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Deformation of morphisms onto Fano manifolds of
Picard number 1 with linear varieties of minimal

rational tangents

Jun-Muk Hwang

Abstract.

Let X be a Fano manifold of Picard number 1, different from pro-
jective space. We study the question whether the space Homs(Y,X)
of surjective morphisms from a projective manifold Y to X is homoge-
neous under the automorphism group Auto(X). An affirmative answer
is given in [4] under the assumption that X has a minimal dominating
family K of rational curves whose variety of minimal rational tangents
Cx at a general point x ∈ X is non-linear or finite. In this paper, we
study the case where Cx is linear of arbitrary dimension, which covers
the cases unsettled in [4]. In this case, we will define a reduced divisor
BK ⊂ X and an irreducible subvariety MK ⊂ Chow(X) naturally as-
sociated to K. We give a sufficient condition in terms of BK and MK

for the homogeneity of Homs(Y,X). This condition is satisfied if Cx is
finite and our result generalizes [4]. A new ingredient, which is of in-
dependent interest, is a similar rigidity result for surjective morphisms
to projective space in logarithmic setting.

§1. Introduction

Convention

1. We work over the complex numbers. We will use both Euclid-
ean topology and Zariski topology. We will specify which one
we are using at each occasion.

2. All manifolds are connected, but a variety may have finitely
many irreducible components.
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3. For a vector space V , its projectivization PV is the set of 1-
dimensional subspaces of V .

4. Given a morphism f : Y ′ → Y between nonsingular varieties,
we say that f is unramified at a point y ∈ Y ′ if the derivative
dfy : Ty(Y

′) → Tf(y)(Y ) is injective. The ramification set of f
is the set of points y ∈ Y ′ where f is not unramified. When f
is surjective and generically finite, the branch divisor of f is the
reduced divisor in Y consisting of codimension-1 components
of f(R) where R ⊂ Y ′ is the ramification set of f .

Throughout this paper, X denotes a Fano manifold of Picard num-
ber 1. Recall that an irreducible component K of the space of rational
curves on X is a minimal dominating component (or a minimal dominat-
ing family of rational curves) if for a general point x ∈ X, the subscheme
Kx of K consisting of members passing through x is non-empty and com-
plete. For such a choice of K, the variety of minimal rational tangents
at x is the subvariety Cx of the projectivized tangent space PTx(X) con-
sisting of the tangent directions at x of members of Kx.

Let Auto(X) be the identity component of the automorphism group
of X. For a projective manifold Y , denote by Homs(Y,X) the space of
surjective morphisms Y → X. We are mainly interested in understand-
ing the geometry of Homs(Y,X) using K. See Section 1 of [4] for the
history of previous works and also Section 9 of [2] for the background
and related results.

In Theorem 1.3 of [4], the following result was proved.

Theorem 1. Given (X,K), suppose the variety of minimal rational
tangents associated to K at a general point of X is non-linear or finite.
Then for any projective manifold Y and any [f : Y → X] ∈ Homs(Y,X),

H0(Y, f∗T (X)) = f∗H0(X,T (X)).

In particular, all deformations of a surjective morphism Y → X are
unobstructed and each component of Homs(Y,X) is a reduced principal
homogeneous space of the affine algebraic group Auto(X).

How restrictive is the assumption in Theorem 1 on the variety of
minimal rational tangents? In Conjecture 1.2 of [4], the author naively
conjectured that if this assumption is violated, then X must be pro-
jective space. An analogue of Theorem 1 is certainly not true if X is
projective space. Thus if this conjecture had been verified, Theorem 1
would give a satisfactory description of Homs(Y,X) for all X different
from projective space.
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Recently, Munoz, Occhetta and Sola Conde (Appendix of [6]) have
pointed out that the varieties Ya, a = 2, 4, 8, of reductions of Severi
varieties discovered by Iliev and Manivel in [5] are counterexamples to
Conjecture 1.2 of [4]. In fact, the variety of minimal rational tangents
associated to the family of lines on Ya is a linear subspace of dimension
a − 1. This counterexample prompts us to question whether an analog
of Theorem 1 holds when the variety of minimal rational tangents is
linear and of positive dimension. Since this question is the main concern
of the current paper, it will be convenient to formulate the following
assumption.

Assumption 1. X is a Fano manifold of Picard number 1 and K
is a minimal dominating family of rational curves on X such that the
associated variety of minimal rational tangents at a general point of X
is linear and of dimension k − 1, k ≥ 1.

Under Assumption 1, we will see in Definition 4.1 and Proposition
4.3 that K determines

1. a reduced divisor BK ⊂ X and
2. an irreducible subvariety MK ⊂ Chow(X) such that for a gen-

eral point w ∈ MK there exists an immersion, that is, an
unramified generically injective morphism, of projective space
νw : Pk → X whose image νw(P

k) ⊂ X is the cycle correspond-
ing to w ∈ Chow(X).

Our main result can be stated in terms of BK and MK as follows.

Theorem 2. Under Assumption 1, suppose that for a general w ∈
MK, the dual variety of the set-theoretic inverse image ν−1

w (BK) ⊂ P
k,

as a hypersurface in projective space Pk, is linearly nondegenerate. Then
for any projective manifold Y and any [f : Y → X] ∈ Homs(Y,X),

H0(Y, f∗T (X)) = f∗H0(X,T (X)).

In particular, all deformations of a surjective morphism Y → X are
unobstructed and each component of Homs(Y,X) is a reduced principal
homogeneous space of the affine algebraic group Auto(X).

One can check that the condition on ν−1
w (BK) in Theorem 2 holds

if k = 1. In this sense, Theorem 2 is a generalization of Theorem 1.
As such, its proof, to a certain extent, follows the line of arguments
of the proof of Theorem 1. But there is one crucial new ingredient, a
logarithmic version of Theorem 2 for the pair (Pk, ν−1

w (BK)), which will
be explained in Section 2. Our Sections 3-7 generalize the arguments in
Sections 3-5 of [4]. The final section, Section 8, however, follows a course
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different from Section 6 of [4]. A new argument incorporating the result
of Section 2 is given to finish the proof of Theorem 2. We believe that
this new argument is more transparent, even when k = 1, than the one
given in Section 6 of [4].

It is natural to ask whether the condition on ν−1
w (BK) in Theorem

2 is satisfied by all (X,K) satisfying Assumption 1. In particular, it
would be interesting to check whether this condition holds for the variety
Ya, a = 2, 4, 8, of [5]. It is also natural to ask whether this condition
is removable in Theorem 2. Although this condition is essential for
our argument, I guess that it should be removable. In this regard, we
would like to point out that all of our arguments in Sections 3-8, up to
Proposition 8.4, do not need this condition.

§2. A logarithmic version of Theorem 2 for projective space

Notation 2.1. Let V be a complex vector space and let Γ ⊂ PV ∨

be a subvariety with finitely many irreducible components in the dual
projective space, parametrizing a finite union of families of hyperplanes
in PV . Denote by |Γ| ⊂ PV ∨ the linear span of Γ, which defines a linear
system of hyperplanes in PV . Let Bs|Γ| be the base locus of |Γ|, i.e., the
common intersection of members of Γ. For a point x ∈ PV \ Bs|Γ|, let
Join(x,Bs|Γ|) be the linear space spanned by x and Bs|Γ|. Denote its
tangent space by

NΓ
x = Tx (Join(x,Bs|Γ|)) ⊂ Tx(PV ).

We will skip the proof of the next lemma, which is straight forward.

Lemma 2.1. (i) Let φ|Γ| : PV \ Bs|Γ| → |Γ|∨ be the natural mor-
phism into the dual projective space of the linear system |Γ|. Then the
closure of the fiber of φ|Γ| through a point x ∈ PV \Bs|Γ| is Join(x,Bs|Γ|).

(ii) Let Γ1,Γ2, . . . ,ΓN ⊂ PV ∨ be a finite collection of subvarieties
and let Γ ⊂ PV ∨ be their union. Then Bs|Γ| = Bs|Γ1| ∩ · · · ∩ Bs|ΓN |.

Lemma 2.2. Let Γ ⊂ PV ∨ be the union of d ≥ 2 distinct points
corresponding to hyperplanes G1, . . . , Gd ⊂ PV. For any point x ∈ PV \
G1, we have

NΓ
x = {v ∈ Tx(PV ), (d log

Gi

G1
)(v) = 0, for all 2 ≤ i ≤ d}

where Gi/G1 denotes a choice of a rational function on PV with zero at
Gi and pole at G1 and log Gi

G1
is a choice of the logarithm of Gi/G1 at

the germ of x. It is clear that the germ of 1-form d log G
G1

at x does not
depend on the choices.
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Proof. The set on the right side of the equality is equal to

{v ∈ Tx(PV ), (d log
G

G1
)(v) = 0, for all G ∈ |Γ|}.

This is the set of vectors tangent to the intersection of the level sets
through x of the rational functions G

G1
, G ∈ |Γ|. This intersection is

exactly the fibers of φ|Γ| whose tangent space at x is NΓ
x by Lemma 2.1

(i). Q.E.D.

Notation 2.2. Let V be a complex vector space and let D ⊂ PV
be a reduced divisor on its projectivization. Let Γ := D∨ ⊂ PV ∨ be its
dual variety. We set ND

x := NΓ
x for x �∈ Bs|Γ|. In particular, if D∨ is

linearly nondegenerate, then Bs|Γ| = ∅ and ND
x = 0 for all x ∈ PV .

Notation 2.3. Let M be a complex manifold and D ⊂ M be a
reduced divisor. We denote by Ω1

M (logD) the locally free sheaf of loga-
rithmic 1-forms defined on M \ Sing(D) and by TM (− logD) ⊂ T (M)
the coherent sheaf of vector fields tangent to D. On M \ Sing(D), the
sheaf TM (− logD) is locally free, dual to Ω1

M (logD).

Remark 2.1. Throughout this paper, we use T (M) to denote the
tangent bundle of M . The notation TM will be used only in TM (− logD)
of Notation 2.3.

Proposition 2.1. Write PV = P
k,dimV = k + 1. Let D ⊂ P

k be
a reduced divisor and let ND

x be as in Notation 2.2. Let J ⊂ PV be a
subvariety with dim J ≤ k−2. For a point x ∈ P

k \ (D∪J) and a vector
sx ∈ Ω1

Pk,x(logD) = Ω1
Pk,x, let s⊥x ⊂ Tx(P

k) be the annihilator of sx.

Denote by LineD,J
x the set of all lines � ⊂ P

k \J through x that intersect

D transversally. In particular, members of LineD,J
x are disjoint from

Sing(D). Then

⋂
general � ∈ LineD,J

x

s ∈ H0(�,Ω1
Pk

(logD))

s⊥x =
⋂

� ∈ LineD,J
x

s ∈ H0(�,Ω1
Pk

(logD))

s⊥x = ND
x .

Proof. Given � ∈ LineD,J
x , let x1, . . . , xd be the intersection � ∩D

where d is the degree of the divisor D. The conormal bundle N∨
� ⊂ Ω1

Pk |�
of 1-forms annihilating T (�) gives an exact sequence

0 −→ N∨
� −→ Ω1

Pk(logD)|� −→ Ω1
�(x1 + · · ·+ xd) −→ 0.

Since N∨
�
∼= O(−1)k−1, we have H1(�,N∨

� ) = 0 and

dimH0(�,Ω1
Pk(logD)) = d− 1.(1)
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In particular, the proposition is trivially true when d = 1. So we will
assume that d ≥ 2.

Let Gi ⊂ P
k, 1 ≤ i ≤ d, be the tangent hyperplane to D at xi. Then

Gi �= Gj if i �= j. In fact, if Gi = Gj for i �= j, then the line � must
be contained in Gi = Gj so it is not transversal to D. By the same
argument, we know x �∈ Gi for all 1 ≤ i ≤ d. Let G[�] be the reduced
divisor G1+· · ·+Gd. We have a canonical isomorphism of vector bundles
on �

Ω1
Pk(logD)|� = Ω1

Pk(logG[�])|�.(2)

For each 2 ≤ i ≤ d, the meromorphic form d log Gi

G1
on P

k defines an
element of

H0
(
P
k \ Sing(G[�]),Ω1

Pk(logG[�])
)
.

From equations 1 and 2, the restriction of d log Gi

G1
for 2 ≤ i ≤ d gives a

basis of H0(�,Ω1
Pk(logD)). It follows that

⋂
s∈H0(�,Ω1

Pk
(logD))

s⊥x = {v ∈ Tx(P
k),d log

Gi

G1
(v) = 0 for all 2 ≤ i ≤ d}

= NG[�]
x

where the last equality is from Lemma 2.2.
Let G[�]∨ be the finite subset of PV ∨, dual to G[�]. The closure of

the union of G[�]∨ as we vary � ∈ LineD,J
x is exactly D∨. It follows that

Bs|D∨| =
⋂

�∈LineD,J
x

Bs|G[�]|.

Thus ⋂
�∈LineD,J

x

NG[�]
x =

⋂
�∈LineD,J

x

Tx(Join (x,Bs|G[�]|))

= Tx (Join(x,Bs|D∨|))
= ND

x .

This proves the proposition. Q.E.D.

Theorem 3. Let f : Y → P
k be a surjective generically finite mor-

phism from a projective manifold Y . Let D ⊂ P
k be a reduced divisor

and let J ⊂ P
k be a subvariety satisfying

dim J ≤ k − 2 and Sing(D) ⊂ J.
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For each section

v ∈ H0
(
Y \ f−1(J), f∗TPk(− logD)

)
and two points y1, y2 ∈ f−1(x) over a general point x ∈ P

k, the difference
vy1 − vy2 ∈ Tx(P

k) is contained in ND
x . In particular, if the dual variety

D∨ is linearly nondegenerate,

H0
(
Y \ f−1(J), f∗TPk(− logD)

)
= f∗H0

(
P
k, TPk(− logD)

)
.

Proof. For a general � ∈ LineD,J
x , the inverse image f−1(�) is

a connected curve containing both y1 and y2 by Bertini’s theorem.
Choose an element s ∈ H0(�,Ω1

Pk(logD)) and pull it back to f∗s ∈
H0(f−1(�), f∗Ω1

Pk(logD)). The pairing 〈s, v〉 is a holomorphic function

on f−1(�) and must be a constant. It follows that vy1 − vy2 ∈ s⊥x . By
Proposition 2.1, we see that vy1 − vy2 ∈ ND

x .
If D∨ is linearly nondegenerate, then ND

x = 0 as we mentioned in
Notation 2.2. Thus

v ∈ f∗H0
(
P
k \ J, TPk(− logD)

)
= f∗H0

(
P
k, TPk(− logD)

)
where the equality is from dim J ≤ k − 2. Q.E.D.

§3. Effective étale family of immersed submanifolds

Definition 3.1. Let Y be a projective manifold. Let P and W
be two nonsingular algebraic varieties satisfying dimP > dimW and
equipped with morphisms ϕ : P → Y and ψ : P → W. The morphism
(ϕ,ψ) : P → Y ×W is an étale family of immersed submanifolds in Y
parametrized by W if the following conditions are satisfied.

(i) ψ is a smooth projective morphism with connected fibers.
(ii) dimP = dimY and ϕ is unramified at every point of P.
(iii) For each w ∈ W, the restriction ϕ|ψ−1(w) : ψ−1(w) → Y is

generically injective.

For such a pair (ϕ,ψ), write Pw := ϕ(ψ−1(w)) for w ∈ W. The normal
bundle of Pw is the vector bundle Nψ−1(w)/Y := ϕ∗T (Y )/T (ψ−1(w))

on ψ−1(w). For any w ∈ W, the normal bundle of Pw is naturally
isomorphic to the trivial bundle ψ∗Tw(W).

Denote by Y mult ⊂ Y the subvariety defined by the closure of the
union of the singular points of Pw for all w ∈ W. In other words, Y mult

is the closure of the set of points y ∈ Y such that

y = ϕ(p1) = ϕ(p2) for some p1 �= p2 ∈ P satisfying ψ(p1) = ψ(p2).



244 J.-M. Hwang

We say that (ϕ,ψ) is an effective étale family of immersed subman-
ifolds if Pw1 �= Pw2 if w1 �= w2 ∈ W.

Lemma 3.1. In Definition 3.1, the dimension of Y mult is strictly
smaller than dimY. As a consequence, Y \ Y mult is a nonempty Zariski
open subset of Y .

Proof. Note that the singular locus of Pw has dimension strictly
less than dim(Pw) for each w. Thus dim(Y mult) is strictly smaller than
dim(Pw) + dimW = dimP = dimY. Q.E.D.

We have the following analogue of Proposition 3.5 in [4].

Proposition 3.1. Let (ϕ,ψ) : P → Y × W be an étale family

of immersed submanifolds as in Definition 3.1. Let f : Ỹ → Y be

a surjective generically finite morphism from a projective manifold Ỹ .
Let Y f ⊂ Y be the maximal Zariski open subset such that f |f−1(Y f ) :

f−1(Y f ) → Y f is an étale covering. For w ∈ W with Pw ∩ Y f �= ∅
and an irreducible component P̃ of f−1(Pw), denote by ϕ̃ : P̂ → P̃

the normalization of P̃ . For y ∈ Pw ∩ Y f \ Y mult, a nonsingular point

of Pw in Y f , let y1, y2 be two points in f−1(y) ∩ P̃ and ŷ1, ŷ2 be two

points in P̂ satisfying ϕ̃(ŷ1) = y1 and ϕ̃(ŷ2) = y2. For any element

σ ∈ H0(P̂ , (f ◦ ϕ̃)∗T (Y )), regarding its value σŷ1
(resp. σŷ2

) at ŷ1 (resp.
ŷ2) as a vector in Ty(Y ), we have σŷ1

− σŷ2
∈ Ty(Pw) ⊂ Ty(Y ).

Proof. We claim that σŷ1
− σŷ2

∈ Ty(Y ) annihilates the subspace
of the cotangent space Ω1

Y,y spanned by the evaluation of

H0(ψ−1(w), ϕ∗Ω1
Y )

at y. Since ψ−1(w) is the normalization of Pw, we have an induced

morphism f̂ : P̂ → ψ−1(w) such that ϕ ◦ f̂ = f ◦ ϕ̃. For any φ ∈
H0(ψ−1(w), ϕ∗Ω1

Y ), let φ̃ ∈ H0(P̂ , f̂∗ϕ∗Ω1
Y ) be the pull-back of φ to

P̂ . From ϕ ◦ f̂ = f ◦ ϕ̃, we can define the pairing 〈φ̃, σ〉. This is a

holomorphic function on P̂ , hence is constant. It follows that

〈φ̃y, σŷ1
〉 = 〈φ̃y, σŷ2

〉,

which implies that σŷ1
− σŷ2

annihilates the evaluation of φ at y.
Since Pw has trivial normal bundle,

H0(ψ−1(w), N∨
ψ−1(w)/Y ) ⊂ H0(ψ−1(w), ϕ∗Ω1

Y )

spans the conormal space of Pw at y. Thus σŷ1
− σŷ2

∈ Ty(Pw) by the
claim. Q.E.D.
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Definition 3.2. Let (ϕ,ψ) : P → Y × W be an étale family of
immersed submanifolds as in Definition 3.1. Let B ⊂ Y be an irreducible
ample hypersurface in Y . We say that P is univalent on B if (i) there
exists only one irreducible component E of ϕ−1(B) that is dominant over
W, and (ii) the morphism μ|E : E → B is birational. This is equivalent
to saying that at a general point z ∈ B, there exists exactly one w ∈ W
with z ∈ Pw �⊂ B and this Pw is non-singular at z.

The following is essentially the same as Proposition 3.2 in [3] and a
generalization of Proposition 5.1 of [4].

Proposition 3.2. Let (ϕ,ψ) : P → Y × W be an effective étale
family of immersed submanifolds as in Definition 3.1. Suppose that P is
not univalent on an ample irreducible hypersurface B ⊂ Y . Then given
a general point x ∈ B, we can find

(1) a Euclidean open neighborhood U ⊂ Y of x;
(2) two distinct points x1 �= x2 ∈ ϕ−1(x); and
(3) Euclidean open neighborhoods U1 ⊂ P of x1 and U2 ⊂ P of x2

satisfying U1 ∩ U2 = ∅
with the following properties.

(i) ϕ(U1) = U = ϕ(U2).
(ii) ϕ|U1 and ϕ|U2 are biholomorphic.
(iii) For any point z ∈ U \ (B ∪ Y mult), set

z1 = ϕ−1(z) ∩ U1, z2 = ϕ−1(z) ∩ U2, w1 = ψ(z1) and w2 = ψ(z2).

Then w1 �= w2 and ϕ(ψ−1(w1) ∩ U1) and ϕ(ψ−1(w2) ∩ U2)
are two distinct submanifolds of U each of which intersects B
transversally.

Proof. Let E be the union of irreducible components of ϕ−1(B)
that are dominant over W. Since dimP > dimW and B is ample, E is
non-empty. By the assumption that P is not univalent on B, there exist
two distinct points x1 �= x2 ∈ ϕ−1(x)∩E for a general point x ∈ B. Since
ϕ is unramified, we have Euclidean open sets U,U1 and U2 satisfying (i)
and (ii) such that E ∩ U1 (resp. E ∩ U2) is a nonsingular hypersurface.
Furthermore, by the smoothness of ψ, we can choose U1 and U2 such
that the fibers of ψ in U1 (resp. U2) intersect E ∩ U1 (resp. E ∩ U2)
transversally. By z �∈ Y mult, we have w1 �= w2, which implies that
ϕ(ψ−1(w1) ∩ U1) and ϕ(ψ−1(w2) ∩ U2) are distinct by the effectiveness
of (ϕ,ψ). Q.E.D.

We will skip the proof of the following elementary lemma.
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Lemma 3.2. Let f : Ỹ → Y be a surjective generically finite mor-
phism between projective manifolds. Let R be an irreducible component
of ramification set of f such that B = f(R) is a component of the branch
divisor of f . At a general point x ∈ B and x̃ ∈ R ∩ f−1(x), we have

Euclidean neighborhoods x ∈ U and x̃ ∈ Ũ such that B ∩ U is a non-

singular hypersurface in U and f |Ũ : Ũ → U is a cyclic covering of
degree > 1 branched along B ∩U . Consequently, if an irreducible closed

submanifold P ⊂ U intersects B ∩ U transversally, then f−1(P ) ∩ Ũ is
irreducible.

The following proposition is a generalization of Proposition 5.2 in
[4].

Proposition 3.3. Let (ϕ,ψ) : P → Y × W be an effective étale
family of immersed submanifolds as in Definition 3.1. Assume that

(1) there exists a nonempty Zariski open subset Y trans ⊂ Y \Y mult

such that if y ∈ Y trans ∩Pw1 ∩Pw2 for two distinct point w1 �=
w2 ∈ W, then Ty(Pw1) ∩ Ty(Pw2) = 0 in Ty(Y ); and

(2) there exist a surjective generically finite morphism f : Ỹ → Y

from a projective manifold Ỹ and a section σ ∈ H0(Ỹ , f∗T (Y ))
such that for any y ∈ Y trans∩Y f in the notation of Proposition
3.1 and y1 �= y2 ∈ f−1(y), the two vectors σy1 ∈ Ty(Y ) and
σy2 ∈ Ty(Y ) are distinct.

If B ⊂ Y is an irreducible ample hypersurface contained in the branch
divisor of f , then P is univalent on B.

Proof. Suppose that P is not univalent on B. Fix a general point
x ∈ B and let U,U1, U2 be as in Proposition 3.2. By shrinking U if

necessary, we can use this U to find Ũ ⊂ Ỹ as in Lemma 3.2. Choose
z ∈ U ∩ Y trans ∩ Y f with z �∈ B and let w1 �= w2 ∈ W be the points
determined by z as in Proposition 3.2 (iii).

Setting P1 = Pw1 (resp. P2 = Pw2), Lemma 3.2 shows that there

exists a unique irreducible component P̃1 (resp. P̃2) of f−1(P1) (resp.

f−1(P2)) intersecting Ũ such that an irreducible component of P̃1 ∩ Ũ

(resp. P̃2 ∩ Ũ) contains f−1(z) ∩ Ũ . In particular, P̃1 ∩ P̃2 contains

f−1(z)∩ Ũ . Let y1 �= y2 be two distinct points in f−1(z)∩ Ũ . Applying

Proposition 3.1 to P̃1 and P̃2,

σy1 − σy2 ∈ Tz(P1) and σy1 − σy2 ∈ Tz(P2).

Since Tz(P1)∩ Tz(P2) = 0 by y ∈ Y trans, we obtain σy1 = σy2 , a contra-
diction to the assumption on σ in (2). Q.E.D.
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§4. Definitions of BK and MK

From now on, we will consider (X,K) in Assumption 1. We recall
the following from Proposition 2.2 in [4].

Proposition 4.1. Let X and K be as above. Let Y be a projective
manifold and let f : Y → X be a generically finite morphism of degree
> 1. Given a general member C ⊂ X of K, there exists an irreducible
component C ′ of f−1(C) such that the restriction f |C′ : C ′ → C is finite
of degree > 1.

The following generalizes Proposition 3.2 of [4].

Proposition 4.2. Under Assumption 1, there exists (ϕ,ψ) : P →
X×W, an effective étale family of immersed submanifolds parametrized
by a nonsingular variety W with the following properties.

(a) The morphism ψ : P → W is a P
k-bundle and the morphism

ϕ has degree > 1.
(b) Each member of Kx for a general x ∈ X is the image of a line

in the P
k-fiber of ψ through a point of ϕ−1(x). In particular,

each component of Cx is of the form PTx(Pw), Pw = ϕ(ψ−1(w))
for some w ∈ W.

(c) There exists a nonempty Zariski open subset Xtrans ⊂ X\Xmult

such that if x ∈ Xtrans ∩ Pw1 ∩ Pw2 for two distinct points
w1 �= w2 ∈ W, then Tx(Pw1) ∩ Tx(Pw2) = 0.

Proof. The existence of (ϕ,ψ) satisfying (a) and (b) follows from
Theorem 3.1 of [1] and Proposition 2.1 in [3]. For (c), note that if
Tx(Pw1) ∩ Tx(Pw2) �= 0, then two distinct components of Cx have non-
empty intersection, which cannot happen for a general x ∈ X \ Xmult

by Proposition 2.2 of [3]. Q.E.D.

Definition 4.1. Viewing Pw, w ∈ W, in Proposition 4.2 as an alge-
braic cycle of X, we have a morphism W → Chow(X), which is injective
by the effectiveness on (ϕ,ψ). Let MK ⊂ Chow(X) be the closure of the
image of W. From Proposition 4.2 (b), this variety MK is uniquely
determined by K.

Proposition 4.3. In the setting of Proposition 4.2 and Definition
4.1, let Z be the normalization of MK. Replacing P and W by their
Zariski open subsets, we can find a projective manifold X ′ with a gener-
ically finite morphism μ : X ′ → X of degree > 1, a proper surjective
morphism ρ : X ′ → Z and an embedding ι : P → X ′ as a Zariski open
subset with the following properties.
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(a) There is a natural inclusion W ⊂ Z as a Zariski open subset
of the smooth locus of Z with a commuting diagram

X
ϕ←− P ψ−→ W

‖ ι ↓ ∩
X

μ←− X ′ ρ−→ Z.

(b) For any irreducible hypersurface H ⊂ X ′ satisfying dimμ(H) =
dimX − 1, either ρ(H) = Z or dim ρ(H) = dimZ − 1.

(c) Let T ⊂ T (X ′) be the coherent subsheaf defined as the satu-
ration of the relative tangent sheaf T ρ on ι(P), equivalently,
the saturation of dι(Tψ) in T (X ′) where Tψ ⊂ T (P) is the
relative tangent bundle of ψ. By abusing notation, we will re-
gard T as a vector subbundle of T (X ′) outside a subvariety of
codimension 2. Then for any irreducible hypersurface H ⊂ X ′

satisfying dimμ(H) = dimX − 1 and dim ρ(H) = dimZ − 1,
we have Tz ⊂ Tz(H) as subspaces of Tz(X

′) at a general point
z ∈ H.

(d) The branch divisor of μ, to be denoted by BK ⊂ X, is uniquely
determined by K. Note that BK is nonempty because X is
simply connected and μ has degree > 1.

Proof. Let UnivZ → Z be the family of algebraic cycles of X
parametrized by Z, induced by the universal family of Chow(X) over
MK. There is a unique irreducible component Univ′Z of UnivZ domi-
nant over Z. Let U be the normalization of Univ′Z . Then all fibers of the
natural morphism 
 : U → Z have dimension k. Note that since the nor-
malization of a general member of MK is Pk, there exists a Zariski open
subset in Z, over which 
 is a P

k-bundle. We choose X ′ as a desingular-
ization σ : X ′ → U , which leaves the smooth locus of U intact. Define
ρ := 
 ◦ σ and let μ : X ′ → X be the composition of σ and the natural
cycle morphism U → X. Note that U → X has degree strictly bigger
than 1 because ϕ has degree strictly bigger than 1 from Proposition 4.2
(a). This implies that μ has degree strictly bigger than 1.

After replacing W by its intersection with a Zariski open subset of
the smooth locus of Z over which 
 is a P

k-bundle, we have a natural
inclusion ι : P → X ′ satisfying the property (a).

For (b), note that dimσ(H) = dimU − 1 because dimμ(H) =
dimX − 1 = dimU − 1. Since all fibers of 
 have dimension k, either
ρ(H) = 
(σ(H)) = Z, or

dim ρ(H) = dim 
(σ(H)) = dimσ(H)− k = dimU − 1− k = dimZ − 1.
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For (c), since 
 : U → Z is a morphism between two normal varieties
all fibers of which have dimension k, there exists a Zariski open subset
Uo ⊂ U such that

(1) Uo is in the smooth locus of U equipped with an isomorphism
σo : Uo ∼= σ−1(Uo) ⊂ X ′ induced by σ−1;

(2) dim(U \ Uo) ≤ dimU − 2;
(3) the underlying reduced variety of every fiber of 
|Uo is nonsin-

gular, defining a vector subbundle T �,red ⊂ T (Uo);and
(4) the derivative

dσo : T (Uo) ∼= T (σ−1(Uo))

sends T �,red to T |σ−1(Uo).

From dimσ(H) = dimU − 1 and (2), the image σ(z) of a general point
z ∈ H is contained in Uo. From dim ρ(H) = dimZ − 1, σ(H) must be
covered by components of k-dimensional fibers of 
. Thus Tz ⊂ Tz(H)
from (4).

For (d), note that μ sends the ramification locus of σ to a set of
codimension ≥ 2 in X. Thus the branch divisor of μ is determined by

. Since 
 is uniquely determined by MK, the branch divisor of μ is
uniquely determined by K. Q.E.D.

The following proposition is immediate from Propositions 4.2 and
4.3. It generalizes Proposition 3.3 in [4].

Proposition 4.4. In the setting of Proposition 4.3, let C ⊂ PT (X)
be the closure of the union of Cx’s for general points x ∈ X and let
Ĉ ⊂ T (X) be the cone over C. Denote by 0X ⊂ T (X) the zero section
and by π : T (X) → X the natural projection. Then there exists a Zariski
open subset XC ⊂ Xtrans ⊂ X such that

(i) μ−1(XC) ⊂ ι(P) = ρ−1(W);
(ii) μ|μ−1(XC) : μ

−1(XC) → XC is étale;

(iii) the restriction of π to (Ĉ\0X)∩π−1(XC) is a smooth morphism;
(iv) for each point x ∈ XC and μ−1(x) = {x1, . . . , xj}, j = degree of

μ, the image ρ(μ−1(x)) consists of j distinct points in W ⊂ Z
and we have a disjoint union

π−1(x) ∩ (Ĉ \ 0X) = dμ(T ρ
x1

\ {0}) ∪ · · · ∪ dμ(T ρ
xj

\ {0})

where T ρ = dι(Tψ) on μ−1(XC); and
(v) we have a natural smooth morphism

χ : (Ĉ \ 0X) ∩ π−1(XC) −→ μ−1(XC)
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defined by χ(T ρ
xi

\ {0}) = xi, 1 ≤ i ≤ j, in the notation of (iv)

such that π = μ ◦ χ on (Ĉ \ 0X) ∩ π−1(XC).

§5. Decomposition of μ−1(BK)

Throughout this section, we work in the setting of Section 4. We
will consider the following condition on X and K, formulated in terms
of Proposition 4.3.

Condition 5.1. The étale family P constructed in Proposition 4.2
is univalent on each irreducible component of BK in the sense of Def-
inition 3.2. In other words, for each irreducible component B of BK,
we have a unique irreducible component B′ of μ−1(B) that is dominant
over both Z and B.

The following is a generalization of Proposition 5.3 in [4].

Proposition 5.1. In the setting of Proposition 4.3, assume that
Condition 5.1 holds. Then for a general w ∈ W, any component P ′

w of
μ−1(Pw) which is of degree > 1 over Pw is disjoint from B′.

Proof. Suppose not. Then for a general point x′ of B′, we have
w1 ∈ W and an irreducible component P ′

w1
of μ−1(Pw1) that contains

x′ and is of degree > 1 over Pw1 . Let w2 = ρ(x′) ∈ W. Then ρ−1(w2) =
ι(ψ−1(w2)) is different from P ′

w1
. So w1 �= w2. Since x := μ(x′) ∈

Pw1 ∩ Pw2 is a general point of B, we conclude that P is not univalent
on B from Definition 3.2, a contradiction. Q.E.D.

Proposition 5.2. In the setting of Proposition 4.3, assume that
Condition 5.1 holds. Then we can write the set-theoretical inverse image
μ−1(BK) ⊂ X ′ as the union of three reduced divisors without common
components

μ−1(BK) = Bexc ∪Bhor ∪Bver

where

(a) dimμ(B) ≤ dimX − 2 for each component B of Bexc;
(b) dimμ(B) = dimX− 1 and ρ(B) = Z for each component B of

Bhor; and
(c) dimμ(B) = dimX − 1 and dim ρ(B) = dimZ − 1 for each

component B of Bver.

Furthermore, for a general w ∈ W, any component P ′
w of μ−1(Pw) which

is of degree > 1 over Pw is disjoint from Bhor.

Proof. The only nontrivial part in the decomposition of μ−1(BK)
into the three parts is to show that if a component B of μ−1(BK) sat-
isfies dimμ(B) = dimX − 1, then dim ρ(B) ≥ dimZ − 1. This follows
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from Proposition 4.3 (b). The statement about P ′
w is immediate from

Proposition 5.1. Q.E.D.

Proposition 5.3. In Proposition 5.2, let z be a general point of
any irreducible component of Bver. Then we have Tz ⊂ Tz(B

ver) where
T ⊂ T (X ′) is the subsheaf from Proposition 4.3. In other words, T ⊂
TX′(− logBver) as sheaves in a neighborhood of z. In particular, dμ :
T (X ′) → μ∗T (X) injects T into μ∗TX(− logBK) in a neighborhood of
z.

Proof. The inclusion Tz ⊂ Tz(B
ver) follows from Proposition 4.3

(c) with H an irreducible component of Bver. The homomorphism dμ
induces an isomorphism

TX′(− logBver) → μ∗TX(− logBK)

in a neighborhood of a general point z of Bver. Thus it injects T into
μ∗TX(− logBK) in that neighborhood. Q.E.D.

Proposition 5.4. In the setting of Proposition 5.3, there exists a
subvariety E ⊂ X ′ with the following properties.

(1) μ(E) has codimension > 1 in X;
(2) E = μ−1(μ(E));
(3) μ|X′\E : X ′ \ E → X \ μ(E) is finite;
(4) Bexc ⊂ E;
(5) BK \ μ(E) and μ−1(BK) \ E are nonsingular; and
(6) when we put O := X ′ \ (E ∪Bhor), the image of dμ|O : T |O →

μ∗T (X)|O defines a vector subbundle, to be denoted by V ⊂
μ∗T (X)|O. Furthermore, V ⊂ μ∗TX(− logBK)|O as sheaves.

Proof. Let E1 ⊂ X ′ be the locus where μ is not finite. By the
definition ofBexc in Proposition 5.2, E1 containsB

exc. From Proposition
5.3, there exists a subvariety E2 ⊂ Bver of codimension ≥ 2 in X ′ such
that the dμ-image of T defines a vector subbundle of μ∗T (X) and a
locally free subsheaf of μ∗TX(− logB) in a neighborhood of every point
outside Bhor ∪Bexc ∪ E2. Set

E = μ−1
(
μ(E1) ∪ μ(E2) ∪ Sing(BK) ∪ μ(Sing(μ−1(BK)))

)
.

It clearly satisfies (1)-(6). Q.E.D.

Proposition 5.5. In the setting of Proposition 5.4, let ϕ : P → X
and ψ : P → W be as in Proposition 4.3. Write E := ϕ−1(μ(E)) ⊂ P:

P ϕ−→ X
μ←− X ′

∪ ∪ ∪
E −→ μ(E) ←− E.
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Then for a general point w ∈ W, the following holds.

(a) dim(ψ−1(w) ∩E) ≤ k − 2.
(b) The intersection ψ−1(w) ∩ ϕ−1(BK) is a reduced divisor on

ψ−1(w) and its singular loci Sing
(
ψ−1(w) ∩ ϕ−1(BK)

)
is con-

tained in ψ−1(w) ∩E.

Proof. The subvariety E ⊂ P has codimension > 1 because ϕ is
unramified and μ(E) ⊂ X has codimension > 1 from Proposition 5.4
(1). Thus (a) holds for a general w ∈ W.

Since BK \μ(E) is nonsingular from Proposition 5.4 (5), the divisor
ϕ−1(BK) on P is nonsingular outside E. Thus (b) holds for a general
w ∈ W. Q.E.D.

§6. Pulling back étale families

We have the following general construction.

Proposition 6.1. Let Y be a projective manifold and let (ϕ,ψ) :
P → Y ×W be an étale family of immersed submanifolds parametrized
by W. Let f : Y ′ → Y be a surjective generically finite morphism from a
projective manifold Y ′. Choose an irreducible component P+ of Y ′×Y P
which is dominant over Y ′. Then, replacing W and P by their Zariski
open subsets if necessary, we can find morphisms of nonsingular varieties
(depending on the choice of P+)

f� : W ′ → W, f	 : P ′ → P, ϕ′ : P ′ → Y ′ and ψ′ : P ′ → W ′

with the following properties.

(1) The following diagram commutes.

W ′ ψ′
←− P ′ ϕ′

−→ Y ′

f� ↓ f	 ↓ f ↓
W ψ←− P ϕ−→ Y.

(2) The morphism (ϕ′, ψ′) : P ′ → Y ′ ×W ′ defines an étale family
of immersed submanifolds in Y ′ parametrized by W ′.

(3) The morphisms f� and f	 are proper, surjective and generically
finite.

(4) P ′ is a Zariski open subset of P+ and the morphisms ϕ′ and
f	 are induced from the natural projections of P+ ⊂ Y ′ ×Y P
to each factor.
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Proof. Since ϕ : P → Y is unramified, the natural morphism ϕ+ :
P+ → Y ′ is unramified by base change and P+ is nonsingular. Let

P+ ψ+

−→ W+ f+
�−→ W

be the Stein factorization of the composition P+ → P ψ→ W. Since P+ is
nonsingular, we can choose a Zariski open subset Wo ⊂ W such that ψ+

is a smooth morphism with connected fibers over W ′ := (f+
� )−1(Wo).

Set P ′ = (ψ+)−1(W ′) and define ψ′ (resp. ϕ′) as the restriction of ψ+

(resp. ϕ+). Setting f� and f	 as the natural morphisms induced by f and
replacing W (resp. P) by Wo (resp. ψ−1(Wo)), we have the properties
(1)-(4). Q.E.D.

We will apply Proposition 6.1 to the morphism μ : X ′ → X in
Proposition 4.3.

Proposition 6.2. In the setting of Proposition 4.3, replacing W
and P by their Zariski open subsets if necessary, we have (ϕ′, ψ′) : P ′ →
X ′ ×W ′, an étale family of immersed submanifolds in X ′ parametrized
by a nonsingular variety W ′, together with a commuting diagram

W ′ ψ′
←− P ′ ϕ′

−→ X ′

μ� ↓ μ	 ↓ μ ↓
W ψ←− P ϕ−→ X

where μ	 and μ� are surjective proper generically finite morphisms. Fur-

thermore, we can assume that for any w ∈ W and w′ ∈ μ−1
� (w), the

morphism
(μ	)|(ψ′)−1(w′) : (ψ

′)−1(w′) → ψ−1(w)

is generically finite of degree m for some integer m ≥ 2.

Proof. Let us apply Proposition 6.1 to the generically finite mor-
phism μ : X ′ → X of Proposition 4.3 with Y = X,Y ′ = X ′ and f = μ.
Proposition 4.1 implies that for a general w ∈ W, there exists an ir-
reducible component of μ−1(Pw) that is generically finite over Pw of
degree m for some integer m ≥ 2. Thus we can find an irreducible com-
ponent P+ of X ′ ×X P such that, when (ϕ′, ψ′) : P ′ → X ′ ×W ′ is the
étale family of immersed submanifolds determined by P+ in the sense
of Proposition 6.1,

(μ	)|(ψ′)−1(w′) : (ψ
′)−1(w′) → ψ−1(w)

is generically finite of degree m for a general w ∈ W and any w′ ∈
μ−1
� (w). After replacing W by a Zariski open subset, we can assume

that this holds for any w ∈ W. Q.E.D.
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Proposition 6.3. In the setting of Proposition 6.2, we have two
fibration structures on P ′ given by

P ′ ϕ′
−→ X ′

ψ′ ↓ ↓ ρ
W ′ Z.

Then there exists a Zariski open subset P ′
trans ⊂ P ′ such that

(i) ϕ′|P′
trans

: P ′
trans → ϕ′(P ′

trans) is étale;
(ii) ρ ◦ ϕ′|P′

trans
is a smooth morphism and the relative tangent

bundle T ρ◦ϕ′ ⊂ T (P ′
trans) corresponds, via the étale morphism

ϕ′|P′
trans

in (i), to the subsheaf T ⊂ T (X ′) defined in Proposi-
tion 4.3; and

(iii) Tψ′
z ∩ T ρ◦ϕ′

z = 0 in Tz(P ′) for each z ∈ P ′
trans.

Proof. Let X ′
o ⊂ ι(P) ⊂ X ′ be a Zariski open subset such that

ϕ′|(ϕ′)−1(X′
o)

: (ϕ′)−1(X ′
o) → X ′

o

is étale. Put P ′
trans = (ϕ′)−1(X ′

o) ∩ (μ ◦ ϕ′)−1(Xtrans) where Xtrans is
from Proposition 4.2 (c). Then it satisfies (i) from the choice of X ′

o and
(ii) from X ′

o ⊂ ι(P).
To see (iii), pick x ∈ P ′

trans and let F1 (resp. F2) be the fiber of ψ′

(resp. ρ ◦ϕ′) through x. Then μ ◦ϕ′(F1) (resp. μ ◦ϕ′(F2))is of the form
Pw1 (resp. Pw2) for some w1, w2 ∈ W, in the notation of Definition 3.1,
such that

Pw1 ∩ Pw2 � μ ◦ ϕ′(x) ∈ Xtrans.

The morphism ϕ′(F2) → Pw2 is birational by the definition of ρ. On
the other hand, the morphism ϕ′(F1) → Pw1 has degree m ≥ 2 by
Proposition 6.2. Since ϕ′(x) ∈ ϕ′(F1) ∩ ϕ′(F2), we have Pw1 �= Pw2 .
From Proposition 4.2 (c), we see that F1 and F2 are transversal at x.

Q.E.D.

Proposition 6.4. In the setting of Proposition 6.2, assume that
Condition 5.1 is satisfied so that we can use Proposition 5.4 and Proposi-
tion 5.5. Write E′ = μ−1

	 (E) where E = ϕ−1(μ(E)) is as in Proposition
5.5:

P ′ μ�−→ P ϕ−→ X
μ←− X ′

∪ ∪ ∪ ∪
E′ −→ E −→ μ(E) ←− E.

Then there exists a Zariski open subset W� ⊂ W such that for every
w ∈ W�, (a) and (b) of Proposition 5.5 hold and, moreover, for each
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w′ ∈ μ−1
� (w) ∈ W ′,

(ψ′)−1(w′) ∩ (ϕ′)−1(O) = (ψ′)−1(w′) \E′

where O = X ′ \ (E ∪Bhor) is as in Proposition 5.4.

Proof. We have already seen that a general w ∈ W satisfies (a) and
(b) of Proposition 5.5. It remains to check

(ψ′)−1(w′) ∩ (ϕ′)−1(O) = (ψ′)−1(w′) \E′

for a general w ∈ W and any w′ ∈ μ−1
� (w).

From Proposition 6.2, for any w ∈ W and w′ ∈ μ−1
� (w), the variety

Pw′ = ϕ′((ψ′)−1(w′)) in X ′ is an irreducible component of μ−1(Pw) that
is of degree m > 1 over Pw. By the last sentence in the statement of
Proposition 5.2, we see that Pw′ ∩ Bhor = ∅ for a general w ∈ W and
any w′ ∈ μ−1

� (w). Thus, for a general w ∈ W and any w′ ∈ μ−1
� (w), we

have ψ−1(w′)∩ (ϕ′)−1(Bhor) = ∅. By E = μ−1(μ(E)) of Proposition 5.4
(2), we have

(ψ′)−1(w′) ∩ (ϕ′)−1(O) = (ψ′)−1(w′) \ (ϕ′)−1(E ∪Bhor)

= (ψ′)−1(w′) \ (ϕ′)−1(E)

= (ψ′)−1(w′) \ (μ ◦ ϕ′)−1(μ(E))

= (ψ′)−1(w′) \ (ϕ ◦ μ	)
−1(μ(E))

= (ψ′)−1(w′) \ μ−1
	 (E).

This completes the proof. Q.E.D.

§7. Consequence of a hypothetical condition

Let X and K be as in Assumption 1. To prove Theorem 2, we may
assume that X satisfies the following additional condition.

Condition 7.1. There exist a projective manifold Y , a morphism
[f : Y → X] ∈ Homs(Y,X) and an element

σ ∈ H0(Y, f∗T (X)) \ f∗H0(X,T (X)).

The goal of this section is to show that if X satisfies Condition 7.1,
then we may choose f : Y → X and

σ ∈ H0(Y, f∗T (X)) \ f∗H0(X,T (X))

such that they have very special properties with respect to μ : X ′ → X
of Proposition 4.3 and XC of Proposition 4.4. More precisely, we will
prove the following generalization of Proposition 4.3 of [4].
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Proposition 7.1. Under Assumption 1, suppose that X satisfies
Condition 7.1. Then we have a projective manifold X

′′
equipped with

a surjective generically finite morphism β : X
′′ → X, an element θ ∈

H0(X
′′
, β∗T (X)) \ β∗H0(X,T (X)) and a Zariski open subset Xθ ⊂ X

with the following properties.

(1) The morphism β factors through μ : X ′ → X of Proposition
4.3, i.e., there exists a surjective generically finite morphism
γ : X

′′ → X such that β = μ ◦ γ:

β : X
′′ γ−→ X ′ μ−→ X.

(2) In the notation of Proposition 4.4, Xθ ⊂ XC and

β|β−1(Xθ) : β
−1(Xθ) → Xθ

is an étale morphism.
(3) For any point x ∈ Xθ, if y1 �= y2 are two distinct points

in β−1(x), then the values of θ at these points are distinct,
namely, θy1 �= θy2 as vectors in Tx(X).

(4) For a general point x ∈ Xθ and any y ∈ β−1(x), the value θy
of θ at y regarded as a vector in Tγ(y)(X

′)(= Tx(X)), belongs
to T ρ

γ(y) where ρ : X ′ → Z is as in Proposition 4.3.

Note that σ ∈ H0(Y, f∗T (X)) in Condition 7.1 defines an irreducible
projective variety in T (X) dominant over X given by the subset {σy ∈
Tf(y), y ∈ Y }. Thus Condition 7.1 implies (in fact, equivalent to) the
following.

Condition 7.2. There exists an irreducible projective subvariety in
Σ ⊂ T (X) of degree > 1 over X. The natural projection Σ → X is
necessarily finite.

To find β : X
′′ → X of Proposition 7.1, we will make some interme-

diate constructions using Σ in Condition 7.2 in the next two propositions,
which generalize Propositions 4.1 and 4.2 of [4].

Proposition 7.2. In the setting of Proposition 4.3, assume that
Condition 7.2 holds. Let T (X) ×X T (X) be the fiber product of two
copies of the projection π : T (X) → X and let

Σ×X Σ ⊂ T (X)×X T (X)

be the fiber product of two copies of π|Σ : Σ → X. Then there exists at
least one irreducible component Σ	 of Σ×XΣ with the following property:
for a general w ∈ W and a general point x ∈ Pw, some irreducible
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component of π−1(Pw)∩Σ contains two distinct points x1 �= x2, π(x1) =
π(x2) = x, such that (x1, x2) ∈ Σ×X Σ is contained in Σ	.

Proof. For a general w ∈ W, there exists an irreducible component
P ′
w of π−1(Pw)∩Σ such that the projection P ′

w → Pw is finite of degree
> 1 by Proposition 4.1. Thus for a general point x ∈ Pw, we can choose
two distinct points x1 �= x2 ∈ P ′

w, π(x1) = π(x2) = x. As we vary w and
x, the point (x1, x2) ∈ Σ×X Σ covers a subset of dimension ≥ dimX in
Σ×XΣ. Since dimΣ×XΣ = dimX, there exits an irreducible component
Σ	 satisfying the required property. Q.E.D.

Proposition 7.3. In the situation of Proposition 7.2, let

δ : T (X)×X T (X) → T (X)

be the difference morphism defined by

δ(v1, v2) := v1 − v2 for v1, v2 ∈ Tx(X) for x ∈ X.

Then in terms of Ĉ ⊂ T (X) and the morphism χ : (Ĉ \0X)∩π−1(XC) →
μ−1(XC) in Proposition 4.4,

δ(Σ	) ⊂ Ĉ, δ(Σ	) �⊂ 0X

and the dominant rational map χ	 : δ(Σ	) ��� X ′ induced by χ is gener-
ically finite.

Proof. We will use the tautological section σtaut ∈ H0(Σ, π∗T (X))
defined by

σa = a ∈ Tx(X) for each a ∈ Σ ∩ Tx(X).

For a general w ∈ W and a general x ∈ Pw, let (x1, x2) ∈ Σ	, x1 �= x2,

be as in Proposition 7.2 and let P̃ be the irreducible component of
π−1(Pw) ∩ Σ containing x1 and x2. Applying Proposition 3.1 with the
substitution of X,Σ, π|Σ and the pull-back of σtaut to the normalization

of P̃ in place of Y, Ỹ , f and σ, we see that

0 �= x1 − x2 ∈ Tx(Pw) ⊂ Ĉ.

As w varies over general points of W, the element x1 − x2 varies over
a Zariski open subset in the irreducible variety δ(Σ	). It follows that

δ(Σ	) ⊂ Ĉ and δ(Σ	) �⊂ 0X . The dominant rational map χ	 is generically
finite because the natural projection δ(Σ	) → X is finite. Q.E.D.

Now we are ready to prove Proposition 7.1.
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Proof of Proposition 7.1. Choose a desingularization α : X
′′ →

δ(Σ	) which eliminates the indeterminacy of the generically finite ra-
tional map χ	 in Proposition 7.3 such that χ	 ◦ α defines a generically
finite morphism γ : X

′′ → X ′. Denote by τ the natural projection
δ(Σ	) → X to have the commuting diagram

X
′′ α−→ δ(Σ	)

γ ↓ ↓ τ

X ′ μ−→ X.

From δ(Σ	) ⊂ T (X), there exists a tautological section

θtaut ∈ H0(δ(Σ	), τ∗T (X))

defined by θtaut(a) = a ∈ Tτ(a)(X) for each a ∈ δ(Σ	). Put β = μ ◦ γ
and let

θ ∈ H0(X
′′
, β∗T (X)) = H0(X

′′
, (τ ◦ α)∗T (X))

be the pull-back of θtaut by α. We can choose a Zariski open subset
Xθ ⊂ X satisfying the property (2) because α is birational and the
property (3) because θtaut is the tautological section. The property (4)

follows from δ(Σ	) ⊂ Ĉ in Proposition 7.3 and the relation between Ĉ
and T ρ in Proposition 4.4 (iv). Q.E.D.

§8. Completion of the proof of Theorem 2

In this section, we will prove Theorem 2. Let X and K be as in
Assumption 1. As mentioned before, we may assume that X satisfies the
condition 7.2, hence Proposition 7.1. We want to derive a contradiction
from Proposition 7.1 and the assumptions in Theorem 2. For this, we
want to descend θ ∈ H0(X

′′
, β∗T (X)) in Proposition 7.1 to some ϑ ∈

H0(X ′, μ∗T (X)). This is obviously not possible because the morphism

γ : X
′′ → X ′ may have degree ≥ 2. As we will see in Proposition

8.2 below, however, we can achieve this if we restrict to a Euclidean
neighborhood of a subvariety in X ′, i.e., a Euclidean neighborhood of
a general member of P ′ in Proposition 6.2. To make this precise, we
consider the following setting.

Notation 8.1. In the setting of Proposition 7.1, pick an irreducible
component dominant over X

′′
in X

′′ ×X′ P ′, the fiber product of γ :
X

′′ → X ′ of Proposition 7.1 and ϕ′ : P ′ → X ′. Applying Proposition
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6.1 to this component of X
′′ ×X′ P ′, we have a commuting diagram

W ′′ ψ
′′

←− P ′′ ϕ
′′

−→ X
′′

γ� ↓ γ	 ↓ γ ↓
W ′ ψ′

←− P ′ ϕ′
−→ X ′

μ� ↓ μ	 ↓ μ ↓
W ψ←− P ϕ−→ X

where the second and the third lows are from Proposition 6.2 and (ϕ
′′
, ψ

′′
)

is an étale family of immersed submanifolds in X
′′
parametrized by W ′′

.
We may assume that γ� and γ	 are proper surjective generically finite
morphisms.

Since W ′′ γ�→ W ′ μ�→ W are generically finite morphisms, a general
point of W has a Euclidean neighborhood M ⊂ W such that there are
Euclidean open subsets M′ ⊂ W ′ and M′′ ⊂ W ′′

which are biholomor-
phic to M by μ� and μ� ◦ γ�, respectively. Write

Q = ψ−1(M), Q′ = (ψ′)−1(M′), Q′′
= (ψ

′′
)−1(M′′

)

and denote by μ̃ : Q′ → Q and γ̃ : Q′′ → Q′ the natural morphisms to
obtain the following diagram.

W ′′ ⊃ M′′ ψ
′′

←− Q′′ ⊂ P ′′ ϕ
′′

−→ X
′′

γ� ↓ �� γ̃ ↓ γ	 ↓ γ ↓
W ′ ⊃ M′ ψ′

←− Q′ ⊂ P ′ ϕ′
−→ X ′

μ� ↓ �� μ̃ ↓ μ	 ↓ μ ↓
W ⊃ M ψ←− Q ⊂ P ϕ−→ X

Remark 8.1. From our choice of P ′ in Proposition 6.2, the mor-
phism μ̃ has degree m ≥ 2. On the other hand, we have not made any
special choice in the definition of P ′′

in Notation 8.1. The next propo-
sition shows that the morphism γ̃ becomes bimeromorphic, if we choose
sufficiently small M.

Proposition 8.1. In Notation 8.1, let w′ ∈ W ′ be a general point
and set

Pw′ := ϕ′((ψ′)−1(w′)) ⊂ X ′.

For each irreducible component P
′′
of γ−1(Pw′) dominant over Pw′ , the

restriction γ|P ′′ : P
′′ → Pw′ is birational. In particular, we can assume

that γ̃ : Q′′ → Q′ is bimeromorphic in Notation 8.1 by choosing M,M′

and M′′
suitably.
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Proof. This follows from the special property of θ in Proposition
7.1, combined with Proposition 3.1. To be precise, we will apply Propo-

sition 3.1 with the substitution of X ′,X
′′
,P ′, γ, P

′′
for Y, Ỹ ,P, f, P̃ ,

respectively. From the generality of w′ ∈ W ′, we may assume that

Pw′ ∩ ϕ′(P ′
trans) ∩Xθ ∩ (X ′)γ �= ∅

where P ′
trans is from Proposition 6.3, Xθ is from Proposition 7.1 and

(X ′)γ ⊂ X ′ is the Zariski open subset corresponding to Y f in Proposi-
tion 3.1.

Suppose γ|P ′′ is not birational. For a general point

x ∈ Pw′ ∩ ϕ′(P ′
trans) ∩Xθ ∩ (X ′)γ ,

let x1 �= x2 be two distinct points in γ−1(x) ∩ P
′′
. By the substitution

of x, x1, x2, θ for y, y1, y2, σ, respectively, Proposition 3.1 says that θx1 −
θx2 ∈ Tx(Pw′). But θx1 , θx2 ∈ T ρ

x by Proposition 7.1 (3), while Tx(Pw′)∩
T ρ
x = 0 by Proposition 6.3 (iii). Thus θx1 = θx2 , a contradiction to

Proposition 7.1 (2). Q.E.D.

Notation 8.2. Let f : Y ′ → Y be a proper surjective generically
finite morphism of degree m between two complex manifolds. Let V be
a vector bundle on Y . We denote by Normf : H0(Y ′, f∗V ) → H0(Y, V )
the norm homomorphism of f . Recall that for a section σ of f∗V and a
point y ∈ Y where f−1(y) consists of m distinct points y1, . . . ym,

Normf (σ)y =
1

m

m∑
i=1

σyi ∈ Vy.

In particular, if for a general y ∈ Y and f−1(y) = {y1, . . . , ym}, we have
σyi = σyj for all pairs (i, j), then σ = f∗Normf (σ).

Proposition 8.2. Consider the setting of Notation 8.1, with the
additional property that γ̃ : Q′′ → Q′ is bimeromorphic from Proposition
8.1. Using θ ∈ H0(X

′′
, β∗T (X)) of Proposition 7.1, set

θ̂ := (ϕ
′′
)∗θ ∈ H0

(
P ′′

, (β ◦ ϕ′′
)∗T (X)

)
= H0

(
P ′′

, (μ ◦ ϕ′ ◦ γ	)∗T (X)
)

and define

ϑ := Normγ̃(θ̂|Q′′ ) ∈ H0(Q′, (μ ◦ ϕ′)∗T (X)) = H0(Q′, (ϕ ◦ μ̃)∗T (X)).

Then

(i) ϑ �= 0;
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(ii) ϑ takes values in the image of (ϕ′)∗T in (μ ◦ ϕ′)∗T (X) where
T ⊂ T (X ′) is the subsheaf defined in Proposition 6.2 (c) ; and

(iii) when we regard Tψ ⊂ T (P) as a subbundle of ϕ∗T (X) via the
isomorphism dϕ : T (P) ∼= ϕ∗T (X), the difference

ϑ− μ̃∗Normμ̃(ϑ) ∈ H0(Q′, (ϕ ◦ μ̃)∗T (X))

belongs to H0(Q′, μ̃∗Tψ).

Proof. (i) follows from the fact that θ̂ �= 0 and γ̃ is bimeromorphic.

Since θy belongs to T ρ
γ(y) for general y ∈ X

′′
by Proposition 7.1 (3),

ϑ takes values in the image of T in (μ ◦ ϕ′)∗T (X), proving (ii).
For a general point w ∈ M, set w′ := M′ ∩ μ−1

� (w). We use

Proposition 3.1 with the substitution of X,X ′, μ, (ψ′)−1(w′), Pw′ , ϑ for

Y, Ỹ , f, P̂ , P̃ , σ, respectively. For a general point x ∈ ψ−1(w) and

μ̃−1(x) = {x1, . . . , xm},

Proposition 3.1 with y = ϕ(x), y1 = ϕ′(x1) and y2 = ϕ′(xi) says that

ϑxi = ϑx1 + vi, 2 ≤ i ≤ m, for some vi ∈ Tϕ(x)(Pw) = dϕ(Tψ
x ).

This implies that Normμ̃(ϑ)x = ϑx1 + v for some v ∈ dϕ(Tψ
x ). Thus

(ϑ− μ̃∗Normμ̃(ϑ))x1 ∈ (μ̃∗Tψ)x1 .

By the same reasoning,

(ϑ− μ̃∗Normμ̃(ϑ))xi ∈ (μ̃∗Tψ)xi

for any i, which implies that

ϑ− μ̃∗Normμ̃(ϑ) ∈ H0(Q′, μ̃∗Tψ).

This proves (iii). Q.E.D.

Remark 8.2. To appreciate the geometry behind Proposition 8.2,
it is worth interpreting it in the context of Proposition 6.3, namely, in
terms of the two transversal fibrations Tψ′

and T ρ◦ϕ′
on a Zariski open

subset P ′
trans ⊂ P ′. On the open set Q′ ∩ P ′

trans, (ii) says that ϑ takes

values in T ρ◦ϕ′
, while (iii) says that ϑ − μ̃∗Normμ̃(ϑ) takes values in

Tψ′
.

We need to use ϑ in Proposition 8.2 together with the results in
Section 5 to prove Theorem 2. The results in Section 5 are available in
our setting by the following.



262 J.-M. Hwang

Proposition 8.3. Under Assumption 1, if X satisfies Condition
7.2, then it satisfies also Condition 5.1. In particular, all the results
from Section 5 hold if X satisfies Condition 7.1.

Proof. We will apply Proposition 3.3 with Y = X, Ỹ = X
′′
and

f = β using the terminology of Proposition 7.1. Setting Y trans = Xtrans

from Proposition 4.2 (c), the condition (1) of Proposition 3.3 holds.
Setting σ = θ from Proposition 7.1, the condition (2) of Proposition 3.3
holds, too. Since any hypersurface in X is ample and BK is contained
in the branch divisor of f = β, we conclude that P in Proposition 4.2 is
univalent on each irreducible component of BK. Q.E.D.

Proposition 8.4. By Proposition 8.3, we can apply Proposition 5.4
in the setting of Notation 8.1. Let

E ⊂ X ′, O = X ′ \ (E ∪Bhor) and V ⊂ μ∗TX |O

be as in Proposition 5.4. In Notation 8.1, choose M such that M ⊂ W�
where W� is as in Proposition 6.4. Then

(1) Q′ ∩ (ϕ′)−1(O) = Q′ \ (ϕ′)−1(E) and
(2) ϑ in Proposition 8.2 satisfies

ϑ|(ϕ′)−1(O) ∈ H0(Q′ ∩ (ϕ′)−1(O), (ϕ′)∗V).

Proof. (1) is immediate from Proposition 6.4. (2) follows from
Proposition 5.4 (6) and Proposition 8.2 (ii). Q.E.D.

Completion of the proof of Theorem 2. Suppose that the theorem
does not hold. Then we can assume that X satisfies Condition 7.1 and
use Propositions 8.2 and Proposition 8.4. The assumption onBK in The-
orem 2 means that the intersection of ϕ−1(BK) and a general Pk-fiber of
ψ is a hypersurface in P

k whose dual variety is linearly nondegenerate.
Pick any w′ ∈ M′ and write w = μ�(w

′) ∈ M ⊂ W�. Using the
terminology of Proposition 6.4, let

F := ψ−1(w), F ′ := (ψ′)−1(w′), J := F ∩E, J ′ := F ′ ∩E′, f := μ̃|F ′

to obtain

J ′ = F ′ ∩E′ ⊂ F ′ ⊂ Q′ ϕ′
→ X ′

↓ f ↓ μ̃ ↓ μ ↓
J = F ∩E ⊂ F ⊂ Q ϕ→ X.

By Proposition 8.4 (1),

F ′ ∩ (ϕ′)−1(O) = F ′ \ J ′.
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Note that
(ϕ′)∗V ⊂ (ϕ′)∗μ∗TX(− logBK)

= μ∗
	ϕ

∗TX(− logBK) = μ∗
	TP(− logϕ−1(BK)).

Since ϑ of Proposition 8.1 takes values in (ϕ′)∗V on (ϕ′)−1(O) by Propo-
sition 8.4 (2), its restriction to F ′ ∩ (ϕ′)−1(O) belongs to

H0
(
F ′ \ J ′, f∗TQ(− logϕ−1(BK))

)
.

It follows that

(ϑ− μ̃∗Normμ̃(ϑ)) |F ′\J ′ ∈ H0
(
F ′ \ J ′, f∗TQ(− logϕ−1(BK))

)
.

By Proposition 8.2 (iii), this takes values in f∗Tψ|F ′ = f∗T (F ). Thus,
after setting D := F ∩ ϕ−1(BK), we have

v := (ϑ− μ̃∗Normμ̃(ϑ)) |F ′\J ′ ∈ H0(F ′ \ J ′, f∗TF (− logD)).

From the properties of W� in Proposition 6.4, we see that J,D, v and
F ∼= P

k with F ′ in place of Y satisfy the conditions of Theorem 3. It
follows that

(ϑ− μ̃∗Normμ̃(ϑ)) |F ′ = f∗λF for some λF ∈ H0(F, TF (− logD)).

Since the above works for any w′ ∈ M′, the section

ϑ− μ̃∗Normμ̃(ϑ) ∈ H0(Q′, ξ∗Tψ)

can be written as μ̃∗λ for some λ ∈ H0(Q, T (Q)). It follows that

ϑ = μ̃∗(Normμ̃(ϑ) + λ) where Normμ̃(ϑ) + λ ∈ H0(Q, T (Q)).

Pick a general point x ∈ Q with ϕ(x) ∈ XC , where XC is as in
Proposition 4.4, such that ϕ ◦ μ̃ = μ ◦ ϕ′|Q′ is unramified at the points
μ̃−1(x) and (ρ ◦ ϕ′)(μ̃−1(x)) consists of m distinct points in W ⊂ Z.
Pick two distinct points x1 �= x2 ∈ μ̃−1(x) such that w1 := ρ(ϕ′(x1)) �=
w2 := ρ(ϕ′(x2)).

Since ϕ◦ μ̃ is unramified at x1 and x2, we can regard the section ϑ of
(ϕ ◦ μ̃)∗T (X) as a vector field in a Euclidean neighborhood of x1 (resp.
x2). Let C1 (resp. C2) be the local analytic curve through x1 (resp. x2)
integrating the vector field induced by ϑ in this Euclidean neighborhood.
Then μ̃(C1) (resp. μ̃(C2)) is the analytic curve through x integrating
the vector field induced by Normμ̃(ϑ) + λ in a neighborhood of x in P.
It follows that μ̃(C1) = μ̃(C2).



264 J.-M. Hwang

Since ϑ is a section of (ϕ′)∗V, we have

ϕ′(C1) ⊂ ρ−1(w1) and ϕ′(C2) ⊂ ρ−1(w2),

and consequently,

ϕ(μ̃(C1)) ⊂ Pw1 and ϕ(μ̃(C2)) ⊂ Pw2 .

This implies that Pw1 and Pw2 share a common analytic curve through
ϕ(x) ∈ XC ⊂ Xtrans. Since w1 �= w2, this is a contradiction to Proposi-
tion 4.2 (c). Q.E.D.
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