications concern-
ing stringy invariants, resolution of singularities, and weighted counts
of extensions of local fields.
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§1. Introduction

The aim of this paper is to present an attempt to generalize the
motivic integration to wild Deligne-Mumford stacks. In relation to the
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McKay correspondence, Denef and Loeser [9] developed the motivic in-
tegration applicable to the quotient map Ad

k → Ad
k/G for a finite group

G ⊂ GLd(k) with k a field of characteristic zero. Motivated by this, the
author [31, 30] developed the motivic integration over Deligne-Mumford
stacks under some tameness condition. In this paper, we will make con-
jectures on how the theory will be generalized by dropping the tameness
condition. The easiest wild case where G has order equal to the charac-
teristic has been already studied in [32].

Let A be a complete discrete valuation ring with algebraically closed
residue field and D := SpecA. For a Deligne-Mumford stack X of finite
type over D, we will define a twisted arc of X as a representable D-
morphism E → X , where E is the quotient stack associated to some
Galois cover ofD.We expect that we can develop the motivic integration
on the space of twisted arcs of X , which we will denote by J∞X . Our
main conjecture is the following:

Conjecture 1.1 (Conjecture 5.5). For a proper birational mor-
phism f : Y → X of pure-dimensional Deligne-Mumford stacks of finite
type over D, we have a natural map f∞ : J∞Y → J∞X . Then, for a
measurable function F on a subset C ⊂ J∞X , we have the change of
variables formula∫

C

LF+wX dμX =

∫
f−1∞ (C)

LF◦f∞−ord Jacf+wYdμY .

Here ord Jacf is the Jacobian order function of f and wX and wY are
canonically defined weight functions on J∞X and J∞Y respectively.

In this paper, we will try to justify the conjecture. To do so, our
main tool is what we call untwisting, a technique reducing twisted arcs
to non-twisted ones. We will study the formula in more detail when Y is
the quotient stack [Ad

D/G] and X is the quotient variety Ad
D/G for some

linear action G � Ad
D of a finite group G. In this case, we will make a

more explicit and conjectural expression of the weight function.
As an application, we will reach another conjecture which ties stringy

invariants of quotient singularities with mass formulae for extensions of
local fields. For a local field K with residue field having q elements,
Serre [23] proved a mass formula

∑
L

1

�Aut(L/K)
· q−d(L) = q1−n,

where L runs over isomorphism classes of totally ramified field extensions
L/K of degree n and d(L) the discriminant exponent of L/K. Bhargava
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[5] proved an analogous mass formula for all étale extensions of fixed
degree. Also we may consider the motivic version of such counts, replac-
ing q with L and summation with motivic integration over the space of
extensions. From our conjectural change of variables formula, we will
derive an equality between a stringy invariant of the associated quotient
singularity and some motivic count of extensions of the local field, the
fraction field of A. We may regard this as a version of the McKay cor-
respondence. Kedlaya [13] and then Wood [25] worked on this kind of
counting problems in terms of local Galois representations. Their works
might have a more direct relation with our motivic count.1

Another possible application concerns resolution of singularities.
Stringy invariants have a lot of information on resolution of singular-
ities. Our change of variables formula would be helpful in reducing
stringy invariants for varieties with quotient singularities to those for
smooth Deligne-Mumford stacks, which might be easier to compute. An
existence of resolution impose some constraints on stringy invariants.
Thus, if we find a singular variety with stringy invariant violating one
of them, then we can prove the non-existence of resolution of singulari-
ties.2 Similar arguments can apply to the problem on the non-existence
of crepant resolution.

We will also discuss the problem when a family of quotient singu-
larities has a constant stringy invariant, especially in the case where the
family contains both tame and wild ones.

There have been considerable developments [27, 26, 28, 29] on the
subject after the acceptance of the paper for publication until the final
proof. I add several footnotes to mention them. All footnotes in the
paper are added at the final proof.

1.1. Acknowledgements

The author wish to thank Tomoyoshi Ibukiyama and Seidai Yasuda
for letting me know the relevance of Serre’s result [23] in this work. The
author also like to thank Shuji Saito for stimulating discussion on quo-
tient singularities, Kiran S. Kedlaya, Julien Sebag and Melanie Matchett
Wood for reading a draft of the paper and giving me useful comments,
and Fabio Tonini for kindly explaining his result on the moduli of ram-
ified covers.

1Afterwards such a relation was studied in [27, 26].
2Afterwards this viewpoint was adopted in [26].
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1.2. Conventions

We fix an algebraically closed field k, a complete discrete valuation
ring A with residue field k. We denote the fraction field of A by K. We
put D := SpecA and D∗ := SpecK: we call them a formal disk and
punctured formal disk respectively. Always G will denote a finite group.

As many of our statements will be conjectural, we will often make
heuristic arguments rather than rigorous ones. For this reason, we often
identify a k-scheme with its k-point set.

§2. The ring of values

Motivic measures and integrals usually take values in some exten-
sion of the Grothendieck ring of varieties. There are several versions of
such extensions which are slightly different one another. Throughout
the paper, we fix an appropriate one and denote it by M̂ = M̂k. The
following are some of its properties which will be necessary in subsequent
sections:

(1) M̂ has an element associated to each scheme X of finite type
over k, denoted [X]. We write L := [A1

k].

(2) M̂ contains the fractional powers La, a ∈ Q of L.
(3) For a bijective morphism Y → X, [Y ] = [X]. In particular,

[X] = [Xred]. Also, if Y ⊂ X is a closed subset, then [X] =

[Y ] + [X \ Y ]. This enables us to determine [C] ∈ M̂ for a
constructible subset C of a variety.

(4) Let f : Y → X be a morphism such that every fiber f−1(x)
admits a bijective morphism from or to the quotient variety
An

k/H for some fixed n and for some linear action H � An
k

of a finite group H. (We will call f an Ln-fibration.) Then
[Y ] = [X]Ln.

(5) For r ∈ Z>0 and a countable index set I, an infinite sum of the
form ∑

i∈I

[Xi]L
ai , ai ∈ 1

r
Z

converges if and only if for every a ∈ R, there exists at most
finitely many i such that dimXi + ai ≥ a.

(6) There exists a ring homomorphism

P : M̂ →
∞⋃
r=1

Z((T−1/r))

called the virtual Poincaré realization. For a variety X, P ([X])
equals the virtual Poincaré polynomial P (X) of X. If X is
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smooth and proper, then P (X) =
∑

i(−1)ibi(X)T i, where
bi(X) is the i-th Betti number for l-adic cohomology. Also
we have P (L) = T 2.

Concerning the construction of M̂, Properties (1) and (2) determine gen-
erators, (3) and (4) relations and (5) how to complete the ring. Property
(6) is rather a consequence of the construction. For instance, see [32] for
details.

§3. Motivic integration over varieties

In this section, we will briefly recall the motivic integration invented
by Kontsevich, developed by Denef and Loeser [8, 9] in characteristic
zero, and Sebag [22] (see also [18]) in positive or mixed characteristic.

3.1. Varieties over k

Let X be a variety of pure dimension d over k. For a non-negative
integer n, the n-jet scheme of X, denoted JnX, is the fine moduli scheme
parameterizing n-jets:

JnX = {Spec k[t]/(tn+1) → X}.
They are schemes of finite type over k. For n ≥ m, we have a natural
morphism JnX → JmX, called the truncation. The arc space of X, de-
noted J∞X, is the projective limit of JnX, n ∈ Z≥0, which parameterizes
arcs:

J∞X = {Spec k[[t]] → X}.
The natural maps πn : J∞X → JnX are also called truncations.

The arc space has a measure taking values in M̂, which is called the
motivic measure. We denote it by μX and define it as follows: a subset
C ⊂ J∞X is said to be stable if for some n,

(1) πn(C) is a constructible subset,
(2) C = π−1

n (πn(C)), and
(3) for every n′ ≥ n, πn′+1(C) → πn(C) is an Ld-fibration.

For a stable subset C, we put

μX(C) := [πn(C)]L−nd ∈ M̂, (n � 0).

This defines the motivic measure on stable subsets. We can extend
this to a larger class of subsets called measurable subsets. Roughly, a
measurable subset is a subset of J∞X which can be approximated by a
series of stable subsets. Let

F : J∞X ⊃ C → 1

r
Z ∪ {∞}
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be a measurable function on a subset C for some r ∈ Z>0, that is, every
fiber of it is a measurable subset and F−1(∞) has measure zero. Then
we define the motivic integral of LF by∫

C

LF dμX :=
∑
n∈ 1

rZ

μX(F−1(n))Ln ∈ M̂ ∪ {∞}.

Here, if the infinite sum diverges, then we put the integral to be ∞.

3.2. Varieties over D

All these about the motivic integration over k-varieties can be gener-
alized to D-varieties. LetX be a D-variety, that is, an integral scheme of
finite type over D. For n ∈ Z≥0, we put An := A/mn+1, Dn := SpecAn.
In this setting, we put

JnX = {D-morphisms Dn → X},
which is a scheme of finite type over k (not D). (The functor represented
by this scheme is called a Greenberg functor.) Then J∞X is again the
projective limit of JnX, n ≥ 0 and

J∞X = {D-morphisms D → X}.
Let us suppose also that X is flat and of relative dimension d over
D. Then, in the same way as in the case of k-varieties, we can define
the motivic measure on J∞X and the motivic integral

∫
C
LF dμX for a

measurable function F on a subset C of J∞X. The motivic integration
for a k-variety X is equivalent to the one for the induced D-variety
X ×k D with D = Spec k[[t]].

§4. Motivic integration over Deligne-Mumford stacks

4.1. Spaces of G-covers of a formal disk

We mean by a G-cover of D∗ an étale G-torsor E∗ → D∗. Then a
G-cover of D is the finite cover E → D associated to a G-cover E∗ → D∗

of D∗. Here E is the unique normal scheme finite over D containing E∗

as an open dense subscheme. Let K be the algebraic closure of K. A
G-cover E(∗) → D(∗) is called pointed if a lift of the natural K-point of
D(∗) to E(∗) is prescribed.

Conjecture 4.1. There exist the moduli spaces parameterizing iso-
morphism classes of the pointed/unpointed G-covers of D: we will denote
them by G-Covpt(D) and G-Cov(D) respectively.
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The group G acts on G-Covpt(D) by changing the given pointing
or equivalently by replacing the given G-action on E with conjugation.
Then we should have

G-Covpt(D)/G = G-Cov(D).

The conjecture holds if char(k) � �G. Indeed the moduli spaces are just
finite points in this case. Moreover G-Cov(D) ∼= G-Cov(D∗) has exactly
�Conj(G) points. When A has equal characteristic p > 0 and G is
a p-group, Harbater [10] constructed the (coarse) moduli spaces of G-
covers of D∗. If GK denotes the absolute Galois group of K, then there
exists a one-to-one correspondence between G-Covpt(D) and the set of
continuous homomorphisms GK → G. Actually the conjecture above
seems to be one of the technical keys of the whole story in this paper.
For instance, the existence of moduli spaces of G-jets/arcs and twisted
jets/arcs discussed below would easily follow from the conjecture along
the same line as in [32]. A recent result by Tonini [24] may be helpful
in addressing this problem.

Besides Conjecture 4.1, we also expect that G-Cov(D) is the induc-
tive limit of some series

V0 → V1 → V2 → · · ·
such that Vi are schemes of finite type and Vi → Vi+1 are injective
morphisms. (We expect them to be not immersions but rather something
like immersions followed by Frobenius morphisms, as such a phenomenon
appears in [10].) We will say that a subset of G-Cov(D) is constructible
if it is the image of a constructible subset of some Vi. To a constructible
subset C of G-Cov(D), we associate [C] ∈ M̂ in the obvious way. We
obtain the tautological motivic measure on G-Cov(D):

τ : {constructible subsets of G-Cov(D)} → M̂
C �→ τ(C) = [C]

4.2. G-arcs and jets

Let M be a D-variety endowed with a G-action.

Definition 4.2. We define a G-arc of M as a G-equivariant D-
morphism E → M for some G-cover E → D. Two G-arcs E,E′ →
M are isomorphic if there exists an isomorphism E → E′ of G-covers
compatible with the given morphisms E,E′ → M .

For a connected Galois cover E → D of degree e, we define a closed
subscheme En of E to be the one having length 1 + ne. In particular,
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E0
∼= Spec k. For a non-connected Galois cover E =

⊔
i E

i → D with Ei

connected components, we put En :=
⊔

i E
i
n.

Definition 4.3. We define a G-n-jet of M as a pair (E,En → M)
of a G-cover E → D and a G-equivariant D-morphism En → M. Two
G-n-jets (E,En → M) and (E′, E′

n → M) are isomorphic if there exists
an isomorphism E → E′ of G-covers such that the induced isomorphism
En → E′

n is compatible with the given morphisms to M.

Conjecture 4.4. There exist moduli spaces parameterizing isomor-
phism classes of G-arcs and G-n-jets of M for every n: we will denote
them by JG

∞M and JG
n M respectively.

If this is the case, we would have natural morphisms

JG
∞M → · · · → JG

n+1M → JG
n M → · · · → JG

0 M → G-Cov(D).

For E ∈ G-Cov(D) and for each n, we put JG,E
n M ⊂ JG

n M to be the
fiber over E.

Lemma 4.5. Let E ∈ G-Cov(D) and G′ ⊂ G the stabilizer of a
connected component E′ of E, that is, G′ := {g ∈ G | g(E′) = E′}. Let
M0 := M ×D D0. (Recall D0 = Spec k.) Then

JG,E
0 M ∼= MG′

0 /NG(G
′).

Here NG(G
′) is the normalizer of G′ in G.

Proof. A pointed G-0-jet α : E0 → M0 is uniquely determined
by α(E′

0) ∈ M0, which is invariant under the G′-action. Changing the
connected component, α(E′

0) will be changed to a point of M0 invariant
under a subgroup conjugate to G′. Thus we have

JG,E
0 M ∼=

⎛
⎝ ⋃

H: conjugate to G′
MH

0

⎞
⎠ /G ∼= MG′

0 /NG(G
′).

Q.E.D.

4.3. Twisted arcs and jets

Let X be a DM stack of finite type over D.

Definition 4.6. A stacky formal disk is a connected and normal
DM stack E which is birational and finite over D. A twisted arc of X is
a representable D-morphism E → X with E a stacky formal disk. (Note
that E → X is representable if and only if the induced map of stabilizers
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of closed points is injective.) Two twisted arcs E → X and E ′ → X are
isomorphic if there exists an isomorphism E → E ′ making the diagram

E ��

���
��

��
��

E ′

��
X

2-commutative.

Conjecture 4.7. There exists a moduli space parameterizing iso-
morphism classes of twisted arcs of X : we will denote it by J∞X .

Let us suppose that this conjecture holds.

Lemma 4.8. Suppose that X is a quotient stack [M/G] for M and
G as above. Then we have

J∞X ∼= JG
∞M.

Proof. Let E → M be a G-arc. Taking the quotient stacks, we
obtain a twisted arc

[E/G] → X .

This defines a map JG
∞M → J∞X . Conversely, for a twisted arc E → X ,

we put E := M ×X E . Then the map E → M is a G-arc. Q.E.D.

Although not defining twisted jets, we expect:

Conjecture 4.9. For each n ∈ Z≥0, there exists a moduli space
JnX of twisted n-jets of X satisfying:

(1) If X = [M/G], then JnX = JG
n M.

(2) There exist truncation maps Jn+1X → JnX making J∞X the
projective limit of JnX , n ∈ Z≥0.

Assuming these conjectures, when X is of pure dimension d (rel-
atively over D), we can define the motivic measure μX on J∞X in a
similar way as the one on the arc space of a variety. The untwisting
technique (Section 7) would provide an evidence that there are enough
stable or measurable subsets of J∞X .

§5. Formulating the change of variables formula for DM stacks

5.1. Maps of twisted arc spaces

Given a morphism f : Y → X of DM stacks of finite type over D,
we can construct a map

f∞ : J∞Y → J∞X
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as follows: let γ : [E/G] → Y be a twisted arc with E a connected G-
cover of D. Let y ∈ Y be the image of the closed point by γ and x ∈ X
the image of y by f. Set

N := Ker(G
γ−→ Aut(y)

f−→ Aut(x)).

Then f ◦ γ factors as

f ◦ γ : E = [E/G] → E ′ = [(E/N)/(G/N)] → X .

Here [(E/N)/(G/N)] is the quotient stack associated to the induced
action of the quotient group G/N on the quotient scheme E/N . We
define f∞(γ) to be the induced morphism E ′ → X .

Lemma 5.1 (Almost bijectivity lemma). Let f : Y → X be a
morphism of DM stacks of finite type over D. Suppose that for closed
substacks Y ′ ⊂ Y and X ′ ⊂ X , f induces an isomorphism Y \ Y ′ ∼−→
X \ X ′. Then f∞ restricts to a bijection

J∞Y \ J∞Y ′ → J∞X \ J∞X ′.

Proof. Let (γ : E → X ) ∈ J∞X \ J∞X ′. Then we put Ẽ to be
the normalization of the irreducible component of E ×X Y dominating
E . The induced morphism γ̃ : Ẽ → Y is the unique twisted arc with
f∞(γ̃) = γ. This shows the lemma. Q.E.D.

If Y and X have pure dimension d, and if dimX ′, dimY ′ < d, then we
expect that J∞X ′ and J∞Y ′ have measure zero as subsets of J∞X and
J∞Y respectively. Then the lemma says that f∞ : J∞Y → J∞X is
almost bijective. Thanks to this, we can expect that motivic integrals
on J∞X are transformed into ones on J∞Y and vice versa. The formula
describing the transform will be called the change of variables formula.

5.2. Order functions associated to submodules

To formulate the change of variables formula, we need to introduce
order functions on the space of twisted arcs.

Definition 5.2. Let X be a DM stack of pure dimension d, let
N ⊂ M be coherent OX -modules which are generically of rank one. (In
practice, we often take OX , Ωd

X/D or ωX/D as M.) Then we define the

order function of the submodule N

ordN : J∞X → Q≥0 ∪ {∞}
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as follows: let γ : [E/G] → X be a twisted arc with E a connected
G-cover of D. If NE and ME denote the pull-backs of N and M to E,
and if ME/tors is free of rank one, then

Im(NE → ME/tors) = sn(ME/tors)

for some n ∈ Z≥0 with s a uniformizer of the function field of E. Then
we define

(ordN)(γ) :=
n

�G
.

If ME/tors is not free of rank one, then we put (ordN)(γ) = ∞, expect-
ing that this does not happen for almost all γ.

Remark 5.3. Generalizing this, we can also define the order function
of a fractional submoduleN ofM, that is, anOX -submodule ofM⊗OXQ
with Q the sheaf of total quotient rings. Then the function may take
negative values.

Definition 5.4. For a generically étale morphism f : Y → X of
DM stacks, we define its Jacobian order function, ord Jacf , as the order
function of the submodule Im(f∗Ωd

X/D → Ωd
Y/D) ⊂ Ωd

Y/D.

5.3. The change of variables formula

The following is the main conjecture of this paper:

Conjecture 5.5 (Main Conjecture). For each DM stack X of fi-
nite type and pure dimension over D, there exists a canonically defined
function

wX : J∞X →
(⋃

x∈X

1

�Aut(x)
Z

)

such that if X is a scheme, then wX ≡ 0. (We call this the weight
function on J∞X .) Moreover, for a proper birational morphism f :
Y → X of such stacks, and for a measurable function F : J∞X ⊃ C →
1
rZ ∪ {∞}, we have∫

C

LF+wX dμX =

∫
f−1∞ (C)

LF◦f∞−ord Jacf+wYdμY .

This is basically of the same form as the formula in the tame setting
proved in [31]. However differences lie for instance in the facts that in
the wild case, the moduli spaces of twisted arcs are much larger and
that weight functions may take negative and unbounded values. The
conjecture has been proved in [32] for the morphism from the quotient
stack [Ad

k/G] to the quotient variety Ad
k/G associated to a linear action

of G = Z/pZ with p = char(k).
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§6. More details on the linear case

Let G ⊂ GLd(A) be a finite subgroup, which acts on V := Ad
D: we

call V a G-representation over D. Then we put X := [V/G] and X =
V/G, the quotient stack and variety. In this section, we will study the
detailed structure of twisted arc and jet spaces and obtain a conjectural
“explicit” expression of the weight function wX .

6.1. Spaces of arcs and jets

Let
E = SpecB → D = SpecA

be a G-cover. We will study the structure of JG,E
∞ V and πn(J

G,E
∞ V ),

n ∈ Z≥0, where πn are the truncation maps. Let A[x1, . . . , xd] be the
coordinate ring of V. We have the induced A-linear action of G on Ad =⊕d

i=1 A · xi. This uniquely extends to a B-linear action on Bd. Let

ρ : G → AutB(B
d)

be the corresponding map. On the other hand, G acts on B and diago-
nally on Bd, which induces a map

δ : G → AutA(B
d).

Since ρ(g), g ∈ G are represented by d×d matrices with entries from A,
for every g, g′ ∈ G, ρ(g) and δ(g′) are commutative. Hence the map

ρδ−1 : G → AutA(B
d), g �→ ρ(g) ◦ δ(g)−1

is a group homomorphism.

Definition 6.1. We define ΞV
B/A ⊂ Bd to be the G-invariant subset

for ρδ−1, which is the locus where the two G-actions ρ and δ coincide.
For n ∈ Z≥0, writing En = SpecBn, we put ΞV

B/A,n to be the image of

ΞV
B/A in Bd

n.

By definition, these modules ΞV
B/A, Ξ

V
B/A,n have the unique natural

G-action.

Lemma 6.2. We can identify JG,E
∞ V with ΞV

B/A/G and πn(J
G,E
∞ V )

with ΞV
B/A,n/G.

Proof. A G-arc E → V corresponds to an equivariant homomor-
phism

A[x1, . . . , xd] → B.
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In turn, this corresponds to an element of ΞV
B/A. The set JG,E

∞ V is

identified with the set of such equivariant homomorphisms modulo the
G-action, in turn with ΞV

B/A/G. The assertion on jets follows from

this. Q.E.D.

Proposition 6.3. ΞV
B/A is a free A-module of rank d. Moreover it is

saturated, that is, if ax ∈ ΞV
B/A with a ∈ A and x ∈ Bd, then x ∈ ΞV

B/A.

Proof. For a ∈ A, the multiplication map, Bd → Bd, x �→ ax,
commutes with all ρ(g) and σ(g). This shows the saturatedness. The
freeness follows from the facts that it is torsion-free and that A is a
PID. It remains to show that the rank is d.

The G-action ρδ−1 makes Bd a G-equivariant B-module. Let L be
the fraction field of B and p : SpecL → SpecK the associated G-torsor.
Then ΞV

B/A ⊗A K is identified with (p∗(Bd ⊗B L))G. We can see that

this has rank d, for instance, by trivializing the G-torsor with a base
change. Q.E.D.

From the proposition, we can identify ΞV
B/A,n with affine spaces over k,

using Witt vectors in the mixed characteristic case (for instance, see [6,
page 276]). Now we can easily deduce the following:

Corollary 6.4. For every n ∈ Z≥0, πn+1(J∞X ) → πn(J∞X ) is an
Ld-fibration, where πn : J∞X → JnX is the truncation map.

6.2. Weight functions in the linear case

Definition 6.5. Let α1 = (α1j)1≤j≤d, . . . , αd = (αdj)1≤j≤d ∈ Bd

be an A-basis of ΞV
B/A and put Q := (αij) ∈ Md(B). Let G′ ⊂ G be the

stabilizer of some connected component of E. Let V0 := V ×D D0. Then
we define3 a weight function w = wV : G-Cov(D) → Q by

w(E) : = d− 1

�G
length

B

(detQ)
− dimV G′

0

= d− 1

�G
length

Bd

B · ΞV
B/A

− dimV G′
0 .

Note that if B is a domain, then the middle terms are written as
vB(detQ)/�G with vB the normalized valuation of B.

3Afterwards it turned out that this definition is not quite correct; the term

dimV G′
0 needs to be modified, although they coincide in some cases; see [28].
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Conjecture 6.6. For the quotient stack X = [V/G] associated to
a G-representation V over D, the weight function wX from Conjecture
5.5 factors as

wX : J∞X = JG
∞M → G-Cov(D)

wV−−→ Q.

We will show an evidence for the conjecture in the next section.

Example 6.7. Let ζ ∈ k be a primitive m-th root of 1 with
char(k) � m and G := 〈diag(ζa1 , . . . , ζad)〉 ⊂ GLd(k) with 0 ≤ ai < m
and gcd(a1, . . . , ad) prime to m. Then G is cyclic of order m. Let

E = Spec k[[t1/m]] → D = Spec k[[t]]

be a G-cover with σ(t1/m) = ζt1/m. Then for a natural basis of Ξ, the
matrix in Definition 6.5 becomes

Q = diag(ta1/m, . . . , tad/m).

Hence

w(E) = d− 1

m

d∑
i=1

ai − �{i | ai = 0}

= d− 1

m

d∑
i=1

a′i,

where a′i is an integer such that a′i ≡ ai mod m and 0 < a′i ≤ m. This
agrees with weight functions in [9, 30, 31].

Example 6.8. Suppose that char(k) = p > 0 and G = 〈σ〉 is cyclic
of order p. Also suppose that G acts on k[x1, . . . , xd], d ≤ p by

σ(xi) =

{
xi + xi+1 (i < d)

xd (i = d).

Let
E = SpecB → D = Spec k[[t]]

be a G-cover with ramification jump j > 0. Namely, if s ∈ B is a
uniformizer, then vB(σ(s)− s) = j+1. (Note that j is necessarily prime
to p.) Then there exist f0, . . . , fd−1 ∈ B such that

(1) vB(fi) ≡ −ij mod p and 0 ≤ vB(fi) < p,



Toward motivic integration over wild Deligne-Mumford stacks 421

(2) If we put δ = σ∗ − idB, then

vB(δ
n(fi)) =

{
vB(fi) + nj (0 ≤ n ≤ i)

∞ (n > i),

(3) (δi(f0))1≤i≤d, . . . , (δ
i(fd−1))1≤i≤d ∈ Bd form a basis of ΞB .

The matrix Q = (δi(fj))0≤i,j≤d−1 corresponding to the basis is tri-

angular and its determinant is
∏d−1

i=0 δi(fi). Since

vB(δ
i(fi)) = vB(fi) + ij = p ·

⌈
ij

p

⌉
,

we have

w(E) = d−
d−1∑
i=0

⌈
ij

p

⌉
− 1

= −
d−1∑
i=1

⌊
ij

p

⌋
.

This agrees with the weight function in [32].

These examples would suggest that the tame part positively con-
tributes to the weight and the purely wild part negatively does,4 and
that the weight function measures how tame/wild a G-cover E → D
is. The formula defining wV contains detQ and it is not clear how to
compute it in general. Therefore we would like to ask:

Problem 6.9. Does w(E) depend only on numerical invariants of
E and V as in the above examples? If it is the case, find a formula.5

To attack the above problem, knowing properties of the weight func-
tion would be helpful. For instance, it is natural to expect the following
properties:

(1) Let E → D be a G-cover, E′ ⊂ E a connected component,
G′ ⊂ G its stabilizer and V ′ the same scheme as V endowed
with the induced G′ action. Then wV (E) = wV ′(E′).

(2) For a trivial G-cover E =
⊔

g∈G D → D, wV (E) = 0.

4Afterwards this phenomenon was also confirmed in the case of permutation
representations in [27].

5Afterwards it turned out that w(E) is described by discriminants for per-
mutation representations [27] and for little more complicated ones [29]. However
the problem is still open for the general case.
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(3) For G-representations V and W over D, let G act on V ×D W
diagonally. Then wV×DW (E) = wV (E) + wW (E).

§7. Untwisting: a justification of conjectures

In this section, we will try to justify Conjectures 5.5 and 6.6. Here
we will use a technique which we call untwisting. This would reduce the
change of variables formula for stacks to the one for varieties, which has
been already mostly established. Such an argument was already used
by Denef and Loeser [9]. Our argument will be somehow more involved
than theirs. One of the reasons is that we have to untwist in the opposite
direction. It is inevitable because the weight function may take negative
values in the wild case.6

We will only consider the proper birational morphism

φ : X = [M/G] → X = M/G,

associated to a G-variety M, as all keys seem to appear already in this
situation. Then, like the change of variables formula in known cases,
Conjecture 5.5 would basically follow from:

Conjecture 7.1 (Key lemma). Let γ : E → X be a twisted arc of
X which sends the generic point of E into the isomorphism locus of φ.
Let φn : πn(J∞X ) → JnX be the natural map. Then for n � 0,

[φ−1
n (φn(πn(γ)))] = Lord Jacφ(γ)−wX .

7.1. Fixing a G-cover of D

Lemma 7.2. Let γ, γ′ ∈ JG
∞M be G-arcs sending the generic points

into the étale locus of the quotient map M → X. If they have the same
image in JnX for n � 0, then they have the same image in G-Cov(D).

Proof. Let E → D be the G-cover associated to γ. We consider
only the case where E is connected. We may suppose that M = SpecS
and X = SpecR with R = SG. Let f ∈ R be such that γ(E∗) ⊂ SpecSf

and we can write
Sf = Rf [x]/(h(x)).

Let h̄(x) ∈ K[x] to be the image of h(x) by Rf [x] → K[x] derived from
γ. Then the function field of E is L = K[x]/(h̄(x)). For n � 0, the

6These two sentences were wrong. This misunderstanding caused the com-
plicated presentation of the untwisting. However this was the way how the
author reached the definition of weight functions and Conjecture 7.1 below. In
[29] he revisited this technique in a more intrinsic way.
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induced n-jet fn(πn(γ)) of X determines the coefficients of h̄(x) up to
sufficiently high order. Hence it determines L and E. Q.E.D.

7.2. The linear case

Now we consider the case where M = V = SpecA[x1, . . . , xd] with
a linear G-action. Fix E = SpecB ∈ G-Cov(D). As in Definition 6.5,
we take an A-basis of ΞV

B/A,

α1 = (α1j)1≤j≤d, . . . , αd = (αdj)1≤j≤d ∈ Bd,

which we now think of row vectors, and put

Q :=

⎛
⎜⎝
α1

...
αd

⎞
⎟⎠ = (αij)1≤i,j≤d ∈ Md(B),

which is invertible over B ⊗A K.

Definition 7.3. Let t be a uniformizer of A and let l ∈ Z≥0 be
such that tlQ−1 ∈ Md(B). Then tlQ−1 defines a B-linear transform on
Bd ∼=⊕

B · xj . Extending it, we obtain a B-algebra endomorphism u∗

of B[x1, . . . , xd]. Putting VE := SpecB[x1, . . . , xd] = V ×D E, we define
a B-linear map

u : VE → VE

to be the one corresponding to u∗. We call u an untwisting map.

Suppose that G acts on VE = V ×D E diagonally. A G-arc E → V
corresponds to a G-equivariant E-morphism E → VE . For 1 ≤ i ≤ d, let
γi : E → VE be the G-equivariant E-morphism such that

γ∗
i |⊕B·xj

:
⊕

B · xj → B

∑
ajxj �→ αi

⎛
⎜⎝
a1
...
ad

⎞
⎟⎠ .

Then

(u ◦ γi)∗|⊕B·xj
:
⊕

B · xj → B

∑
ajxj �→ αit

lQ−1

⎛
⎜⎝
a1
...
ad

⎞
⎟⎠ = tlai.
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For any γ ∈ JG,E
∞ V, γ∗|⊕B·xj

is an A-linear combination of γ∗
i |⊕B·xj

,
and (u ◦ γ)∗|⊕B·xj

is an A-linear combination of (u ◦ γi)
∗|⊕B·xj

. For
0 ≤ n ≤ ∞, we denote the set of G-equivariant morphisms En → V
by J̇G,E

n V , distinguishing it from JG,E
n V = (J̇G,E

n V )/G. We have the

identification J̇G,E
n V = ΞV

B/A,n (see Lemma 6.2 and its proof).

Proposition 7.4. For l ≤ n ≤ ∞, let J≥l
n V be the subset of n-jets

γ : Dn → V of V with γ∗(xi) ∈ ml
An

, where mAn is the maximal ideal of
An. We have a natural bijection

(7.1) u∞ : J̇G,E
∞ V → J≥l

∞ V.

Moreover, for l ≤ n < ∞, the induced map

un : πn(J̇
G,E
∞ V ) → J≥l

n V

is a trivial Ac
k-fibration with c = dimV G′

0 + d(l − 1).

Proof. The first assertion is now obvious. The maps un are linear
surjections. The dimensions of their kernels are independent of n and
equal to

c = dim JG,E
l V − dim J≥l

l V

= dim JG,E
0 V + d(l − 1)

= dimV G′
0 + d(l − 1).

Here G′ ⊂ G is the stabilizer of some connected component of E.
Q.E.D.

Since u is an isomorphism outside the special fiber of VE → D, there
exists a rational map ψ ◦ u−1 : VE ��� XE .

Lemma 7.5. The rational map ψ ◦ u−1 is defined over D.

Proof. Suppose that this is not true. Then there exists f ∈ frac
(A[x1, . . . , xd]

G) with f /∈ u∗(frac(A[x1, . . . , xd]). Then, for general γ ∈
J≤l
∞ V, if γE : E → VE is the morphism induced from γ by extending

scalars, then γ∗
E(f) /∈ K. This contradicts the fact that u−1

∞ (γ) : E → V
induces an arc D → X. Q.E.D.

Let ψ : V → X be the quotient map and ψ′ = ψ ◦ u−1 : V ��� X the
above rational map over D.

(7.2) V
ψ

����
��
��
�� u (defined after extending scalars to B)

���
��

��
��

�

X V
ψ′

��� � � � � � �
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This diagram induces the commutative diagram of jet spaces:

(7.3) πn(J̇
G,E
∞ V )

ψn

�����
���

���
��

un

		��
���

���
���

πn(J∞X) πn(J
≥l
∞ V )

ψ′
n

��� � � � � � � � � � �

Here ψ′
n should be understood as the restriction of a “correspondence”

πn(J̇
G,E
∞ W )

�����
���

���
��

		��
���

���
���

πn(J∞X̄) πn(J
≥l
∞ V̄ )

where X̄ and V̄ are compactifications of X and V respectively, and W
is a resolution of indeterminacies of ψ′ : V̄ ��� X̄.

We now fix a G-arc γ ∈ J̇G,E
∞ E not contained in a bad locus. We

denote the relative dimensions of morphisms ψn and un at jets derived
from γ by dimψn and dimun respectively. Also we write the “relative
dimension of ψ′

n” as dimψ′
n. Then for n � 0,

dimψn = dimψ′
n + dimun = dimψ′

n + c,

with c as above. On the other hand, we would have the associativity of
Jacobian orders,

ord Jacψ′ = ord Jacψ + ord Jacu−1 ,

where ord Jac? denotes the Jacobian order of ? at the arc derived from
γ. Since Jacu−1 = det(t−lQ) = t−dl · detQ and detQ ∈ B, we would
have

ord Jacu−1 ≡ 1

�G
length

B

(detQ)
− dl.

On the other hand, suitably generalizing the change of variables formula
to our rational map, we would have

ord Jacψ′ = dimψ′
n.

Hence

dimψn = dimψ′
n + c

= ord Jacψ − wX (γ).

These arguments would justify Conjecture 7.1 and hence Conjectures
5.5 and 6.6 in this situation.
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7.3. Untwisting: the non-linear or singular case

Next we consider the case where the G-variety M is just an affine
(possibly singular)D-variety.7 There exists an equivariant closed embed-
ding M ↪→ V = Ad

D with G linearly acting on V. From V, we construct
the same diagram as (7.2). Let Y := M/G and M̄ ⊂ V the closure of
(ψ′)−1(Y ). The bijection (7.1) restricts to a bijection

J̇G,E
∞ M → J≥l

∞ M̄ := J≥l
∞ V ∩ J∞M̄.

Diagram (7.3) restricts to:

πn(J̇
G,E
∞ M)

ψn

�����
���

���
��

un



��
���

���
���

πn(J∞Y ) πn(J
≥l
∞ M̄)

ψ′
n

��� � � � � � � � � � �

Here the overlines mean restrictions of maps. With similar notation as
above, we would have

dimψn = dimψ′
n + dimun

= ord Jacψ + dimun + ord Jacu−1 .

Therefore the weight of the relevant arc, w[M/G](γ), would be

−dimun − ord Jacu−1 .

Unlike the linear case, the two terms are not probably be constant even
if we fix a G-cover E.

Remark 7.6. Another possible (and more direct) approach to the
conjectures is to generalize Looijenga’s argument [15]: we identify fibers
of ψn with suitable submodules of

HomB(γ̃
∗ΩY/X ,ma

B/m
b
B)

and compute their dimensions.

7Afterwards this case was studied in [29] in more details.
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§8. Stringy motifs vs. motivic masses of G-covers

8.1. Stringy motifs

Let X be a normal Q-Gorenstein DM stack over D. Namely for some

r > 0, the double dual ω
[r]
X/D := (ω⊗r

X/D)∨∨ of ω⊗r
X/D is invertible. Then

we define a function FX on J∞X as the order function of the submodule

(Ωd
X/D)⊗r/tors ⊂ ω

[r]
X/D

divided by r.

Definition 8.1. LetW ⊂ X×DD0 be a closed subset and (J∞X )W
the preimage of W by the natural map J∞X → X ×D D0. We define
the stringy motif of X along W as the integral

Mst(X )W :=

∫
(J∞X )W

LFX+wX dμX ∈ M̂ ∪ {∞}.

We say that X is stringily log terminal along W if Mst(X )W �= ∞. If
W = X , we just write Mst(X ). For a stack X defined over k and a closed
subset W ⊂ X , we define Mst(X )W as Mst(X ⊗k k[[t]])W

Since FX comes from singularities of X and ωX from local actions
of stabilizers, roughly Mst(X )W measures how X is far from a smooth
variety along W.

Remark 8.2. We may generalize the above definition to log stacks,
that is, pairs of a DM stack and a Q-divisor on it. We will not enter this
issue in this paper.

Remark 8.3. A Q-Gorenstein variety X is log terminal in the usual
sense if it is stringily log terminal. The converse holds if the variety
admits a log resolution. If X is tame and smooth, then X is stringily
log terminal. In general, a smooth DM stack may not be stringily log
terminal (see [32]).

We can compute stringy invariants using resolution data if a nice
resolution exists.

Proposition 8.4. Let f : Y → X be a resolution of a log terminal
variety X over k such that the relative canonical divisor Kf is simple
normal crossing, say written as Kf =

∑
i∈I aiEi. For a subset J ⊂ I,

we set E◦
J :=

⋂
i∈J Ei \

⋃
i/∈J Ei. Then

Mst(X)W =
∑
J⊂I

[E◦
J ∩ f−1(W )]

∏
j∈J

L− 1

Lai+1 − 1
.

In particular, if f is crepant, that is, Kf = 0, then Mst(X)W = [f−1(W )].
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Remark 8.5. Originally stringy invariants were defined by Batyrev
[2] using a formula as in Proposition 8.4. Denef and Loeser [9] found a
way to express them as motivic integrals over the arc space of the given
singular variety.

Remark 8.6. If Conjecture 5.5 holds, then we can show that the
stringy motif is invariant under K-equivalences. Moreover we can gen-
eralize it to log stacks.

8.2. Motivic masses

We conjectured that G-Cov(D) has the tautological motivic measure
τ . To a G-representation V over D, we have associated the weight
function wV on G-Cov(D).

Definition 8.7. The motivic mass of G-covers of D with respect
to V is

Mass(G,D, V ) :=

∫
G-Cov(D)

LwV dτ =
∑
r∈Q

[w−1
V (r)]Lr ∈ M̂ ∪ {∞}.

Remark 8.8. The motivic mass is analogous to weighted counts of
extensions of a local field by Serre [23] and Bhargava [5]. Serre proved
a mass formula for totally ramified field extensions of a local field with
finite residue field. Bhargava proved a similar formula by allowing étale
extensions. Kedlaya’s reinterpretation [13] of Bhargava’s result in terms
of Galois representation, and Wood’s subsequent work [25] seem to be
more directly related to our motivic invariant.

Proposition 8.9. We denote by 0 the origin of V ×D D0, and its
images in X := V/G and X := [V/G] as well. Suppose that Conjectures
5.5 and 6.6 hold. Suppose also that G has no reflection, equivalently,
the quotient map V → X is étale in codimension one. Then

(8.1) Mst(X)0 = Mst(X )0 = Mass(G,D, V ).

Moreover, if there exists a crepant resolution f : Y → X, then these
invariants are also equal to [f−1(0)].

Proof. Let φ : X → X be the natural morphism. Then FX ◦ φ∞ =
ord Jacφ. Hence our conjectures show∫

(J∞X)0

LFXdμX =

∫
(J∞X )0

LwX dμX =

∫
G-Cov(D)

LwV dτ,

and the proposition. Q.E.D.
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Remark 8.10. If char(k) � �G, then G-Cov(D) have exactly �Conj(G)
points and

Mst(X)0 = Mass(G,D, V ) =
∑

[g]∈Conj(G)

Lage g.

See (9.1). Hence, if f : Y → X is a crepant resolution and if χc(−)
denotes the topological Euler characteristic (for compactly supported
cohomology), then

χc(f
−1(0)) = �Conj(G).

Thus we recover a version of the McKay correspondence. The basically
same result was conjectured by Reid and first proved by Batyrev [3] in
arbitrary dimension (for the historical account, see [19]). Our approach
is essentially due to Denef and Loeser [9] at least in characteristic zero.

Remark 8.11. Without assuming any conjecture, the proposition
above has been established in [32] when G = Z/pZ, A = k[[t]] and V is
defined over k. Also, a variant of the proposition, regarded as a point-
counting realization, will be proved in a forthcoming paper [27]8 when
G is the n-th symmetric group Sn, V is the direct sum of two copies
of the standard representation and Y is the Hilbert scheme of n points
on the affine plane. In the same paper, it will turn out that this case is
closely related to Bhargava’s mass formula for étale extensions.

§9. Equisingular families and uniformity of motivic masses

Motivated by uniformity problems of Kedlaya [13] and Wood [25],
we pose the following problem:

Problem 9.1. Given a family VS → S of G-representations over a
scheme S with fibers Vs, s ∈ S, are Mass(G,D, Vs) independent of s ∈ S?
What finite groups admit such a uniform family of representations?

Since M̂ depends on k, to make the problem precise, we have to take
a suitable realization of motivic masses. However, in all known cases,
they are rational functions in L, and hence we do not have to worry
about realization. We are mainly interested in the case where S surjects
onto SpecZ and what happens around points of characteristic dividing
�G.

Proposition 8.9 links the problem to:

8This paper has been published now.
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Problem 9.2. What families of quotient singularities are equisin-
gular in the sense that they have the “same” stringy motif?

These problems are wide open. From now on, we will focus on G-
representations with G of prime order. In this case, there have been
already explicit formulae for motivic masses and stringy motifs at least
in equal characteristic. We will now recall them.

Let G be a finite group of prime order p and V a G-representation of
dimension d over k.We first suppose that p �= char(k). Fixing a primitive
p-th root ζ ∈ k of 1, we write each element g ∈ G as diag(ζa1 , . . . , ζad),
0 ≤ ai < r for a suitable basis of V , and put

(9.1) age g :=
1

r

d∑
i=1

ai.

Then
Mass(G,D, V ) =

∑
g∈G

Lage g.

If V has no reflection, then this is equal toMst(X)0 for the corresponding
quotient singularity 0 ∈ X.

Next suppose that p = char(k). Then V is the direct sum of in-
decomposable representations of dimensions d1, . . . , dl with

∑
i di = d.

(Such a decomposition of V is unique up to permutation, and we have
di ≤ p.) We put

DV :=
l∑

i=1

di(di − 1)

2
.

Then Mass(G,D, V ) �= ∞ if and only if DV ≥ p. When one of the two
equivalent conditions holds, then V has no reflection and we have

(9.2) Mass(G,D, V ) = Mst(X)0 = 1 +
(L− 1)

(∑p−1
s=1 L

s+w(s)
)

L− Lp−DV
,

with

w(s) = −
l∑

i=1

di−1∑
j=1

�js/p� .

The topological Euler characteristic realization of Mass(G,D, V ) equals
p in the tame case and

1 +
p− 1

DV − p+ 1

in the wild case. This shows the following:
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Proposition 9.3. If a family VS → S � SpecZ is uniform in the
sense of Problem 9.1, then DVp = p for every reduction Vp of VS to
characteristic p.

The following example is a partial converse.

Example 9.4. Let G be a finite group of prime order p and Vp a G-
representation in characteristic p. Then for a suitable basis, a generator
σ ∈ G is represented by a Jordan normal form J with blocks

Ji =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1
1

⎞
⎟⎟⎟⎟⎟⎠

of sizes di ≤ p. Thus we may suppose that Vp is defined over Fp. Then

we lift J to the matrix J̃ over R := Z[x]/(xp − 1) with blocks

J̃i =

⎛
⎜⎜⎜⎜⎜⎝

1 1
x 1

. . .
. . .

xdi−2 1
xdi−1

⎞
⎟⎟⎟⎟⎟⎠ .

For every i, the reduction of J̃i to a characteristic �= p has di distinct

eigenvalues all of which are p-th roots of 1. Hence J̃i
p
= 1 and J̃p = 1.

Therefore J̃ induces a G-representation VR lifting Vp over R.

Now suppose that DVp =
∑

i
di(di−1)

2 = p. Then

Mass(G,D, Vp) = 1 +

p−1∑
s=1

Ls+wVp (s),

while for a reduction Vl of VR to characteristic l �= p,

Mass(G,D, Vl) = 1 +

p−1∑
s=1

Lα(s).
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Here α(s) =
∑l

i=1

∑di

j=1 {js/p}, {−} denoting the fractional part. We

now claim that α(s) = s+ wVp(s). Indeed,

s =
s ·DVp

p

=
l∑

i=1

di−1∑
j=1

sj

p

=
∑
i

∑
j

⌊
sj

p

⌋
+
∑
i

∑
j

{
sj

p

}

= −wVp(s) + α(s).

Hence, thinking of L as an indeterminate, the motivic mass Mass(G,D, Vl)
is independent of the characteristic l.

Example 9.5. In the preceding example, suppose that Vp = W⊕p

with W the unique indecomposable G-representation of dimension 2 (in
characteristic p). Then for any characteristic l,

Mass(G,D, Vl) =

p−1∑
i=0

Li = [Pp−1].

§10. Non-existence of resolution of singularities

Stringy motifs of log terminal varieties have a lot of information on
their resolutions of singularities if exist. A detailed knowledge of this
invariant might lead to the non-existence of resolution of singularities in
positive characteristic. Conjecture 5.5 enables us to reduce the stringy
invariant of a quotient variety to that of the corresponding quotient
stack, which would be easier to compute in some cases. For this purpose,
we have to know what constraints the existence of resolution imposes on
the invariant.

10.1. Rationality and the Poincaré duality

Definition 10.1. For a Q-Gorenstein k-variety X and a closed sub-
set W ⊂ X, we put

Pst(X,Δ)W := P (Mst(X,Δ)W ) ∈
⋃
r>0

Z((T−1/r)).

with P the virtual Poincaré realization. IfW = X, we omit the subscript
W.
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Definition 10.2. A rational function f(T 1/r) ∈ Z(T 1/r) in T 1/r is
said to satisfy the d-dimensional Poincaré duality if

T 2d · f(T−1/r) = f(T 1/r).

Proposition 10.3. Let X be a Q-Gorenstein k-variety which is log
terminal along W. Suppose that there exists a resolution f : Y → X
such that Kf is simple normal crossing. Then Pst(X)W is a rational
function. Moreover, if X is proper and W = X, then Pst(X) satisfies
the d-dimensional Poincaré duality with d = dimX.

Proof. The rationality follows from Proposition 8.4. We can prove
the Poincaré duality in the same way as Batyrev [2] did. Q.E.D.

10.2. Medusa singularities

Next, let us recall the following result due to Kerz and Saito:

Theorem 10.4 ([14]). Let M be a smooth k-variety with a finite
group G acting on it,

π : M → X = M/G

the quotient map. Let S ⊂ X be a closed subset containing the singu-
lar locus such that the reduced preimage T := π−1(Xsing)red is smooth.
Suppose that a functorial resolution of singularities holds over k. Let
f : Y → X be a resolution such that E = f−1(S) (with reduced struc-
ture) is a simple normal crossing divisor and f is an isomorphism over
X \Xsing. (We will call such f a log resolution of X and S.) Then the
dual complex Γ(E) of E is contractible.

Putting this conversely, if either

(1) there exists a log resolution f : Y → X of X and S with
Γ(f−1(S)) not contractible, or

(2) X and S do not admit any log resolution f : Y → X of X and
S with Γ(f−1(S)) contractible,

then a functorial resolution over k never holds. Saito calls such singu-
larities of X Medusa singularities. Since stringy motifs have a lot of
information on resolution, we might use them to find Medusa singulari-
ties (if exist) and disprove the functorial resolution. For this purpose, a
key result is the following:

Proposition 10.5. Let X be a Q-Gorenstein variety which is stringily
log terminal along a closed subset S ⊂ X. Let f : Y → X be a log reso-
lution of X and S such that Kf is a simple normal crossing divisor sup-
ported in E := f−1(S). Suppose that there exists a closed subset R ⊂ S



434 T. Yasuda

such that R is proper over k and F := f−1(R) is a normal crossing
variety having the same dual complex as E. Then

χ(Γ(E)) = χ(Γ(F )) = Pst(X)R|T=0,

where χ is the Euler characteristic.

Proof. The following is a modification of Batyrev’s computation in
[2]. Write E =

⋃
i∈I Ei, F =

⋃
i∈I Ei and KY/X =

∑
aiEi. Since

P (FJ
◦) =

∑
J⊂J ′

(−1)�J−�J ′
P (FJ ′),

we have

Pst(X)R =
∑

∅�=J⊂I

P (F ◦
J )
∏
j∈J

T 2 − 1

T 2(ai+1) − 1

=
∑

∅�=J⊂I

(∑
J⊂J ′

(−1)�J−�J ′
P (FJ ′)

)∏
j∈J

T 2 − 1

T 2(ai+1) − 1

=
∑

∅�=J⊂I

P (FJ )

⎛
⎝∏

j∈J

(
T 2 − 1

T 2(ai+1) − 1
− 1

)
− (−1)�J

⎞
⎠ .

Substituting 0 for T, we obtain∑
∅�=J⊂I

(−1)�J−1�π0(FJ),

where π0 denotes the set of connected components. This clearly equals
to the Euler characteristic of the dual complex of F and to that of
E. Q.E.D.

Remark 10.6. Looking at finer realizations, we might able to capture
finer invariants of Γ(E).

Example 10.7. Let G be the cyclic group of prime order p > 0
and V a G-representation over k of characteristic p > 0. Suppose that
V is isomorphic to the direct sum of l indecomposable representations
and that V has no reflection. Then the invariant locus V G ⊂ V and the
singular locus Xsing of the quotient variety X := V/G are isomorphic to
Al

k. The the additive group Gl
a
∼= Al

k acts onX and transitively on Xsing.
Therefore, if a functorial resolution exists over k, then the resolution
Y → X of X is Gl

a-equivariant. Put S = Xsing and R to be any point



Toward motivic integration over wild Deligne-Mumford stacks 435

of S. Suppose that DV ≥ p. Then the assumption of Proposition 10.5
holds, and from Equation 9.2,

Pst(X)R|T=0 = 1.

Hence we cannot see whether Γ(E) is contractible or not in this case.

10.3. Crepant resolutions

Problem 10.8. What quotient singularity admits a crepant reso-
lution?

Crepant resolutions are certainly interesting, for instance, since they
give a simple geometric meaning to stringy invariants and motivic masses.
In characteristic zero, Ito [11, 12], Markushevich [16, 17, 4] and Roan
[21, 20] proved that every three-dimensional Gorenstein quotient singu-
larity admits a crepant resolution. On the other hand, our knowledge
is quite limited in the wild situation. As far as the author knows, the
following are only known cases:

(1) Rational double points which are wild quotient singularities in
Artin’s classification [1]. In this case, the minimal resolution
is crepant.

(2) G = Sn and V is the direct sum of two copies of the stan-
dard representation. Then the Hilbert scheme of n points on
the affine plane is a crepant resolution of the quotient variety,
which is isomorphic to the n-th symmetric product of the affine
plane (see [7, page 229] for a historical account of this fact).

(3) char(k) = �G = 3 and V = V3, the 3-dimensional indecompos-
able representation. See [32].

We will be able to use stringy invariants also to study the above problem.
For instance, we can show that the second example with n = 2 and the
last one are only possible cases for linear actions of a cyclic group of
prime order in dimension ≤ 4. It follows from the fact that DV = p
is a necessary condition for the existence of crepant resolution. It is
because otherwise the topological Euler characteristic realization is not
an integer, which is not allowed if a crepant resolution exists. The same
reasoning shows that if a crepant resolution exists, then Pst(X) is a
polynomial in T (not in T 1/r).
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