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Abstract.

We first provide details for the proof of Fujita’s second theorem for
Kähler fibre spaces over a curve, asserting that the direct image V of
the relative dualizing sheaf splits as the direct sum V = A⊕Q, where
A is ample and Q is unitary flat. Our main result then answers in the
negative the question posed by Fujita whether V is semiample. In fact,
V is semiample if and only if Q is associated to a representation of the
fundamental group of B having finite image. Our examples are based
on hypergeometric integrals.

This article is dedicated to Yujiro Kawamata on the occasion of his
60-th birthday.
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§1. Introduction

An important progress in classification theory was stimulated by
a theorem of Fujita, who showed ([Fujita78a]) that if X is a compact
Kähler manifold and f : X → B is a fibration onto a projective curve B
(i.e., f has connected fibres), then the direct image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB))

is a semipositive (i.e., nef) vector bundle on B, meaning that each quo-
tient bundle Q of V has degree deg(Q) ≥ 0.

In the note [Fujita78b] Fujita announced the following stronger re-
sult:

Theorem 1.1. (Fujita, [Fujita78b])
Let f : X → B be a fibration of a compact Kähler manifold X over

a projective curve B, and consider the direct image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB)).

Then V splits as a direct sum V = A ⊕Q, where A is an ample vector
bundle and Q is a unitary flat bundle.

Fujita sketched the proof, but referred to a forthcoming article con-
cerning the positivity of the so-called local exponents.

After Fujita’s articles, appeared then Kawamata’s articles [Kaw81]
[Kaw82], which proved the conjecture Cn,1 (the subadditivity of Kodaira
dimension for such fibrations, Kod(X) ≥ Kod(B) + Kod(F ), where F
is a general fibre) demonstrating the semipositivity also for the direct
image of the higher powers of the relative dualizing sheaf

Wm := f∗(ω⊗m
X|B) = f∗(OX(m(KX − f∗KB))).

Kawamata’s calculations are more directly related to Hodge theory, and
especially a simple lemma, concerning the degree of line bundles on a
curve whose metric grows at most logarithmically around a finite number
of singular points, played a crucial role for semipositivity. Kawamata
extended Fujita’s result to the case where the dimension of the base
variety of the fibration is greater than one in [Kaw81] giving later a
simpler proof of semipositivity in [Kaw02].

A first purpose of our article is to provide the missing details con-
cerning the proof of the second theorem of Fujita, using Kawamata’s
lemma and some crucial estimates given by Zucker ([Zuc79]) for the
growth of the norm of sections of the L2-extension of Hodge bundles.
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It is important to have in mind Fujita’s second theorem in order to
understand the question posed by Fujita in 1982 (Problem 5, page 600
of [Katata83], Proceedings of the 1982 Taniguchi Conference).

Question 1.2. (Fujita) Is the direct image V := f∗ωX|B semi-
ample ?

Saying that a vector bundle V is semi-ample means that the hyper-
plane divisor H on P := Proj(V ) is such that there exists a positive
integer m with |mH| base-point free.

In our particular case, where V = A⊕Q with A ample and Q unitary
flat, it simply means that the representation of the fundamental group
ρ : π1(B) → U(r,C) associated to the flat unitary rank-r bundle Q has
finite image (cf. theorem 2.5).

The main purpose of this article is to show that the question by
Fujita has a negative answer.

Theorem 1.3. There exist surfaces X of general type endowed with
a fibration f : X → B onto a curve B of genus ≥ 3, and with fibres of
genus 6, such that V := f∗ωX|B splits as a direct sum V = A⊕Q1⊕Q2,
where A is an ample rank-2 vector bundle, and the flat unitary rank-2
summands Q1, Q2 have infinite monodromy group (i.e., the image of ρj
is infinite). In particular, V is not semi-ample.

The surfaces in question are constructed using hypergeometric in-
tegrals associated to a cyclic group of order 7, and the non finiteness
of the monodromy is a consequence of the classification due to Schwarz
([Schw73]).

An interesting observation, concerning the crucial difference of the
roles played by unitary flat bundles versus flat bundles in our context,
is given by the following result.

Theorem 1.4. Let f : X → B be a Kodaira fibration, i.e., X is
a surface and all the fibres of f are smooth curves not all isomorphic
to each other. Then the direct image sheaf V := f∗ωX|B has strictly

positive degree hence H := R1f∗(C) ⊗ OB is a flat bundle which is not
nef (i.e., not numerically semipositive).

Janos Kollár pointed out to the first author that the above result
is not so surprising, in view of an old theorem of André Weil [Weil38],
reproven by Atiyah in [At57].

Theorem 1.5. (Weil) A vector bundle V over a projective curve
is (isomorphic to) a flat holomorphic bundle if and only if each of the
summands Vi in its unique decomposition as a direct sum V = ⊕iVi of
indecomposable bundles has degree zero.
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§2. Preliminaries and reduction to the semistable case

2.1. Semipositive vector bundles on curves

Let B be a smooth complex projective curve, and assume that V
is a holomorphic vector bundle over it, which we identify to its sheaf of
holomorphic sections.

Recall the classical definition used by Fujita in [Fujita78a], [Fujita78b].

Definition 2.1. Consider the projective bundle P := Proj(V ) =
P(V ∨), and the tautological divisor H such that, p : P → B being the
natural projection, p∗(OP(H)) = V .

Then V is said to be:
(NP) numerically semi-positive if and only if every quotient bundle

Q of V has degree deg(Q) ≥ 0,
(NEF) nef if and only if H is nef on P,
(A) ample if and only if H is ample on P,
(SA) semi-ample if and only if a positive multiple of H is spanned

by global sections on P.
Recall that obviously ample implies semi-ample, semi-ample implies

nef, while H is nef if and only if H is in the closure of the ample cone,
or, equivalently, H · C ≥ 0 for every effective curve C.

As we shall recall, the conditions: nef and numerically semi-
positive are equivalent.

Remark 2.2. (1) Observe that if U is a quotient bundle of V , then
Proj(U) embeds in Proj(V ) and the tautological divisor restricts to the
tautological divisor, hence if V is ample (respectively, nef) then each
quotient bundle U is also ample (respectively, nef).

We give an alternative proof1 of a result of Hartshorne (Theorem
2.4, page 84 of [Hart71]), which is important for our purposes.

Proposition 2.3. A vector bundle V on a curve is nef if and only
it is numerically semi-positive, i.e., if and only if every quotient bundle
Q of V has degree deg(Q) ≥ 0, and V is ample if and only if every
quotient bundle Q of V has degree deg(Q) > 0.

Proof.
One implication was essentially observed in greater generality in (1)

of remark 2.2, except that we should show that a nef bundle has positive
degree, and an ample bundle has strictly positive degree.

1We became aware that a proof similar to ours is contained in Lazarsfeld’s
book [Laz04], theorem 6.4.15.
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By the Leray-Hirsch theorem the cohomology of P is a free module
over the cohomology of B, and its Chow ring is isomorphic to

Z[F,H]/(Hr − dHr−1F )

where r := rank(V ), d := deg(V ) = c1(V ), and F is a fibre of
p : P → B.

By the same theorem, for every quotient bundle Q of rank k and
degree d′ we obtain a projective subbundle P′ := Proj(Q) such that the
Chow ring of P′ equals Z[F,H]/(Hk − d′Hr−1F ).

Step 1: if d′ < 0, then Hk · P′ = d′ < 0, so H is not nef; similarly,
if d′ = 0, then H is not ample.

Step 2: if H is not nef, then there exists an irreducible curve C ′ ⊂ P

such that H · C ′ < 0. The curve C ′ cannot be contained in a fibre,
since H is ample on F , hence there exists a finite morphism from the
normalization C of C ′ to B, f : C → B.

The pull-back of V , W := f∗(V ) has a quotient line bundle L cor-
responding to the section C ⊂ W , and deg(L) = H · C ′ < 0.

Step 3: Consider f : C → B as in Step 2. Consider the Harder-
Narasimhan filtration of V ∨,

0 → E1 → E2 → . . . Eh = V ∨.

Here the slope of E1 is maximal for the associated graded bundle, i.e.,
μ(E1) := deg(E1)/rk(E1) ≥ μ(E2/E1) ≥ μ(E3/E2) . . . , and all quo-
tients Ej/Ej−1 are stable.

The pull back of a stable bundle is semistable, hence from step 2 we
obtain an inclusion L∨ → f∗(V ∨) and therefore the slope of L∨, which
is strictly positive if H is not nef, is smaller or equal to the slope μ(E1).
Hence V has a quotient bundle (E1)

∨ with strictly negative degree.
Step 4:
Let us work out the respective cones Eff of effective curves, resp.

N ef of nef divisors for P. The latter is a cone in the vector space NS(P)
with basis H,F , and it is the dual of the cone spanned by effective curves
in the dual vector space N1(P) where we take as basis L := F ·Hr−2 (a
line contained in a fibre) and Γ, where Γ is a minimal section, i.e., such
that Γ ·H =: m is minimal (observe that m ≥ 0 if H is net).

We have thus:

L · F = 0, L ·H = 1,Γ · F = 1,Γ ·H = m.

The above formulae show that (since the cone Eff contains L,Γ)
F , which is movable, hence nef, is nef but not ample; so F is a boundary
ray of N ef , while L is a boundary ray for Eff .
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Assume that a curve aL+ bΓ is effective: then intersecting with F ,
which is movable, hence nef, we get b ≥ 0, and indeed b > 0 unless the
curve is contained in a fibre (hence a multiple of L). Hence we may
assume that the other boundary ray of Eff is spanned by Γ−aL, where
a ≥ 0.

Its orthogonal divisor class is given by 0 = (xF + yH) · (Γ− aL) =
x+y(m−a) ⇔ x = y(a−m), hence it is the class is the class (a−m)F+H.

We get that H is nef (respectively, ample) if and only if

a−m ≤ 0 ⇔ m ≥ a

(resp., m > a).
Step 5: Assume now that H is nef and not ample: we want to

conclude that μ(E1) = 0, hence concluding that there is a degree zero
quotient V → (E1)

∨.
By Step 4, we get that a = m and that there are irreducible curves

C ′ with class −αL+ βΓ, β > 0, α > 0, as soon as mβ > α.
On the normalization C of C ′ we pull back via f : C → B, and

observe that V has a line bundle quotient L with slope C ′ ·H = −α+βm.
Again this slope, which is non negative, is bigger than the slope of E1.

Take now the limit as α/β tends to m: then we conclude that the
slope of E1 satisfies μ(E1) ≤ 0; since H is nef, we already know that
μ(E1) ≥ 0, hence E1 has degree zero.

Q.E.D.

Remark 2.4. In general an extension 0 → W → V → E → 0,
where W is ample, and E is nef of degree zero, does not split.

Since the extension class lies in H1(B,W ⊗ E∨), the dual space to
H0(B,E ⊗ W∨ ⊗ KB), which is non zero if B has genus g ≥ 2 and
rk(E) = rk(W ) = deg(W ) = 1.

We give here a direct proof of the characterization of semi-ample
unitary flat bundles; one step of the proof is related to a more general
theorem of Fujiwara ([Fujiw92]), concerning semi-ample bundles with
determinant of Kodaira dimension equal to zero.

Theorem 2.5. Let H be a unitary flat vector bundle on a projective
manifold M , associated to a representation ρ : π1(M) → U(r,C). Then
H is nef and moreover H is semi-ample if and only if Im(ρ) is finite.

Proof.
Since H is unitary flat, H is a Hermitian holomorphic bundle, and

by the principle ‘curvature decreases in Hermitian subbundles’ (page 79
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of [GH78], see also [Dem] Prop. VII.6.10) each subbundle has semi-
negative degree and each quotient bundle W of H has semi-positive
degree, hence H is nef.

Assume that H is semi-ample, and let B be a general linear curve
section of M ⊂ PN , so that by Lefschetz’ theorem we have a surjection
π1(B) → π1(M).

Then H|B is also semi-ample and flat, corresponding to the compo-
sition homomorphism π1(B) → π1(M) → U(r,C).

So, w.l.o.g., we may assume that M is a curve B.
Step I: we shall show that there exists a finite morphism p : B′ → B

such that the pull back p∗(H) is a trivial holomorphic bundle.
Step II: a unitary flat vector bundle on a projective curve is a

trivial holomorphic bundle if and only if the associated representation
is trivial.

Step I and II , when put together with the following lemma 2.6,
stating that the image of π1(B

′) has finite index in π1(B), suffice to
show the difficult implication. Since ρ is trivial on the image of π1(B

′)
by Step II, therefore the image Im(ρ) is finite.

Proof of Step I.
Let P := Proj(H) and let π : P → B the projection, and let F ∼=

Pr−1 be a fibre. The hypothesis that H is semi-ample means that there
exists a positive integer m ≥ 1 such that the linear system |mH| yields
a morphism ψ : P → PN , which is finite on each fibre, since OF (H) =
OF (1).

We may choose r divisors D1, . . . , Dr ∈ |mH| such that D1 ∩ · · · ∩
Dr ∩ F = ∅.

Therefore we find r multi-sections of π, setting

Ch := D1 ∩ · · · ∩ D̂h · · · ∩Dr.

Let B′ be an irreducible component of the normalized fibre product
C1 ×B C2 ×B · · · ×B Cr: then the pull back H′ of H admits r sections
of OP′(H ′) yielding a birational map to B′ × Pr.

Hence we get an injective homomorphism

0 → Or
B′ → H′ → F → 0

where the cokernel F is concentrated on a finite set.
But then, since 0 = deg(H′) = length(F), we obtain the desired

isomorphism Or
B′ ∼= H′.

Proof of Step II.
Let B be a projective curve and ρ : π1(B) → U(r,C) a unitary

representation, and Hρ the associated flat holomorphic bundle. Since
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ρ is unitary, it is a direct sum of irreducible unitary representations
ρj , j = 1, . . . k.

Accordingly, we have a splitting

Hρ = ⊕k
j=1Hρj .

Narasimhan and Seshadri have proven (see corollary 1, page 564 of
[NS65]) that each Hρj is a stable degree zero holomorphic bundle on B.
Now, if ρ is nontrivial, there exists an h such that ρh is non trivial.

Assuming that we have an isomorphism Hρ
∼= Or

B we derive a con-
tradiction.

In fact, we have a surjection

Or
B → Hρh

.

However, for each summand OB its image must be trivial in Hρh
if

the latter bundle has rank ≥ 2: since its image would be a line bundle of
the form OB(D), whereD is an effective or trivial divisor, and this would
contradicit the stability of Hρh

. But then the surjection Or
B → Hρh

would be equalto zero, an obvious contradiction.
Assume instead that the rank of Hρh

is equal to one. Then, since
some summand would have a nonzero map OB → Hρh

, this homomor-
phism would be an isomorphism since both line bundles have degree
zero. Hence we would have OB

∼= Hρh
, contradicting theorem 2, page

560 of [NS65] (which asserts that two stable bundles corresponding to
unitary representations are isomorphic if and only if the corresponding
unitary representations are equivalent), since ρh is nontrivial.

Proof of the easy implication.
Conversely, if Im(ρ) is finite, there exists an étale Galois cover p :

M ′ → M , with Galois group G, such that H′ = p∗(H) is trivial.
We have P = (M ′ × Pr−1)/G. For each point x ∈ Pr−1 we consider

the G-orbit of X, and take a linear form h′ such that h′ does not vanish
on the orbit Gx: then the product of the G-transforms of h′ yields a
section of O(mH ′) (here m = |G|) which is G-invariant and does not
vanish on x. Hence H is semi-ample.

Q.E.D.

Lemma 2.6. Let p : B′ → B be a finite morphism of curves. Then
the image Γ of π1(B

′) has finite index in π1(B).

Proof. Let B∗ be the maximal open set such that, setting B′∗ :=
p−1(B∗), p : B′∗ → B∗ is a finite unramified covering.

Then π1(B
′∗) is a finite index subgroup of π1(B

∗) and we conclude
since π1(B

∗) subjects onto π1(B), and similarly π1(B
′∗) subjects onto

π1(B
′).

Q.E.D.
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2.2. Semistable reduction

Assume now that f : X → B is a fibration of a compact Kähler
manifold X over a projective curve B, and consider the invertible sheaf
ω := ωX|B = OX(KX − f∗KB).

By Hironaka’s theorem there is a sequence of blow ups with smooth
centres π : X̂ → X such that

f̂ := f ◦ π : X̂ → B

has the property that all singular fibres F are such that F =
∑

i miFi,
and Fred =

∑
i Fi is a normal crossing divisor.

Since π∗OX̂(KX̂) = OX(KX) we obtain

f̂∗ωX̂|B = f̂∗OX̂(KX̂ − f̂∗KB) = f∗OX(KX − f∗KB) = f∗ωX|B.

Therefore we shall assume wlog that all the reduced fibres of f are
normal crossing divisors.

Theorem 2.7. (Semistable reduction theorem, [KKMsD73])
There exists a cyclic Galois covering of B, B′ → B = B′/G, such that
the normalization X ′′ of the fibre product B′ ×B X admits a resolution
X ′ → X ′′ such that the resulting fibration f ′ : X ′ → B′ has all the fibres
which are reduced and normal crossing divisors.

X ′

f ′

��

v′
�� X ′′

��

v′′
�� X

f

��
B′ Id �� B′ u �� B,

Remark 2.8. At each singular fibre F =
∑

i miCi corresponding
to a point t = 0 on B, the theorem yields a base change t = τn, where
mi|n,∀i, and n >> 0.

As a notation, we set v := v′′ ◦ v′ : X ′ → X. We set also n = midi.

Proposition 2.9. The sheaf V ′ := f ′
∗ωX′|B′ is a subsheaf of the

sheaf u∗(V ), where V := f∗ωX|B, and the cokernel u∗(V )/V ′ is concen-
trated on the set of points corresponding to singular fibres of f .

In particular, since V and V ′ are semipositive by Fujita’s first the-
orem, if V ′ satisfies the property that for each degree 0 quotient bun-
dle Q′ of V ′ then there is a splitting V ′ = E′ ⊕ Q′ for the projection
p : V ′ → Q′,and Q′ is unitary flat, then V ′ splits as the direct sum
V ′ = A⊕Q, where A is an ample vector bundle and Q is a flat unitary
bundle, and the same conclusion holds also for V .
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Proof. It suffices to work locally around each point P ′ ∈ B′, map-
ping to a point P corresponding to a singular fibre F of f and consider
the base change t = τn, where n may be assumed not to depend on the
point P .

By the Hurwitz formula

KB′ = u∗(KB) +
∑
P ′

(n− 1)P ′, KX′ = v∗KX +R,

hence

ωX′|B′ = KX′ − f ′∗(KB′) = v∗(ωX|B)− (
∑
P ′

(n− 1)F ′ −R),

and our assertion would be proven if the divisor
∑

P ′(n − 1)F ′ − R,
supported on the inverse images of the singular fibres of f , is effective.

Let us work locally around the fibre F ′ of f ′ which lies above the
point P ′.

Recall the following lemma, where (see [Kol-Mori], Lemma 5.12,
page 156), equality holds, for X ′′ Cohen Macaulay, and X ′ the resolu-
tion, if X ′′ has rational singularities.

Lemma 2.10. Let g : X ′ → X ′′ be a birational morphism between
normal varieties: then g∗(O(KX′)) ⊂ O(KX′′).

The first thing to do is to separate in R the v-exceptional divisors
and the divisors Di, which are the strict transforms of Fi. Recall in fact
that, if γi = 0 is a local equation of Fi, then

τn = γmi
i ⇔ Πεmi=1(τ

di − εγi),

and the local equation of Di in the normalization X ′′ becomes τ = 0.
Therefore R ≥ ∑

i(di − 1)Di.
Finally, we get, working again locally, and observing that n − di =

di(mi − 1) ≥ 0:

u∗f ′
∗ωX′|B′ ⊂ u∗f ′′

∗ ωX′′|B′ = u∗f ′′
∗ (v

′′∗ωX|B +
∑
i

(di− 1− (n− 1))Di) =

= u∗f ′′
∗ (v

′′∗ωX|B −
∑
i

(midi − di)Di) ⊂ f∗ωX|B.

We are left to prove the second assertion of proposition 2.9. For this
purpose we consider again the Harder-Narasimhan filtration of V ,

0 → V1 → V2 → . . . Vh = V,
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where as usual the slope of V1 is maximal. It gives rise to an exact
sequence 0 → U → V → Z → 0, where U is ample and deg(Z) = 0.

We have then a generically invertible homomorphism between two
vector bundles of the same rank:

V ′ → u∗(V ) ⊃ u∗(U) ⊃ 0.

We set Q := u∗(Z), and observe that V ′ → Q = u∗(Z) must be
surjective, else V ′ would have a negative degree quotient. Then, by our
assumption, it follows that we have a splitting V ′ = E′ ⊕Q.

We claim that the inclusion Q ⊂ V ′ induces a splitting of 0 → U →
V → Z → 0, yielding V = U ⊕ Z. This follows since V = u∗(u∗V )G,
hence the homomorphism V ′ → u∗V induces a chain of homomorphisms

Z = u∗(u∗Z)G → u∗(u∗Z)G ⊕ u∗(A)G = u∗(V ′)G → V → Z

whose composition is the identity.
We show that Z is a flat bundle.
Since Q is a flat unitary bundle, Q is a quotient (B̃′ × Cr)/π1(B

′),
where B̃′ is the universal covering of B′. The action is determined by a
homomorphism ρ′ : π1(B

′) → U(r,C).
Denote by B∗ the complement of the branch locus of B′ → B, and by

B′∗ its inverse image. Since Z = u∗(Q)G, we have that the restriction
Z|B∗ is a flat bundle associated to a representation ρ∗ : π1(B

∗) →
U(r,C).

However, since Z is a vector bundle on B, the restriction of ρ∗ to
generators of the kernel of the surjection π1(B

∗) → π1(B) is trivial,
hence ρ∗ factors through ρ : π1(B) → U(r,C).

Since the restriction of Q to B′∗ corresponds to the restriction of ρ∗

to π1(B
′∗), and it is trivial on the kernel of π1(B

′∗) → π1(B
′), we have

shown that ρ′ factors through ρ.
It follows that Z is a flat bundle: we have in fact seen that Q is

a quotient (B̃′ × Cr)/π1(B
′), where B̃′ is the universal covering of B′,

and where the action is determined by the homomorphism ρ′ : π1(B
′) →

U(r,C).

Hence Z is a quotient (B̃′ × Cr)/πorb
1 (B′ → B), where the orbifold

fundamental group is defined (see e.g. [Cat08], pages 101 and following
for more details) by the extension

1 → π1(B
′) → πorb

1 (B′ → B) → G → 1,

such that B is the quotient of B̃′ by πorb
1 (B′ → B).

πorb
1 (B′ → B) is a quotient of the fundamental group of B∗, the

complement of the branch locus of B′ → B.
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We also saw that since Q is the pull back of Z, the representation
on Cr of the orbifold fundamental group πorb

1 (B′ → B) factors through

the surjection πorb
1 (B′ → B) → π1(B), therefore Z = (B̃×Cr)/π1(B) is

a flat unitary bundle over B.
Q.E.D.

§3. Fujita’s second theorem

In this section we shall use some standard differential geometric
terminology which we now recall.

Definition 3.1. Let (E, h) be an Hermitian vector bundle on a
complex manifold M . Take the canonical Chern connection associated to
the Hermitian metric h, and denote by Θ(E, h) the associated Hermitian
curvature, which gives a Hermitian form on the complex vector bundle
bundle TM ⊗ E.

Then (see for instance [Laz04], and also [Kob87]), one says that
E is Nakano positive (resp.: semi-positive) if there exists a Hermitian
metric h such that the Hermitian form associated to Θ(E, h) is strictly
positive definite (resp.: semi-positive definite).

In local coordinates (z1, . . . , zm) there exists a local frame eλ such
that

iΘ(E, h) = Σj,k,λ,μcj,k,λ,μdzj ∧ dzk ⊗ e∗λ ⊗ eμ, ck,j,μ,λ = cj,k,λ,μ.

While one says that E is Griffiths positive (resp.: semi-positive)
if there exists a Hermitian form as above which is positive on rank 1
tensors TM ⊗ E. Nakano positive implies Griffiths positive, Griffiths
positive implies ample, and Griffiths semipositivity implies nefness.

If M is a curve, then

iΘ(E, h) = Σλ,μcλ,μe
∗
λ ⊗ eμ ⊗ dz ∧ dz,

and Nakano and Griffiths positivity (resp. : semi-positivity) coincide,
since they both boil down to the requirement that the Hermitian matrix
(cλ,μ) is positive definite (resp. : semi-positive), and we shall simply
then say that an Hermitian vector bundle is positive (resp. : semi-
positive). These notions then imply respectively ampleness and numeri-
cal semi-positivity (nefness) of the bundle E.

Remark 3.2. Umemura proved ([Um73], theorem 2.6, see also
[Ca-Fl90]) that a vector bundle V over a curve B is positive (i.e., Grif-
fiths positive, or equivalently Nakano positive) if and only if V is ample.

We pass now to Fujita’s second theorem.
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Theorem 3.3. (Fujita, [Fujita78b])
Let f : X → B be a fibration of a compact Kähler manifold X over

a projective curve B, and consider the direct image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB)).

Then V splits as a direct sum V = A ⊕Q, where A is an ample vector
bundle and Q is a unitary flat bundle

The details of the proof were never published by Fujita. Thanks to
the auxiliary results shown in the previous section, in particular propo-
sition 2.9, it suffices to prove the theorem in the semistable case, i.e.,
where each fibre is reduced and a normal crossing divisor.

Proof. We first treat the case where there are no singular fibres, and
the underlying idea is simpler.

Case 1: there are no singular fibres
In this case V is semipositive, as it was shown by Fujita in [Fujita78a].
Another proof via Hodge bundles was given by Griffiths in [Griff-70]

(see also [Grif84] and [Zuc82]).
The underlying idea runs as follows.
V is a holomorphic subbundle of the holomorphic vector bundle H

associated to the local system H := Rnf∗(ZX), i.e., H = H⊗Z OB .
In fact, we have that V̄ is an antiholomorphic subbundle and V⊕V̄ ⊂

H is a subbundle such that the Hermitian orthogonal splitting V ⊕ V̄
identifies V̄ to the dual bundle V ∨. The bundle H is flat, hence the
curvature ΘH associated to the flat connection satisfies ΘH ≡ 0. (in
particular, see [Kob87], proposition 3.1 (a), page 42, all the real Chern
classes of a flat bundle vanish).

We view V as a holomorphic subbundle of H, while

V ∨ ∼= Rnf∗OX , n = dim(X)− 1

is a holomorphic quotient bundle of H. 2

Using arguments similar to the curvature formula for subbundles
(see [Grif84], Lecture 2)

ΘV = ΘH|V + σ̄ tσ = σ̄ tσ,

2It is important to remark that we take here the curvature of a flat, but
not unitarily flat, bundle H; in particular the principle: curvature decreases in
subbundles (page 79 of [GH78]) does not hold, since this assumes that we take
the curvature associated to an Hermitian metric, while the intersection form on
H is not definite.
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(here σ is the II fundamental form) Griffihts proves ([Griff-70], see also
corollary 5, page 34 [Grif84]) that the curvature of V ∨ is semi-negative,
since its local expression is of the form ih′(z)dz̄ ∧ dz, where h′(z) is
a semi-positive definite Hermitian matrix. In particular we have that
the curvature ΘV of V is semipositive and, moreover, that the curvature
vanishes identically if and only if the second fundamental form σ vanishes
identically, i.e., if and only if V is a flat subbundle.

However, by semi-positivity, we get that the curvature vanishes iden-
tically if and only its integral, the degree of V , equals zero. Hence V is
a flat bundle if and only if it has degree 0.

The same result then holds true, by an identical reasoning, for each
holomorphic quotient bundle Q of V by the following argument.

Assume now that V is not ample. By Hartshorne’s theorem (propo-
sition 2.3), there is an exact sequence of holomorphic bundles

0 → E → V → Q → 0

where the quotient bundle Q has degree 0.
Dualizing, we obtain

0 → Q∨ → V ∨ → E∨ → 0

and, since V ∨ has semi-negative Hermitian curvature, then by the
cited principle ‘curvature decreases in Hermitian subbundles’ (page 79 of
[GH78], see also [Dem] Prop. VII.6.10) Q∨ has semi-negative Hermitian
curvature.

However, Q∨ has degree 0, thus the integral of the semi-negative
curvature of Q∨ is zero, so its Hermitian curvature ΘQ∨ ≡ 0, hence
Q∨ ∼= Q̄ ⊂ V̄ is a flat subbundle of the flat bundle H, and similarly Q
is a flat bundle.

Since we have an inclusion Q̄ ⊂ V̄ ⊂ H of the flat antiholomorphic
subbundle V̄ , we obtain by complex conjugation an inclusion of the
holomorphic subbundle Q ⊂ V hence a splitting of the surjection V →
Q.

Finally, Q is unitary flat since the intersection form on V is, up to
constant, strictly positive definite.

Q.E.D.
Case 2: there are singular fibres, which are normal crossing

divisors, and the local monodromy is unipotent, since the fibres
are reduced.

The treatment of the general case is similar: it suffices to show
that the degree of Q is the integral of the curvature form on B∗, where
B \B∗ =: S is the set of critical values of f .
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Recall that the degree of the bundle Q is the degree of its top exterior
power, the so-called determinant bundle det(Q).

We use here a well known lemma (see lemma 5, page 61 of [Kaw82],
also proposition 3.4, page 11 of [Pet84]):

Lemma 3.4. Let L be a holomorphic line bundle over a projective
curve B, and assume that L admits a singular metric h which is regular
outside of a finite set S and has at most logarithmic growth at the points
p ∈ S (i.e., if z is a local coordinate at p, then |h(z)| ≤ Clog|z|−m,
where C is a positive constant, and m is a positive integer).

Then the first Chern form c1(L, h) := Θh is integrable on B, and its
integral equals deg(L).

The above lemma shows that in the semistable case singularities are
ininfluent, and therefore the argument runs as in the case of no singular
fibres.

Let us now briefly recall how the existence of such a metric is shown
to exist.

We have the Variation of Hodge structure on the punctured curve
B∗ given by the local system

H∗ := RnF∗(ZX∗),

where X∗ := f−1(B∗) and F : X∗ → B∗ is the restriction of f to X∗.
Again V ∗ := V |B∗ is a subbundle of the flat bundle H∗ := H∗ ⊗Z

OB∗ , and we get a subbundle V ∗ ⊕ V̄ ∗ ⊂ H∗.
H∗ is a flat holomorphic bundle and the associated holomorphic

connection ∇∗ on H∗ is the so called Gauss-Manin connection.
We then have the Deligne canonical extension (DH,∇) of the pair

(H∗,∇∗) to a holomorphic vector bundle DH endowed with a meromor-
phic connection ∇ having simple poles on the points of S, and with
nilpotent residue matrices. We refer to part II of [Kol86] (see especially
section 2 , and theorem 2.6) for more details about the presentation of
this extension, which we now briefly describe.

We let D be the normal crossing divisor f−1(S), and consider the
relative De Rham complex

Ω·
X|B(logD)

with logarithmic singularities along D.
The hypercohomology sheaf DH = Rif∗(Ω·

X|B(logD)) gives an ex-

tension of H∗
i = RiF∗CX∗ ⊗OB∗ from B∗ to B, the Deligne extension.

By the work of Schmid ([Schm73], see also [G-S75]) the Hodge filtra-
tion onH∗ extends to a holomorphic (decreasing) filtration F i(DH), i =
0, . . . , n := dimX − 1.
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In particular, for i = n := dimX−1 we have, as proven by Kawamata
in [Kaw82] (lemma 1, page 59)

V = f∗ωX|B = Fn(Rnf∗(Ω·
X|B(logD))).

As explained in [G-S75], and also in proposition 4.4., page 433 of
[Zuc79], logarithmic forms are precisely those holomorphic forms with
the property of being square integrable, and this approach was taken up
by Zucker [Zuc79] who used the explicit description of the limiting Hodge
structure found by Schmid in [Schm73] in order to prove the following
result (which is proven in the course of the proof of proposition 5.2,
pages 435-436).

Lemma 3.5. For each point s ∈ S there exists a basis of V given by
elements σj such that their norm in the flat metric outside the punctures
grows at most logarithmically.

In particular, for each quotient bundle Q of V its determinant admits
a metric with growth at most logarithmic at the punctures s ∈ S, and
the degree of Q is given by the integral of the first Chern form of the
singular metric.

Remark 3.6. Observe that a similar result, but for the determi-
nant of V , is used in [Pet84] to show the flatness of V in the case that
deg(V ) = 0.

Therefore we can conclude that, since deg(Q) = 0, and since its
integral is given by the norm of the second fundamental form, which is
semipositive, then the the second fundamental form vanishes identically
and Q is a flat sub-bundle. The same argument as the one given for case
1 shows then that we have an inclusion Q∗ → V ∗ := V |B∗ .

Now Q∗ := Q|B∗ is a unitary flat subbundle of the flat bundle H∗,
in particular the local monodromies at the punctures (the points of S),
being unitary and unipotent, are trivial: hence Q∗ has a flat extension
to B which we denote by Q̂.

Clearly we have inclusions

Q̂ ⊂ V ⊂ DH,

and we obtain a homomorphism ψ : Q̂ → Q composing the inclusion
Q̂ → V with the surjection V → Q.

From the fact that ψ is an isomorphism over B∗ we infer that ψ is
an isomorphism: since det(ψ) is not identically zero, and is a section of
a degree zero line bundle.

Hence we conclude that the composition of ψ−1 with the inclusion
Q̂ → V gives then the desired splitting of the surjection V → Q.

Q.E.D.
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Corollary 3.7. Let f : X → B be a fibration of a compact Kähler
manifold X over a projective curve B, and consider the direct image
sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB)).

Then V splits as a direct sum V = A
⊕

(⊕h
i=1Qi), where A is an ample

vector bundle and each Qi is flat vector bundle without any nontrivial
degree zero quotient. Moreover,

(I) if Qi has rank equal to 1, then it is a torsion bundle (∃ m such
that Q⊗m

i is trivial),
(II) if the genus of the curve B equals 1, then each Qi has rank 1.
(III) In particular, if the genus of the curve B is at most 1, then V

is semi-ample.

Proof. Each time V has a degree zero quotient, this yields a splitting,
as shown in theorem 3.3. Therefore, we obtain that V splits as a direct
sum V = A

⊕
(⊕h

i=1Qi), where A is an ample vector bundle and each
Qi is flat vector bundle without any nontrivial degree zero quotient.

(I) This was proven by Deligne in [Del71], cor. 4.2.8 (iii) (b).
(II) This is immediate, since the fundamental group of a curve B of

genus 1 is abelian, hence every representation splits as a direct sum of
1-dimensional representations.

(III) A torsion line bundle is semi-ample, and a direct sum of semi-
ample vector bundles is semi-ample.

Q.E.D.

Remark 3.8. Part (III) of the above corollary was proven by Barja
in [Barja98].

We proceed now to prove
Theorem 1.4 Let f : X → B be a Kodaira fibration, i.e., X is a

surface and all the fibres of f are smooth curves of genus g ≥ 2 not all
isomorphic to each other. Then the direct image sheaf V := f∗ωX|B has

strictly positive degree hence H := R1f∗(C)⊗OB is a flat bundle which
is not nef (i.e., not numerically semipositive).

Proof. Since all the fibres of f are smooth, we have an exact sequence

0 → V → H → V ∨ → 0,

and it suffices to show that the degree of the quotient bundle V is strictly
negative, or, equivalently, deg(V ) > 0. This was proven by Kodaira (and
follows also from the results of Kawamata and Arakelov).

We have that

12 deg(V ) = K2
X − 8(g − 1)(b− 1),
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where g is the genus of the fibres of f , and b is the genus of B. As well
known (see [BPHV]) b, g ≥ 2.

Since f is a differentiable fibre bundle, we have for the Euler- Poincaré
characteristic of X

e(X) = 4(b− 1)(g − 1).

Kodaira ([Kod67]) proved that for such fibrations the topological in-
dex σ(X), the signature of the intersection form on H2(X,R) is positive.
By the index theorem (see again [BPHV]) we have

0 < 3σ(X)=c21(X)−2c2(X)=K2
X−2e(X)=K2

X−8(g−1)(g−1)=deg(V ).

Q.E.D.

Corollary 3.9. There are flat bundles on curves which are not nef,
in particular do not admit an Hermitian metric with semipositive cur-
vature.

Proof. See b) of the following remark.
Q.E.D.

Remark 3.10. a) The examples of Kodaira ([Kod67] and other
examples ([CatRol09]) show that the direct image V does not need to be
ample, since it can have a trivial summand.

b) These and other examples of course, showing the existence of
Kodaira fibrations, furnish the proof of corollary 3.9.

§4. A curve of genus 6 with cyclic symmetry of order 7

In this section we explain how we obtain explicit examples of fibra-
tions where V = f∗ω has a flat summand.

Consider the equation

z71 = y1y0(y1 − y0)(y1 − xy0)
4, x ∈ C \ {0, 1}

describing a singular curve inside the projective plane P2, with variables
y0, y1, z1 (alternatively, a curve inside the line bundle L over P1 whose
sheaf of holomorphic sections L1 equals OP1(1).

Denote by C the normalization of the above curve. C has a Galois
cover φ : C → P1 with Galois group G = μ7 = {ε|ε7 = 1}, acting
by z1 �→ εz1; there are exactly 4 ramification points, P0 lying above
y0 = 0, P1 lying above y1 = 0, P2 lying above y1 − y0 = 0, Px lying
above y1 − xy0 = 0. Correspondingly there are nonzero sections w0 ∈
H0(OC(P0)),w1 ∈ H0(OC(P1)), w2 ∈ H0(OC(P2)), wx ∈ H0(OC(Px))
such that we obtain a factorization

z1 = w0w1w2w
4
x.
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We shall alternatively use the classical notation w0 = y
1
7
0 ,w1 = y

1
7
1 ,

w2 = (y1 − y0)
1
7 ,wx = (y1 − xy0)

1
7 .

Since the ramification points are G-invariant, the corresponding
sheaves admit a G-linearization, and we shall choose the linearization
by which the generator g ∈ G acts via

g(z1) = ζz1, g(w0) = w0, g(w1) = w1, g(w2) = w2, g(wx) = ζ2wx,

where ζ := exp( 2πi7 ).
The biregular structure of C is described (see [Par91], [BC08], [Cat12])

as
C = Spec (OP1

⊕
(⊕6

j=1zjL−1
j ).

Here, zj ∈ H0(C, φ∗(Lj)) and zjL−1
j is the j-th character eigensheaf,

i.e., g(zj) = ζjzj .
It is easy to describe the sections zj by taking powers of the above

equation for z1 and reducing the exponents modulo 7:

z2 = w2
0w

2
1w

2
2wx, z2 = w3

0w
3
1w

3
2w

5
x, z3 = w4

0w
4
1w

4
2w

2
x,

and then we observe that

zj · z7−j = δ := y1y0(y1 − y0)(y1 − xy0).

Hence we derive

L1 = L2 = OP1(1),L3 = L4 = OP1(2),L5 = L6 = OP1(3).

The formulae by Pardini, proposition 4.1 (page 207 of [Par91]) yield,
when we denote by Δ the reduced branch divisor δ = 0:

(φ∗Ω1
C)j

∼= Ω1
P1(Δ)⊗ L−1

j
∼= Ω1

P1 ⊗ L−j ,

and we have more precisely, using affine coordinates where y0 = 1,
y := y1 and setting ηΔ := dy

δ

Vj := H0(Ω1
C)j = zjηΔφ

∗H0(P1,L−j(−2)).

Hence V5 = V6 = 0, while dimV3 = dimV4 = 1, and finally

V1 = {(a0 + a1y)z1ηΔ|a0, a1 ∈ C} = {(a0 + a1y)w
−6
1 w−6

2 w−3
x dy}

V2 = {(b0 + b1y)w
−5
1 w−5

2 w−6
x dy|b0, b1 ∈ C}.

In other words, a basis of V1 is given by τ, yτ , where

τ := y−
6
7 (y − 1)−

6
7 (y − x)−

3
7 dy.



92 F. Catanese and M. Dettweiler

Remark 4.1. (I) Observe that changing the generator of G with its
opposite has the effect of replacing τ with

τ ′ := y−
1
7 (y − 1)−

1
7 (y − x)−

4
7 dy.

(II) The curve C has genus 6, and the linear subsystems of the
canonical system corresponding to the eigensheaves have a base locus,
since the greatest common divisor of the elements in V1 is w3

x, for V2 it
is w0w1w2, while V3 = {(w0w1w2)

2w4
x}, V4 = {(w0w1w2)

3wx}.
Consider now the Hodge decomposition of the cohomology of C,

viewed as a G-representation:

H := H1(C,C) = H0(Ω1
C)⊕H0(Ω1

C),

H = (V1 ⊕ V2 ⊕ V3 ⊕ V4)⊕ (V1 ⊕ V2 ⊕ V3 ⊕ V4).

The consequence is that

Hj = Vj ,H7−j = Vj j = 1, 2.

while
H3 = V3 ⊕ V4,

and similarly for H4.
We conclude the above discussion with its consequence

Proposition 4.2. Let f : X → B be a semistable fibration of a
surface X onto a projective curve, such that the group G = μ7 acts on
this fibration inducing the identity on B. Assume that the general fibre
F has genus 6 and that G has exactly 4 fixed points on F , with tangential
characters (1, 1, 1, 4).

Then if we split V = f∗(ωX|B) into eigensheaves, then the eigen-
sheaves V1, V2 are unitary flat rank 2 bundles.

Proof. Since the fibration is semistable, the local monodromies are
unipotent: on the other hand, they are unitary, hence they must be
trivial. This implies that the local systems H∗

1 and H∗
2 have respective

flat extensions to local systems H1 and H2 on the whole curve B. Denote
by Hj := Hj ⊗OB . Now, by our calculations, Vj = Hj over B∗ = B \S,
S being the set of critical values of f . We saw that the norm of a local
frame of Vj has at most logarithmic grow at the points p ∈ S. This
shows that Vj is a subsheaf of Hj : by semipositivity we conclude that
we have equality Vj = Hj .

Q.E.D.
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§5. Counterexamples to Fujita’s question

In this section we shall provide two examples of surfaces fibred over
a curve, with fibres curves with a symmetry of G := Z/7 as in the
preceding section.

We consider again the equation

z71 = y1y0(y1 − y0)(y1 − xy0)
4, x ∈ C \ {0, 1}

but we homogenize it to obtain the equation

z71 = y1y0(y1 − y0)(x0y1 − x1y0)
4x3

0.

The above equation describes a singular surface Σ′ which is a cyclic
covering of P1 ×P1 with group G := Z/7; Σ′ is contained inside the line
bundle L1 over P1 × P1 whose sheaf of holomorphic sections L1 equals
OP1×P1(1, 1). One may observe that the second projection shows that
the surface Σ′ is a ruled surface.

Since the branch divisor is a not a normal crossing divisor, we blow
up the point x0 = y0 = 0, obtaining a del Pezzo surface which we denote
by Z, while we denote by Σ the normalization of the induced G-Galois
cover of Z.

Remark 5.1. The singularities of the normal surface Σ are of three
analytical types, which we describe by their analytical equation

(1) z7 = x4y: one for each singular fibre
(2) z7 = x3y: three on the fibre at infinity
(3) z7 = xy: one on the fibre at infinity.

Finally, we let Y be a minimal resolution of singularities of Σ. There-
fore Y admits a fibration ϕ : Y → P1 with fibres curves of genus 6.

We let X be the minimal resolution of the fibre product of ϕ :
Y → P1 with ψ : B → P1, where ψ is the G-Galois cover branched
on ∞ = {x0 = 0}, 0 = {x1 = 0}, 1 = {x1 = x0}, and with local
characters (1, 1,−2). In particular B has genus 3 by Hurwitz’ formula
(2g − 2 = 7 · (−2 + 3(1− 1

7 )) ⇒ g = 3).
Observe in fact that the singular fibres of ϕ are exactly those lying

above those three points. Then there is a fibration f : X → B, with
only three singular fibres.

We shall prove in a later subsection the following

Theorem 5.2. The above surface X is a surface of general type
endowed with a fibration f : X → B onto a curve B of genus 3, and
with fibres of genus 6, such that V := f∗ωX|B splits as a direct sum
V = A ⊕ Q1 ⊕ Q2, where A is an ample rank-2 vector bundle, and the



94 F. Catanese and M. Dettweiler

unitary flat rank-2 summands Q1, Q2 have infinite monodromy group
(i.e., the image of ρj is infinite).

Consider now the equation

z71 = y1y
4
0(y1 − y0)(y1 − xy0), x ∈ C \ {0, 1}

which gives another family of curves. It is similar to the previous family,
except that we get here V1 generated by

η := y−
6
7 (y − 1)−

6
7 (y − x)−

6
7 dy, and by y · η.

We shall see in the next section how, varying x, we obtain a rank-
2 local system over P1 \ {0, 1,∞}, which is equivalent, in view of the
Riemann-Hilbert correspondence, to a second order differential equation
with regular singular points. Indeed,we shall see that we have in fact a
Gauss hypergeometric equation.

But now we homogenize the equation to obtain

z71 = y1y
4
0(y1 − y0)(x0y1 − x1y0)x

6
0.

This is a G-covering of P1 × P1, and we obtain another G-covering
of P1 × P1 by taking its birational pull-back T

z71 = y1y
4
0(y1 − y0)(P7(x)y1 −G7(x)y0)x

6
0,

where P7, G7 are generic degree 7 homogeneous polynomials.
We denote by X(T ) the minimal resolution of the singularities of T .

Remark 5.3. The singularities of the normal surface T are of two
analytical types, which we describe by their analytical equation

(1) z7 = y4u: one for each point y0 = P7(x) = 0 (one point for
seven fibres P7(x) = 0)

(2) an A6-singularity z7 = uy for each point y1 = G7(x) = 0 (one
point for seven fibres G7(x) = 0), and for each point y1 − y0 =
(P7+G7)(x) = 0 (one point for seven fibres (P7+G7)(x) = 0).

(1.1) A singularity z7 = y4u is a quotient singularity of type 1
7 (1, 3):

since, if we set x = w7, y = v7, then z := v4w is invariant for v �→
ζv, w �→ ζ3w. The minimal resolution of singularities is given by a
Hirzebruch -Jung string of P1’s E3, E2, E

′
2 with respective self-intersections

−3,−2,−2 (indeed 7
3 = 3− 1

2− 1
2

).

(1.2) In our case, the fibre P1 intersects transversally the two curves
locally given by the equation u = y = 0. Some calculations with the res-
olution of these quotient singularities (see [BPHV], page 80) show that
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the fibre of the minimal resolution X(T ) of T consists of a smooth curve
of genus three tangent to E2 at the intersection point of E3 and E2.
We need two blow ups of this point to obtain that the fibre is a nor-
mal crossing divisor. Then the multiplicities of the exceptional divisors
are respectively 7, 4, 2, 1, 1: we conclude then that in order to obtain the
semistable reduction we must take a covering of the base which is ram-
ified at the point P corresponding to the singular fibre of order divisible
by 28.

(2.1) The A6 singularity is resolved by a chain of P1’s

E1, E2, E3, E
′
3, E

′
2, E

′
1

with self-intersection equal to −2. The fibre of the minimal resolution
X(T ) of T consists of a smooth curve of genus three intersecting E3 and
E′

3 transversally at the point E3 ∩E′
3, and the sum (E1 +E′

1) + 2(E2 +
E′

2)+3(E3+E′
3). We need just to blow up the point E3∩E′

3 to obtain a
normal crossing divisor. Since the multiplicities of the seven exceptional
divisors in the new chain are 1, 2, 3, 7, 3, 2, 1,we conclude then that in
order to obtain the semistable reduction we must take a covering of the
base which is ramified at the point P corresponding to the singular fibre
of order divisible by 42.

5.1. Associated local systems on P1

Let P := P1, S := {s1, . . . , sr} and let L be a rank-one local system
on P \ S corresponding to a homomorphism

ρ : π1(P ) = 〈γs1 , . . . , γsr |γs1 · . . . · γsr = 1〉 −→ C∗, γs �−→ αs,

where γs denotes a simple loop around s ∈ S. We shall always assume
that, for all s ∈ S, the monodromy generators αs are roots of unity
different from 1.

Observe that ρ determines a Galois covering φ : C → P with Galois
group G := Im(ρ). We have that G = μn := {ζ|ζn = 1}. Hence we may
write αs = e2πi

ms
n , where 0 ≤ ms < n, and we set also νs :=

ms

n .
The equation of C is therefore given by

zn1 = Πj(y1 − sjy0)
mj .

We have an eigenspace splitting for the direct image of the sheaf of
holomorphic 1-forms:

φ∗(Ω1
C) =

n−1⊕
h=0

φ∗(Ω1
C)h =

n−1⊕
h=0

(Ω1
P ⊗ L−h).
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We want to relate the above summands to local systems on P . To
this purpose, observe that any character

χh : μn −→ C∗, ζ �−→ ζh

defines a rank-one local system Lj on P \S, associated to the homomor-
phism ρh.

Let L be any of the Lh: then we have a Hodge decomposition

H1(P \ S,L) = H(1,0)(P \ S,L)⊕H(0,1)(P \ S,L)
where H(1,0)(P \ S,L) is the space of differentials of the first kind in
H0(P, jmer

∗ Ω1(L)) and H(0,1)(P \ S,L) is the complex conjugate (e.g.,
L−j is the complex conjugate of Lj)of the corresponding group for the
dual (i.e., conjugate) local system (cf. [D-M86], Page 19 and Prop. 2.20).

Again by [D-M86], Prop. 2.20, the Hermitian form on H1(P \ S,L)
given by loc.cit., 2.18, (under the identification of H1

c (P \ S,L) with
H1(P \S,L)) is positive definite on H(1,0)(P \S,L) and negative definite
on H(0,1)(P \ S,L).

The relation between the two points of view is simply given by the
equalities (compare [D-M86]):

H0(Ω1
C)h = H(1,0)(P \ S,L−h),

H1(C,OC)h = H1(P,L−1
h ) = H(0,1)(P \ S,L−h).

Let νs ∈ Q as above be the unique rational number between 0 and
1, satisfying αs = e2πiνs . By [D-M86], Equation 2.20.1,

(1) dimH(1,0)(P \ S,L) = −1 +
∑
s∈S

νs.

In the case that the cardinality of S is equal to 4 we have dimH1(P \
S,L) = 2 by [D-M86], Prop. 2.3.1, and

dim(H(1,0)(P \ S,L)) = 0, 1, 2,

corresponding to the cases

∑
s∈S

νs = 1, 2, 3,

by Formula (1).
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Consider now the above family of projective curves f : Y → P
birationally defined by

z71 = y(y − 1)(x− y)4,

where x denotes the affine coordinate of P and let Co be its restriction
to P \ {0, 1,∞}.

Any character

χj : μ7 −→ C∗, ζ �−→ ζj

defines a rank-one local system Lj on P \S, S = {0, 1, x,∞} with multi-

valued local sections of the form yj/7(y−1)j/7(y−x)4j/7 ([D-M86], 2.11),

having monodromy generators αs = e2πi
j
7 for s = 0, 1, αx = e2πi

4j
7 and

α∞ = e−2πi (j+j+4j)
7 .

It also gives rise to the χj-equivariant rank-two vector space

H1(Cx,C)
χj � H1(P \ S,L−j).

The de Rham version of the cohomology group H1(P \S,L6) is the
fibre of a rank-2 vector bundle E on P \ {0, 1,∞} with flat connection
∇ : E → Ω1

P\S ⊗ E whose local holomorphic solutions are integrals of

the form

g(x) =

∫ ∞

1

y−
6
7 (y − 1)−

6
7 (x− y)−

3
7 dy

(or similar integrals over Pochhammer double loops).

5.2. Monodromy of some character sheaves

By [Kohno99], Page 169, the above function g(x) coincides up to a
constant factor with the Gauß hypergeometric function

F (α = 8/7, β = 3/7, γ = 9/7;x).

This implies that the rank two connection∇ is equivalent to (the connec-
tion on P \{0, 1,∞} associated to) the Gauß hypergeometric differential
equation

t(t− 1)f ′′ + ((α+ β + 1)t− γ)f ′ + αβf = 0

(cf. [Kohno99], Page 163). The latter equation is non-resonant (i.e., the
difference of two numbers of {α, β, γ} does not lie in Z), implying that
the differential equation and hence its monodromy is irreducible. It has
the Riemann scheme⎧⎨

⎩
0 1 ∞
0 0 α

1− γ γ − α− β β

⎫⎬
⎭ ,
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cf. [Kohno99], Page 164. Since the Riemann scheme describes the expo-
nents of a basis of solutions of an ordinary differential equation in their
respective Puiseux expansions, this implies that the local monodromy
of ∇ at 0, 1 is a homology of order 7 and hence is of order 7 in the
associated projective linear group. Recall the Schwarz’ list of the Gauß
hypergeometric differential equations with finite projective monodromy
groups [Schw73]. As no two consecutive projective local monodromies
of order 7 occur amongst the irreducible cases listed there, we conclude
that the monodromy of ∇ is infinite.

5.3. Proof of theorem 5.2

We considered a ramified covering ψ : B → P which is locally at
each branch point 0, 1,∞ of type x �→ x7. Then we got f : X → B as
the minimal resolution of the fibre product B ×P Y → B.

The fibres of f are smooth curves of genus 6 and X has an action
of G ∼= μ7 which is of type (4, 1, 1, 1) on all smooth fibres.

There are only three singular fibres, but around them the mon-
odromy of the rank-2 local systems H∗

1,H
∗
2 is trivial, because we saw in

the previous section that the local monodromy is of order 7.
Hence these extend to rank-2 local systems H1,H2 over B.
The same argument given in proposition 4.2 shows then that Vj =

Hj for j = 1, 2. We have then V = U ⊕ Q1 ⊕ Q2, where we set Qj :=
Vj = Hj for j = 1, 2, and U := V3 ⊕ V4.

Assume that U is not ample, and that it contains a unitary flat
summand Q′.

Without loss of generality, we may assume that Q′|B∗ ⊂ H∗
3.

Since H∗
3 = V3 ⊕ V4|B∗ we see that Q′ has rank 1.

By the cited result by Deligne ((I) in corollary 3.7) Q′ would be a
torsion line bundle, hence also V3 and V4 and the monodromy of H∗

3

(respectively H∗
4) would be finite.

However, the integrals associated to the factor H∗
3 (respectively H∗

4)
also satisfy a Gauss differential equation with infinite monodromy (again
by Schwarz’ list, since the local monodromies at 0, 1,∞ ∈ P are of order
≥ 7): this gives a contradiction.

Remark 5.4. The same considerations apply to the second family
of curves that we introduced, and also to other families of curves.
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