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Abstract.

This paper constructs all the diptych varieties with de ≤ 4 (see
[BR1], Main Theorem 3.3). Our construction involves several new
classes of Gorenstein almost homogeneous spaces for GL(2) × Gr

m, in
particular two infinite series arising from the algebra of apolarity.
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Diptych varieties and Mori flips

We introduced diptych varieties in [BR1], motivated by our attempts
to understand Mori’s explicit calculations [M] in the Picard group of a
3-fold extremal neighbourhood. Mori’s argument associates a 2-step
continued fraction expansion [d, e, d, . . . ] with an extremal neighbour-
hood. Roughly, for C = P1 ⊂ X a flipping curve of Type A in a
3-fold X with two terminal singularities P,Q ∈ C of type cAn/μr and
a pair of divisors transverse to C at P and Q respectively, Mori sets up
a ‘continued division’ algorithm that constructs a sequence of divisors
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F2i ∼ F2i−1−dF2i−2, F2i+1 ∼ F2i−eF2i−1, and proves that it terminates
in the set theoretic equality C = Fk ∩ Fk+1 for some k. This expresses
a flipping curve C as the base locus of a pencil of divisors, and hence
proves the existence of the flip of C ⊂ X, showing moreover that it can
in principle be computed as the normalisation of the pencil. Diptych
varieties are key varieties for the Gm cover of these Type A flips: flips
arise as regular pullbacks from diptychs after some massaging; see [Ki]
§11 (especially 11.2) and [BR4] for details of this last step from diptychs
to extremal neighbourhoods.

For completeness, we give some details in §2 of what we understand
by a diptych variety; in brief, each is an affine 6-fold VABLM arising as a
4-parameter deformation of a tent, a reducible Gorenstein toric surface
consisting of a cycle T = S0 ∪ S1 ∪ S2 ∪ S3 of four affine toric com-
ponents meeting along their 1-dimensional strata; the four deformation
parameters smooth the axes of transverse intersections of the cycle. A
diptych variety is characterised by three natural numbers d, e, k, or by
a 2-step recurrent continued fraction [d, e, d, . . . ] to k terms – of course,
these correspond to the d, e, k of Mori’s continued division algorithm.

Theorem 1.1 of [BR1] asserts that a diptych variety exists for any
d, e, k (with the bounds of [BR1], Theorem 3.3, (3.7) on k in the cases
de ≤ 3). In the main case de > 4 and d, e ≥ 2, we proved this in [BR1],
Section 5. In [BR3] we treat the cases de > 4 with d or e = 1 using
variants of the same methods. This paper constructs diptych varieties in
the remaining cases de ≤ 4, fulfilling the promise of [BR1], Theorem 1.1,
and providing key varieties for the remaining extremal neighbourhoods
of Type A.

Apolar geometry

The diptych varieties with de = 4 have a beautiful description in
terms of key 5-folds Vk ⊂ Ak+5 that play a principal role in this paper
(see §1, and especially 1.3). These are almost homogeneous spaces that
are easy to describe based on the algebra of apolarity, and we offer several
alternative approaches. With a final unprojection argument, any of these
descriptions is enough to prove the existence of diptych varieties with
de = 4.

Geometrically, the Vk are almost homogeneous spaces for the group
G = GL(2)×Gm: each is the closure of the orbit of an ‘apolar’ vector in a
reducible representation ofG, and we refer to them as apolar varieties, as
yet with no general formal definition, but see 1.3. It would be interesting
to know whether apolar varieties such as the Vk and theWd introduced in
4.1 arise naturally in other parts of geometry and representation theory;
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we see similar phenomena in other calculations in codimension ≥ 4, and
this type of apolar geometry should apply more widely.

From the point of view of equations, we express the Vk using a
generalised form of Cramer’s rule. This provides all the equations of Vk

in closed form, in contrast to the small subset of Pfaffian equations that
we get away with in [BR1]. The varieties Vk are serial unprojections,
although this does not itself provide all the equations directly.

§4 introduces a second series of apolar varieties, this time almost
homogeneous 7-folds Wd ⊂ Ad+9, and applies them as models for dip-
tychs with k = 2. With a single additional unprojection, they also
provide a format for diptychs with k = 3 involving crazy Pfaffians,
reminiscent of Riemenschneider’s ‘quasi-determinants’ [R]; see 4.2 where
we discuss the equations in terms of floating factors. §5 handles the few
remaining cases with k = 4, 5 and de = 3, where unprojection methods
and pentagrams provide the equations directly. Rather than our apolar
varieties Vk and Wd given by serial unprojection, these cases are most
naturally described as regular pullbacks from a parallel unprojection key
variety, a 10-fold W ⊂ A16.

Gorenstein rings in high codimension

Gorenstein rings arise naturally in geometry as homogeneous coor-
dinate rings of Fanos, Calabi–Yaus, regular canonical n-folds, and other
constructions – and, most notably for our purposes here, of 3-fold ex-
tremal neighbourhoods. Thus a supply of model Gorenstein rings, with
explicit information about their generators and relations, gradings and
so on, is of practical importance. It is hard to construct Gorenstein
rings in high codimension in general; there is no practical classification
beyond codimension 3 (although see [R2, R3] for a first structure the-
orem in codimension 4). Grojnowski and Corti and Reid [CR] study
weighted homogeneous spaces or closed orbits in highest weight repre-
sentations of semisimple algebraic groups, in particular for SL(5) and
SO(10); Qureshi and Szendrői [QS] generalise these to more classes of
examples. The almost homogeneous spaces Vk in §1 (dimension 5, codi-
mension k), Wd in §4 (dimension 7, codimension d + 2) and W in §5
(dimension 10, codimension 6) present new Gorenstein rings purpose
built to model certain 3-fold flips of Type A.

§1. The apolar variety Vk

The apolar varieties Vk ⊂ Ak+5 introduced here provide an infinite
family of affine Gorenstein 5-folds that are almost homogeneous spaces
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under GL(2)×Gm. We treat the Vk as varieties in their own right from
several different points of view.

1.1. The definition by equations

We define 5-folds Vk ⊂ Ak+5
〈x0...k,a,b,c,z〉 for each k ≥ 3. First set up

2× k and k × (k − 2) matrixes

M =

(
x0 . . . xi−1 . . . xk−1

x1 . . . xi . . . xk

)

and

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
b a
c b a

...
...

c b a
c b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Our variety Vk ⊂ Ak+5
〈x0...k,z,a,b,c〉 is defined by two sets of equations:

(1.1) (I) MN = 0 and (II)
2∧
M = z ·

k−2∧
N.

(I) is a recurrence relation

(1.2) axi−1 + bxi + cxi+1 = 0 for i = 1, . . . , k − 1.

(II) is a (k − 2) × k adaptation of Cramer’s rule giving the Plücker
coordinates of the space of solutions of (I) up to a scalar factor z. The
order and signs of the minors in (II) is not a problem here, as one sees
from the guiding cases

xi−1xi+1 − x2
i = ai−1ck−i−1z and xi−1xi+2 − xixi+1 = ai−1bck−i−2z.

(However, in subsequent cases, in particular when we work with Pfaffi-
ans in 1.2, we need to fix a convention on their order and signs.) Note
that the maximal (k− 2)× (k− 2) minors of N include ak−2 (delete the
last two row) and ck−2 (delete the first two). More generally, deleting
two adjacent rows i − 1, i gives ai−1ck−i−1 as a minor (only the diago-
nal contributes), whereas deleting two rows i − 1, i + 1 gives the minor
ai−1bck−i−2.

Thus our second set of equations is

xi−1xj+1 − xixj = z detN(i− 1, j).
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Relations for xixj−xkxl for all i+j = k+l are obtained as combinations
of these; for example

xi−1xj+2 − xi+1xj = xi−1xj+2 − xixj+1 + xixj+1 − xi+1xj

= zN(i− 1, j + 1) + zN(i, j).

Theorem 1.1. For k ≥ 3, (I) and (II) define a reduced irreducible
Gorenstein 5-fold

Vk ⊂ Ak+5
〈x0...k,a,b,c,z〉.

This also holds for k = 2, with (II) involving interpreting the 0 × 0
minors as the single equation 1 · z = x0x2 − x2

1.

This theorem follows at once from the following lemma.

Lemma 1.2. (i) z is a regular element for Vk.
(ii) The section z = 0 of Vk is the quotient of the hypersurface

W̃ : (g := au2 + buv + cv2 = 0) ⊂ A5
〈a,b,c,u,v〉

by the μk action 1
k (0, 0, 0, 1, 1). It is Gorenstein because

da ∧ db ∧ dc ∧ du ∧ dv

g
∈ ωA5(W̃ ).

is μk invariant.
(iii) Also z, a, c is a regular sequence, and the section z = a =

c = 0 of Vk is the toric Gorenstein surface (three-sided tent)
consisting of 1

k (1, 1) with coordinates x0, . . . , xk and two copies

of A2 with coordinates x0, b and xk, b.

Proof. First, if c 
= 0 then a, b, c, x0, x1 are free parameters, and
the recurrence relation (I) gives x2, . . . , xk as rational function of these.

One checks that the first equation in (II) gives z = −ax2
0+bx0x1+cx2

1

ck−1 and
the remainder follow. Similarly if a 
= 0.

If a = c = 0 and b 
= 0 then one checks that x0, xk, b are free
parameters, xi = 0 for i = 1, . . . , k − 1 and z = x0xk

bk−2 . Finally, if

a = b = c = 0 then x0, . . . , xk and z obviously parametrise 1
k (1, 1)×A1.

Therefore, no component of Vk is contained in z = 0, proving (i).

After we set z = 0, the equations (II) become
∧2 M = 0, and define

the cyclic quotient singularity 1
k (1, 1) (the cone over the rational normal

curve). Introducing u, v as the roots of x0, . . . , xk, with xi = uk−ivi,
boils the equations MN = 0 down to the single equation g := au2 +
buv + cv2 = 0. This proves (ii). (iii) is easy. Q.E.D.
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1.2. The equations as Pfaffians

The equations of Vk fit together as 4× 4 Pfaffians of a skew matrix.
For this, edit M and N to get two new matrixes,

(1.3) M ′ =

⎛
⎜⎝x0 . . . xi−1 xi . . . xk−2

x1 . . . xi xi+1 . . . xk−1

x2 . . . xi+1 xi+2 . . . xk

⎞
⎟⎠

which is 3× (k− 1) and N ′, the (k− 1)× (k− 3) matrix with the same
display as N (that is, delete the first (or last) row and column of N).
Equations (I) can be rewritten (a, b, c)M ′ = 0.

Now all of the equations (1.1) can be written as the 4× 4 Pfaffians
of the (k + 2)× (k + 2) skew matrix

(1.4)

⎛
⎜⎝
c −b

a
M ′

z
∧k−3

N ′

⎞
⎟⎠ .

The Pfaffians Pf12.3(i+3) give the recurrence relation (1.2), while the
remaining Pfaffians give (II). In more detail, the big matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c −b x0 . . . xi−1 xi . . . xk−2

a x1 . . . xi xi+1 . . . xk−1

x2 . . . xi+1 xi+2 . . . xk

zck−3 . . . . . . . . .

zck−i−1ai−2 −zbck−i−2ai−2 . . . . . .

zck−i−2ai−1 . . . . . .

. . . . . .

zak−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with bottom right (k − 1)× (k − 1) block equal to the (k − 3)rd wedge
of N ′ (with signs).

Small values of k. Our family starts with k ≥ 3; the case k = 2
would give the hypersurface ax0 + bx1 + cx2 = 0, with z := x0x2 − x2

1.
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The first regular case is k = 3, which gives the 5× 5 skew determinantal⎛
⎜⎜⎜⎜⎝
c −b x0 x1

a x1 x2

x2 x3

z

⎞
⎟⎟⎟⎟⎠

a regular section of the affine Grassmannian aGr(2, 5). The case k = 4
is ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c −b x0 x1 x2

a x1 x2 x3

x2 x3 x4

zc −zb

za

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

an easy case of the standard extrasymmetric 6×6 determinantal of Dicks
and Reid, [TJ], 9.1, equation (9.4).

The first really new case is k = 5, with equations the 4× 4 Pfaffians
of the 7× 7 skew matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c −b x0 x1 x2 x3

a x1 x2 x3 x4

x2 x3 x4 x5

zc2 −zbc z(b2 − ac)

zac −zab

za2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We first arrived at this matrix by guesswork (with the z floated over
from the row-columns 4, 5, 6, 7 to 1, 2, 3), determining the superdiagonal
entries c2, ac, a2 and those immediately above −bc,−ac by eliminating
variables to smaller cases; the entry b2 − ac is then fixed so that the
bottom 4× 4 Pfaffian vanishes identically.

1.3. The variety Vk by apolarity

We can treat Vk as an almost homogeneous space under GL(2)×Gm.
For this, view x0, . . . , xk as coefficients of a binary form and a, b, c as
coefficients of a binary quadratic form in dual variables, so that the
equations MN = 0 or (a, b, c)M ′ = 0 are the apolarity relations. In
general terms, polarity can be described as a choice of splitting of maps
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such as Symd−1 U ⊗ U � Symd U (here U = C2 is the given represen-
tation of GL(2)), or more vaguely as a way of viewing the 2× d matrix( y0 ... yd−1
y1 ... yd

)
or his bigger cousin (1.3) as a single object in determinantal

constructions.
More formally, write

q = aǔ2 + 2bǔv̌ + cv̌2 ∈ Sym2 U∨ and

f = x0u
k + kx1u

k−1v +
(
k
2

)
x2u

k−2v2 + · · ·+ xkv
k ∈ Symk U.

Including the factor
(
k
i

)
in the coefficient of uivk−i is a standard move

in this game.
The second polar of f is the polynomial

Φ(u, v, u′, v′) =
1

k(k − 1)

(
∂2f

∂u2
⊗ u′2 + 2

∂2f

∂u∂v
⊗ u′v′ +

∂2f

∂v2
⊗ v′2

)

=
k−2∑
i=0

(
k−2
i

)
xiu

k−i−2vi ⊗ u′2

+ 2
k−1∑
i=1

(
k−2
i−1

)
xiu

k−i−1vi−1 ⊗ u′v′

+

k∑
i=2

(
k−2
i−2

)
xiu

k−ivi−2 ⊗ v′2

=
k−2∑
i=0

(
k−2
i

)
uk−2−ivi ⊗ (

xiu
′2 + 2xi+1u

′v′ + xi+2v
′2)

∈ Symd−2 U ⊗ Sym2 U.

We apply q ∈ Sym2 U∨ to the second factor and equate to zero to
obtain the recurrence relation (a, b, c)M = 0. In other words, substitute
u′2 �→ a, u′v′ �→ 1

2b, and v′2 �→ c in Φ.
Moreover, the second set of equations follows from the first by sub-

stitution, provided (say) that c 
= 0 and we fix the value of x0x2 − x2
1;

for example, in
xixi+2 − x2

i+1

substituting xi+2 = −a
cxi − b

cxi+1 gives

xi

(
−a

c
xi − b

c
xi+1

)
− x2

i+1 = −a

c
x2
i −

(b
c
xi + xi+1

)
xi+1,

and we can substitute −a
cxi−1 for the bracketed expression, to deduce

that
xixi+2 − x2

i+1 =
a

c

(
xi−1xi+1 − x2

i

)
, etc.
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A normal form for a quadratic form under GL(2) is uv, so that a
typical solution to the equations is

(a, b, c) = (0, 1, 0), (x0...k) = (1, 0, . . . , 0, 1), z = 1.

in the representation Sym2 U∨ ⊕ Symk U ⊕ C1 of GL(2) × Gm, where
the final Gm acts by homotheties on U∨, so acts on q ∈ Sym2 U∨ by
q �→ λ2q and on z by z �→ λ2z. Then Vk is the closure of the orbit of
this typical apolar vector.

§2. Diptych varieties and Mori flips of Type A

The varieties Vk ⊂ Ak+5 form a simple and natural series of
Gorenstein 5-folds, each with an action of a large algebraic group and,
by Lemma 1.2, a regular sequence z, a, c whose common zero locus is a
reducible toric surface composed of a cycle of three affine toric surfaces.

In [BR1], we introduce a rather more complicated series of Gorenstein
varieties: these are 6-folds

VABLM ⊂ Ak+l+6

(where l is the number appearing in (2.1)), each admitting a regular
sequence A,B,L,M whose common zero locus T ⊂ VABLM is a reducible
toric surface composed of a cycle of four affine toric surfaces which we
call a tent. There is more combinatorial structure inside VABLM : namely
VLM := (A = B = 0) and VAB := (L = M = 0) are toric 4-folds inside
VABLM whose intersection equals T . In the language of [AH], VABLM

is an affine T-variety (T for torus, not for tent): it admits an action of
a torus T = (G×

m)4 which restricts to the intrinsic torus action on each
of the toric strata described so far.

Each diptych variety depends on a 2-step recurrent continued frac-
tion [d, e, d, . . . ] to k terms. Starting from nothing, this data determines
the toric configuration VAB ⊃ T ⊂ VLM , and the existence of diptych
varieties is then the claim that this configuration arises inside an irre-
ducible 6-fold, the diptych variety, as above; this claim is proved in the
case de > 4, d, e ≥ 2 in [BR1].

In §3 we use Vk to prove the existence of diptych varieties in the case
de = 4. We need some of the definitions and notions of [BR1] for this.
Given integers d, e, k ≥ 1, consider the continued fraction expansion with
k terms

[d, e, d, . . . ] = d− 1

e− · · · .
Define [b1, . . . , bl−1] to be the complementary continued fraction of a
truncation as follows. Truncate the expansion [d, e, d, . . . ] to k−1 terms
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and reverse it, and then consider the uniquely defined minimal sequence
of bj ≥ 2 for which

(2.1) [. . . , d, e, d, 1, bl−1, . . . , b1] = 0.

For example, starting with [4, 3, 4], one calculates [3, 4, 1, 2, 2, 3, 2] = 0, so
in this case [b1, b2, b3, b4] = [2, 3, 2, 2]. (This is the Riemenschneider com-
plementary continued fraction, in the sense of [BR1] Proposition 2.1(d).)
Set bl = 1.

Now define a toric variety VAB as follows. Start with four variables
xk, yl, A,B. Define the Laurent monomial xk−1 = Axd

ky
−1
l , and then

(2.2) xk−2i = xe
k−2i+1x

−1
k−2i+2 and xk−2i−1 = xd

k−2ix
−1
k−2i+1

alternating the exponents d, e until you reach x0. Similarly define yl−1 =

Bx−1
k ybll , and then

yj−1 = y
bj
j y−1

j+1

until you reach y0. We treat these expressions in two ways: first as
monomials in a lattice MAB = Z4 based by A,B, xk, yl; second as inde-
pendent variables A,B, x0...k, y0...l on affine space Ak+l+4. The cone

σAB = 〈A,B, x0, . . . , xk, y0, . . . , yl〉 ⊂ MAB

defines a toric variety VAB = XσAB which embeds naturally as

VAB ⊂ Ak+l+4

defined by the relations above (after multiplying up denominators) and
others that follow from syzygies. (In other words, the relations above
define a union of components, of which VAB is the unique component
not contained in a coordinate hyperplane.)

Similarly we define VLM starting from the four variables x0, y0, L,M
and applying analogous relations for x1, x2, . . . and y1, y2, . . . but with
the terms of the reversed continued fraction: that is, with [d, e, d, . . . ] if
k is even, and from [e, d, e, . . . ] to k terms if k is odd. Again there is a
lattice MLM containing the defining cone σLM .

We sketch all of this data in a picture, called a pair of long rectangles,
as in Figure 2.1, in which the bullet points represent x0, x1, . . . , xk up
the left-hand side of each long rectangle and y0, . . . , yl up the right-hand
side, the tags d, e and bj appear next to the corresponding variable on
which they appear as an exponent, and the four auxilliary variables, or
annotations, A,B,L,M positioned near the corners where they appear
in the initial defining relations. Influenced by this picture, we refer to
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�

�

�

�

...

d

e

d
A

�

�

�

�

b1

...

bl−1

bl
B

�

�

�

�

d or e

...

d

e

L
�

�

�

�

b0

b1

...

bl−1

M

Figure 2.1. The pair of long rectangles for [d, e, d, . . . ] to k
terms

data associated to x0, y0 as the bottom end of the long rectangles, and
to xk, yl as the top end.

Notice from the defining relations that the lattices MAB and MLM

are in fact identical, and so we identify them as M. To avoid preju-
dice, we use the impartial basis L,M,A,B of M. Although these four
monomials are only a Q-basis spanning an index de sublattice of M,
expressing lattice points in them turn out to express the antagonistic
convexity properties of σAB and σLM most cleanly.

Although it is not completely obvious, the data assembled so far
describes the toric monomial cones of the configuration VAB ⊃ T ⊂ VLM

for the initial continued fraction expansion [d, e, d, . . . ]; see [BR1], §3.
To show the existence of the corresponding diptych 6-fold, we simply
build its equations from the bottom end up. We start by combining the
equations of VAB and VLM at the bottom end in a naive way:

x1y0 = y1A
αBβ + x

(d or e)
0 L

x0y1 = AγBδ + y0M,(2.3)

where the exponents α, β, λ, μ are determined by the tag relations we
started from (and, unsurprisingly, appear in convergents of the contin-
ued fraction expansion [d, e, d, . . . ]). These relations define a Gorenstein
6-fold V0 ⊂ A8

〈A,B,L,M,x0,x1,y0,y1〉, that contains a divisor

D0 = (x0 = y0 = AλBμ = 0) ⊂ V0,

where AλBμ = gcd(AαBβ , AγBδ). We now apply the Gorenstein un-
projection theorem of [PR] serially to construct a sequence of pairs
Dν ⊂ Vν , adding the remaining variables xi, yj one at a time until
we reach Vν = VABLM .
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We demonstrate the first step by use of a magic pentagram: we seek
to include the variable x2 and calculate any relations that involve it.
Consider the 5×5 antisymmetric matrix (we write only the strict upper
triangle), which we also refer to as the Pfaffian matrix,

(2.4) M0 =

⎛
⎜⎜⎝
x1 y1A

α−λBβ−μ −x
(d or e)−1
0 L −x2

x0 AλBμ −M
y0 Aγ−λBδ−μ

y1

⎞
⎟⎟⎠ .

The first and last of the maximal Pfaffians of M give precisely the pair
of relations (2.3). The other three maximal Pfaffians involve expressions
for x2 · ID0 , where ID0 = (x0, y0, A

λBμ) is the defining ideal of the
unprojection divisor D0 ⊂ V0. These five Pfaffians define a Gorenstein
variety V1 ⊂ A9 in variables A,B,L,M , x0, x1, x2, y0, y1. If k = 1, then
this is VABLM , otherwise it contains a divisor

D1 = (x0 = x1 = y0 = A?B? = 0) ⊂ V1,

where the exponents on A?B? can be determined from the particular
values of d, e, k. One can check that the 4-fold locuses (A = B = 0)
and (L = M = 0) and their surface intersection correspond to the
toric configuration; this is part of the claim of the existence of diptych
varieties. The five equations constructed here have leading terms

x0y1 = · · · x1y0 = · · ·
x2x0 = · · · x2y0 = · · · x1y1 = · · · ,

and joining these pairs of variables on Figure 2.1 draws a pentagram –
hence the name. (It is magic because it works.)

The order we add the variables is important. We lay a bar at the level
of variables we have considered so far: we start with the bar x1 y1, to
indicate that we have all variables below these, then raise it to x2 y1
and so on as we add subsequent variables. Fortunately the precise order
required is a technical point that our use of Vk in this paper sidesteps.

As an exercise, one can write an alternative proof of Theorem 1.1
above in the style of [BR1]: start with any of the codimension 2 complete
intersections(

xi−1xi+1 = x2
i + ai−1ck−i−1z

axi−1 + bxi + cxi+1 = 0

)
⊂ A7

〈xi−1,xi,xi+1,a,b,c,z〉

and add the remaining variables one at a time as a serial unprojection
using magic pentagrams at each step. (Or see [BR1], 1.2, for a fully-
worked example of a similar calculation.)
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Once set up properly, much of this construction is automatic. Curi-
ously, the hardest part, and the bulk of the subtle machinery developed
in [BR1], is to show that the natural unprojection divisor Dν is a sub-
scheme of Vν . Again, our use of the Vk here completely sidesteps that
point – when we need to make unprojection arguments in §3, the inclu-
sion of the divisor is straightforward.

The contrast between the simple geometric constructions of this
paper and the delicate and lengthy methods of [BR1] is striking. The
varieties Vk arise naturally from the representation theory of GL(2)×Gm,
in contrast to any construction we could find in [BR1]. There is still some
work to do in Section 3 to go from Vk to the diptych varieties, but it
is easy compared to [BR1]. Whether the other diptychs of [BR1] can
be modelled on almost homogeneous spaces in a similar way remains a
mystery; this point has eluded us for a couple of decades.

§3. Application of Vk to diptych varieties with de = 4

Diptych varieties VABLM depend on three parameters d, e, k ≥ 1.
The solutions of de = 4 are (d, e) = (2, 2), (4, 1) and (1, 4), and we allow
any k ≥ 1. In each case, we construct almost all of the coordinate ring
of VABLM by a regular pullback from the key variety Vk of §1. We then
adjoin the remaining few variables by an unprojection argument using
the ideas of §2. Our proofs here are selfcontained, but we refer to [BR1]
in places this clarifies the argument; see especially the worked example
[BR1], 1.2.)

3.1. Case [2, 2]

We first construct the diptych variety VABLM with the monomial
cones σAB and σLM of Figure 3.1. It has variables x0...k on the left
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Figure 3.1. Case [2, 2]
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against y0...2 on the right, tagged as in Figure 3.1, together with A,B,
L,M . Although we do not yet own VABLM , we know some of its equa-
tions: by (2.3), we find the two bottom equations:

(3.1) x1y0 = Ak−1Bk + x2
0L and x0y1 = ABx1 + y0M.

Then, following the model of (2.4), the pentagram y1, y0, x0, x1, x2 ad-
joins x2, and x3, . . . , xk are adjoined by a long rally of flat pentagrams
y1, xi−1, xi, xi+1, xi+2 with matrixes

(3.2)

⎛
⎜⎜⎜⎜⎝
y1 x1 −M −x2

y0 AB −x0L

x0 Ak−2Bk−1

x1

⎞
⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎝
y1 xi+1 −LM −xi+2

xi−1 AB −xi

xi (AB)k−i−2(LM)i−1BM
xi+1

⎞
⎟⎟⎠

giving the Pfaffian equations

y1xi = ABxi+1 + LMxi−1, xi−1xi+1 = x2
i + (AB)k−i−1(LM)i−1BM

and xi−1xi+2 = xixi+1 + (AB)k−i−2(LM)i−1BMy1.

We see that these are the equations of Vk after the substitution

(3.3) (a, b, c, z) �→ (LM,−y1, AB,BM).

Thus to construct our diptych variety, we pull back Vk ⊂ Ak+5 by (3.3),
then adjoin the two corners y0, y2 as unprojection variables. Adjoining
either of these is easy, but adjoining the second then requires a simple
application of some of the main ideas of proof in Sections 4–5 of [BR1]
which we work out here.

Lemma 3.1. Define W0 ⊂ Ak+6
〈x0...k,y1,A,B,L,M〉 to be the pullback of

Vk under the morphism Ak+6 → Ak+5 given by (3.3).

(i) W0 ⊂ Ak+6 is an irreducible 6-fold.
(ii) D0 = (x1 = · · · = xk = M = 0) is contained in W0 as a

divisor.
(iii) The unprojection W1 ⊂ Ak+6 × A1

〈y0〉 of D0 ⊂ W0 with unpro-

jection variable y0 includes the equations (3.1) as generators
of its defining ideal.
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Proof. (ii) is immediate from the defining equations (1.1) of Vk:
setting x1 = · · · = xk = 0 leaves only terms divisible byM . It is a divisor
because it has the right dimension. (iii) follows from the Pfaffians of the
matrix (3.2), that express the unprojection variable y0 as a rational
function in x0, x1, y1, A,B,L,M with a simple pole on D. This includes
the equations (3.1). Q.E.D.

Once we own y0 ∈ C[W1], we have to establish that the unprojec-
tion divisor of y2 is contained in the variety W1. The detailed statement
is Theorem 3.3 below. (This is the same as the key point of the proof
of [BR1], but our case here is much easier.) To prove it, we work with
the T-weights of each homogeneous polynomial in x0, . . . , y2, A,B,L,M ,
written in terms of the impartial basis dual to the monomials L,M,A,B
(compare [BR1], Proposition 4.1). These base a slightly smaller lattice,
giving some of the impartial coordinates of monomials little denomi-
nators d or e. The tag equations of VAB and VLM from Figure 3.1
determine the impartial coordinates, as follows.

Lemma 3.2. In the impartial basis L,M,A,B, the monomials x0,
. . . , y2 have T-weights:

L M A B

x0 = ( − 1
2 0 k−1

2
k
2 )

x1 = ( 0 1
2

k−2
2

k−1
2 )

x2 = ( 1
2 1 k−3

2
k−2
2 )

...

xi = ( i−1
2

i
2

k−i−1
2

k−i
2 )

...

xk−1 = ( k−2
2

k−1
2 0 1

2 )

xk = ( k−1
2

k
2 − 1

2 0 )

and

L M A B

y0 = ( 0 − 1
2

k
2

k−1
2 )

y1 = ( 1
2

1
2

1
2

1
2 )

y2 = ( k
2

k+1
2 0 − 1

2 )

Proof. These vectors satisfy all the tag relations of the pair of long
rectangles; or if you prefer, plug in the formulas from [BR1], Proposi-
tion 4.1. Q.E.D.

The following statement specifies the unprojection divisor D1 ⊂ W1

of y2, completing our construction.

Theorem 3.3. In the notation of Lemma 3.1, define

D1 = (x0 = · · · = xk−1 = y0 = B = 0) ⊂ Ak+7
〈x0...k,y0,y1,A,B,L,M〉.
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Then D1 ⊂ W1, and the unprojection of D1 in W1 is the diptych variety
VABLM on the pair of long rectangles of Figure 3.1.

Proof. Most of the generators of IW1 are already in the ideal of
IW0 , and so lie in the ideal ID1 by the argument of Lemma 3.1 applied to
y2 rather than y0. The equation (3.1) of the form x0y1 = · · · is known
by Lemma 3.1(iii), and also lies in ID1 .

The remaining generators of IW1 have leading terms xiy0 for i =
1, . . . , k. To prove that each of these lies in ID1 , we prove a stronger
statement: every monomial in any of these generator relations is divis-
ible by one of x0...k−1, y0 or B. In fact, we prove some stronger still.
As in [BR1], 5.1, rather than working directly with these generators,
we work with their T-weights, and we show that any monomial of T-
weight equal to that of xiy0 (that is, any monomial that could appear
in a T-homogeneous equation which included xiy0) is divisible by one of
x0...k−1, y0 or B.

For monomialsm,n, writem
T∼ n ifm and n have the same T-weight,

or equivalently, the same impartial coordinates. Suppose m ∈ C[W1] is

a monomial with m
T∼ xiy0 for some i = 1, . . . , k. (Any term in the

equation having leading term xiy0 satisfies this equivalence, so if each
such monomial lies in ID1 then certainly the generator itself does.) We

may assume that the monomial m is of the form xξ
ky

η
2L

λMμAαBβ , since
the other variables already lie in ID1 . We may assume further that ξ = 0:
otherwise, dividing through by xi, the T-weight of y0 can be calculated

from that of (xk/xi)x
ξ−1
k times other variables whose M coefficient is

nonnegative; but this hasM coefficient> 0, whereas y0 hasM coefficient
= −1/2, a contradiction.

Now compare xiy0 and m = yη1L
λMμAαBβ : their impartial coordi-

nates are

xiy0 =
(

i−1
2

i−1
2

2k−i−1
2

2k−1+1
2

)
yη1L

λMμAαBβ =
(

η
2 + λ η

2 + μ η
2 + α η

2 + β
)
.

Since α ≥ 0, it follows from the coefficient of A that η/2 ≤ (2k−i−1)/2,
so now from the coefficient of B we have β ≥ 1. In other words, B divides
the monomial m, and m ∈ ID1 as required. Q.E.D.

3.2. Case [4, 1] with even l = 2k

The odd numbered xi are redundant generators, and omitting them
gives Figure 3.2. The diptych variety has variables x0...k, y0...4, A,B,
L,M with the two bottom equations

x1y0 = Ak−1B2k−1y1 + x3
0L and x0y1 = AkB2k+1 + y0M.
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We adjoin y2, then x2, . . . , xk by a game of pentagrams centred on a long
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Figure 3.2. Case [4, 1] with even l = 2k

rally of flat pentagrams, with y2 against xi−1, xi, xi+1, xi+2 and Pfaffian
equations

y2xi = AB2xi+1 + LM2xi−1,

xi−1xi+1 = x2
i + (AB2)k−i−1(LM2)i−1BM

and xi−1xi+2 = xixi+1 + (AB2)k−i−2(LM2)i−1BMy2

These are the equations of Vk after the substitution

(3.4) (a, b, c, z) �→ (LM2,−y2, AB
2, BM).

Lemma 3.4. In the impartial basis L,M,A,B, the monomials x0,
. . . , y4 have T-weights as listed in Table 1.

Proof. Once more, either observe that these vectors satisfy all the
tag relations of the pair of long rectangles, or plug in the formulas from
[BR1], Proposition 4.1, then delete every alternate x variable (the ones
tagged with a 1) and relabel to get these x0...k. Q.E.D.

The proof below that we can make the remaining unprojections is
similar to that of Theorem 3.3, so we restrict ourselves to setting out
the steps and indicating how to modify them for this case.

Theorem 3.5. The diptych variety on the pair of long rectangles of
Figure 3.2 exists.
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L M A B

x0 = ( − 1
4 0 2k−1

4 k )

x1 = ( 1
4 1 2k−3

4 k − 1 )

x2 = ( 3
4 2 2k−5

4 k − 2 )
...

xi = ( 2i−1
4 i 2k−2i−1

4 k − i )
...

xk−1 = ( 2k−3
4 k − 1 1

4 1 )

xk = ( 2k−1
4 k − 1

4 0 )

y0 = ( 0 −1 k 2k + 1 )

y1 = ( 1
4 0 2k+1

4 k + 1 )

y2 = ( 1
2 1 1

2 1 )

y3 = ( 2k+1
4 k + 1 1

4 0 )

y4 = ( k 2k + 1 0 −1 )

Table 1. x0, . . . , y4 in the impartial basis L,M,A,B.

Proof. First construct the 6-fold W0 ⊂ Ak+6
〈x0...k,y2,A,B,L,M〉 as the

pullback of Vk by the morphism (3.4). From the equations (1.1) of Vk,
one sees that D0 ⊂ W0, where ID0 = (x1...k,M), and we can unproject
this to construct W1 with new ambient variable y1.

We define D1 ⊂ Ak+7
〈x0...k,y1,y2,A,B,L,M〉. To show that D1 ⊂ W1 we

check that any monomialm with the same T-weight as a generator of IW1

that has not already been considered is already in ID1 . For example,

if m
T∼ xiy1, for any i = 1, . . . , k, then we can suppose without loss

of generality that m = xξ
0L

λMμAαBβ. By Lemma 3.4, in impartial
L,M,A,B coordinates we see that

xiy1 = ( i
2 , i, k − i

2 , 2k − i+ 1).

His M -coordinate is i ≥ 1, and since x0 = (−1/4, 0, (2k − 1)/4, k), the
only contribution to the M -coordinate on the right comes from Mμ, so
μ ≥ 1. In other words, M divides m, so m ∈ ID1 as required.

The only other equation to check has leading term x0y2
T∼ m =

xξ
0y

η
1L

λMμAαBβ . Since both x0 and y1 have zero M coefficient, the
same argument works again. Thus D1 ⊂ W1, and we can unproject with
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new variable y0 to obtain W2 ⊂ Ak+8
〈x0...k,y0...2,A,B,L,M〉. The pentagrams

confirm the tag equations at the bottom corners.
We continue to unproject y3 and then y4 to conclude. For the first

of these, define D2 ⊂ Ak+8 by the ideal ID2 = (x0...k−1, y0...1, B) and
check that D2 ⊂ W2. We check the critical equations (those that are not
automatically in ID2 as a corollary of previous checks). First suppose

that xky0
T∼ m = yη2L

λMμAαBβ . Since

xky0 = ( 2k−1
4 , k − 1, k − 1

4 , 2k + 1) and y2 = ( 12 , 1,
1
2 , 1)

consideration of theA-coordinate shows that η < 2k, so theB-coordinate
shows that β ≥ 2; in particular, m ∈ ID2 as required.

Now consider y0y2
T∼ m = xξ

kL
λMμAαBβ . We have

y0y2 = (1/2, 0, k + 1/2, 2(k + 1)) and xk = ((2k − 1)/4, k,−1/4, 0),

so β ≥ 2(k + 1), whence B divides m and m ∈ ID2 .

Thus we obtain W3 ⊂ Ak+9
〈x0...k,y0...3,A,B,L,M〉 by unprojecting D2 ⊂

W2. Finally we observe that D3 ⊂ W3, where ID3 = (x0...k−1, y0...2, B)

for similar reasons. For example, if y0y3
T∼ m = xξ

kL
λMμAαBβ , then

y0y3 = ( 2k+1
4 , k, k + 1/4, 2k + 1) and xk = ( 2k−1

4 , k,−1/4, 0) shows that
β ≥ k+1, so again B divides m and so m ∈ ID3 . Unprojecting D3 ⊂ W3

gives the diptych variety we seek. Q.E.D.

3.3. Case [1, 4] with even l = 2k

Omit the even numbered xi, giving Figure 3.3. The diptych variety
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Figure 3.3. Case [4, 1] with even l = 2k

has variables x0...k, y0...2, A,B,L,M with the two bottom equations

x1y0 = A2k−1Bk + x0L and x0y1 = x2
1A

2B + y20M.
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As before, adjoining x2, . . . , xk features a long rally of flat pentagrams,
with y1 against xi−1, xi, xi+1, xi+2 and Pfaffian equations

y1xi = A2Bxi+1 + L2Mxi−1,

xi−1xi+1 = x2
i + (A2B)k−i−1(L2M)i−1AL

and xi−1xi+2 = xixi+1 + (A2B)k−i−2(L2M)i−1BMy2.

These are the equations of Vk after the substitution

(a, b, c, z) �→ (L2M,−y1, A
2B,BM).

We omit the formal statement and proof of the analogue of Theo-
rem 3.5: the diptych variety on the pair of long rectangles of Figure 3.3
exists, and after the substitution the proof unprojects y0 and y2 by sim-
ilar arguments in impartial coordinates.

3.4. Case [1, 4] with odd l = 2k + 1

This is [1, 4] read from the top, but [4, 1] read from the bottom, so
is a mix of the two preceding cases. Omit the odd numbered xi, giving
Figure 3.4. The diptych variety has variables x0...k, y0...3, A,B,L,M
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Figure 3.4. Case [1, 4] with odd l = 2k + 1

with the two bottom equations

x1y0 = y1A
2k−3Bk−1 + x3

0L and x0y1 = A2k−1Bk + y0M.

Adjoin y2 then x2 by⎛
⎜⎜⎜⎜⎝
y1 A2B M y2

y0 A2k−3Bk−1 x2
0L

x0 y1

x1

⎞
⎟⎟⎟⎟⎠ then

⎛
⎜⎜⎜⎜⎝
y2 x1 M x2

y1 A2B x0LM

x0 y2A
2k−5Bk−2

x1

⎞
⎟⎟⎟⎟⎠
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After this, adjoining x3, . . . , xk−1 is the usual long rally of flat penta-
grams, with y2 against xi−1, xi, xi+1, xi+2 and⎛

⎜⎜⎜⎜⎝
y2 xi+1 LM2 xi+2

xi−1 A2B xi

xi (A2B)k−i−3(LM2)i−1ABMy2

xi+1

⎞
⎟⎟⎟⎟⎠

and the Pfaffian equations

y2xi = A2Bxi+1 + LM2xi−1,

xi−1xi+1 = x2
i + (A2B)k−i−2(LM2)i−1ABMy2

and xi−1xi+2 = xixi+1 + (A2B)k−i−3(LM2)i−1ABMy22 .

These are the equations of V (k − 1) after the substitution

(a, b, c, z) �→ (LM2,−y2, A
2B,BM).

We again omit the formal statement and proof: the diptych variety
on the pair of long rectangles of Figure 3.4 exists, and after the sub-
stitution the proof unprojects y3, y1 and y0 by arguments in impartial
coordinates.

§4. The apolar varieties Wd and diptychs with k ≤ 3

By [BR1], Classification Theorem 3.3, (3.7), when de < 3, the cases
to treat are

(4.1)
(d, e) = (1, 1), k ≤ 2
(d, e) = (1, 2), k ≤ 3
(d, e) = (1, 3), k ≤ 5

(d, e) = (2, 1), k ≤ 3
(d, e) = (3, 1), k ≤ 5

The case k = 1 is already in [BR1], (3.9): for any values of d, e we get
the codimension 2 complete intersection(

x1y0 = B + Lxe
0, x0y1 = Axd

1 +M
) ⊂ A8

〈x0,x1,y0,y1A,B,L,M〉.

In §4.1 we discuss the case k = 2 for arbitrary d, e: again there is an
almost homogeneous varietyWd that serves as a model for the equations.

The cases with k ≥ 3 have some xi variables with tags = 1, which,
by the tag relations (2.2), are therefore redundant generators. Elimi-
nating them leaves a variety in low codimension that we can specify by
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equations. For k ≥ 3, the reduced models are as follows (for odd k,
top-to-bottom symmetry swaps d, e; we only list the cases with d = 1):

k VAB tags codim as given reduced codim

3 [1, 2, 1, (0)] 4 2

3 [1, 3, 1, (0)] 5 4

4 [1, 3, 1, 3, (0)] 5 4

4 [3, 1, 3, 1, (0)] 6 3

5 [1, 3, 1, 3, 1, (0)] 6 2

Eliminating the redundant generators is convenient to establish that the
varieties exist, but leaving them in has its own advantages. It allows us
to write their equations more naturally (in fact, usually as Tom unpro-
jections, in the language of [TJ], 2.2–2.3), sometimes in closed Pfaffian
formats. In addition, we can put an extra deformation parameter as
coefficient in front of each variable tagged with 1, thus exhibiting the
variety as a section of a bigger key variety.

4.1. Case k = 2, any d, e; the apolar variety Wd

For any d, e ≥ 1, the variables and tags on VAB are as follows: going
up the lefthand side we have x0, x1, x2 tagged with (0), e, d, against y0...d
tagged with (−e + 1), 2, . . . , 2, 1. In VAB the projection sequence first
eliminates the variables yd, yd−1, . . . , y2, and then the top left corner x2;
in VLM the sequence of projections is y0, y1, . . . , yd−2, then the bottom
left corner x0. Following the model equations (2.3) (or [BR1], 1.2), one
calculates the two equations at the bottom of the long rectangle as

x1y0 = ABd + Lxd
0 and x0y1 = −xe−1

1 ABd−1 + y0M.

One can then restore variables in the reverse order to the projection
sequence using magic pentagrams, as in (2.4). The 5 × 5 matrixes can
be combined into a single (d+ 4)× (d+ 4) skew matrix

(4.2)

⎛
⎜⎜⎜⎜⎝
C −x0 B y0 y1 . . . yd−1

−M x2 y1 y2 . . . yd
x1 ABd−1 ABd−2x2 . . . Axd−1

2

Lxd−1
0 LMxd−2

0 . . . LMd−1

see (4.3)

⎞
⎟⎟⎟⎟⎠

in which we have replaced xe−1
1 by the token C in m12; the bottom right

entries are

(4.3) mi+5,j+5 = ALC(x0B)d−j−1(x2M)i · (x0x2)
j−i − (BM)j−i

x0x2 −BM
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for 0 ≤ i < j ≤ d− 1. The 4× 4 Pfaffians of this (d+ 4)× (d+ 4) skew
matrix provide the remaining equations.

If we treat C as an independent variable, then the Pfaffians of (4.2)
generate the ideal of a 7-fold

Wd ⊂ Ad+9
〈x0...2,y0...d,A,B,L,M,C〉.

It can be realised by serial unprojection following [BR1], 1.2: the equa-
tions appearing in pentagrams are

x0x2 = −x1C +BM

yi−1yi+1 = y2i +ALC2(x0B)d−i−1(x2M)i−1

x0yi = −xi−1
2 ABd−iC + yi−1M

x1yi = Axi
2B

d−i + Lxd−i
0 M i

x2yi = yi+1B − xd−i−1
0 CLM i

The equation for x0x2 and for all xiyj are contained among the
Pfaffians of the first 4 rows of (4.2). Beyond the 4th row, each entry
mi+5,j+5 of (4.3) appears in just one generating relation, namely

(4.4) Pf2,3,i+5,j+5 = Cmi+5,j+5 − yiyj+1 + yi+1yj .

These varieties are interesting in several ways. Replacing xe−1
1 by

the token C in m12 displays VABLM as the section C = xe−1
1 of the 7-fold

Wd, that is a almost homogeneous variety under GL(2) × G3
m. Setting

C = 0 or C = 1 gives invariant 6-fold sections that are also almost
homogeneous. The case d = 1 is just the affine cone W (1) = aGr(2, 5)
on Gr(2, 5).

Exercise 4.1. Write U for the given representation of GL(2). Use

y0...d as coefficients of a binary form f =
∑(

d
i

)
yiu

d−ivi ∈ Symd U and
(B, x2), (x0,M) as those of two linear forms g = Bu+ x2v, h = x0u +
Mv ∈ U . Then the 4× 4 Pfaffians of (4.2) take the form
(4.5)

x1f = Agd + Lhd,

Mfu − x0fv = dACgd−1,

−x2fu +Bfv = dLChd−1,

Cx1 = det

∣∣∣∣B x0

x2 M

∣∣∣∣ = g ∧ h

u ∧ v
,

fu ∧ fv = d2ALC2 × gd−1 ∧ hd−1

g ∧ h
,

where of course fu = ∂f
∂u and fv = ∂f

∂v . As we saw in (4.3), gd−1 ∧ hd−1

written out as 2× 2 minors is identically divisible by BM −x0x2, so the
final set of equations give (4.4). This form of the equations is manifestly
GL(2) = GL(U) invariant. A typical solution of (4.5) is x0 = x2 = 0
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and x1 = A = C = L = B = M = 1, giving g = u, h = v, f = ud + vd,
and one sees that Wd is the orbit closure of this typical solution under
GL(2)×G3

m.
At the level of the matrix (4.2), the GL(2) action replaces rows 1

and 2 by their general linear combinations, and the d rows-and-columns
5, 6, . . . , d+ 4 by the linear combinations corresponding to the (d− 1)st
symmetric power. For example, adding λ times row 2 to row 1 (and the
same for the columns to preserve skew symmetry),

λj−i × binomial coefficient× column (5 + j)

to column 5 + i for j = i+ 1, . . . , d does x0 �→ x0 + λM , B �→ B + λx2

and yi �→
∑

λi+jyj+(d− i)λyi+1+etc., meaning f(u, v) �→ f(u+λv, v).

4.2. Case k = 3; floating factors and crazy Pfaffians

We only need to do e = 1; this covers d = 1 after top-to-bottom
reflection. The case e = 1 differs from e ≥ 2 in the order of elimination
in VAB, as we discuss systematically in [BR3]: projecting VAB from the
top, we eliminate x2 and all the yi for i = d − 1, d − 2, . . . , 2 before it
becomes possible to eliminate x3. This qualitative change prevents us
from treating cases with e = 1 as a limit of e ≥ 2.

Consider the general case k = 3, d ≥ 2. In VAB we have x0...3 tagged
with (0), d, 1, d against y0,...,d−1 tagged with (−d + 2), 2, . . . , 2, 1. The
equations of VABLM not involving x0 are those of a single vertebra, and
we can see them as the 4× 4 Pfaffians of the (d+ 3)× (d+ 3) matrix

(4.6)

⎛
⎜⎜⎜⎜⎝
−C x1 B y0 y1 . . . yd−2

LM x3 y1 y2 . . . yd−1

x2 x3AB
d−2 x2

3AB
d−3 . . . xd−1

3 A

xd−2
1 L xd−3

1 L2M . . . Ld−1Md−2

see (4.7)

⎞
⎟⎟⎟⎟⎠

with

(4.7) mi+5,j+5 = x3ALC(x1B)d−2−j(x3LM)i
(x1x3)

j−i − (BLM)j−i

x1x3 −BLM
.

For general d, this is the regular pullback of the apolar 7-fold W (d− 1)
constructed in 4.1 under the substitution

(x0...2, y0...d−1,A,B,L,M,C)

�→ (−x1, x2, x3, y0...d−1, x3A,B,L, LM,−C).



Diptych varieties. II: Apolar varieties 65

The diptych variety VABLM comes from this pullback on adjoining x0

by unprojection of the divisor

D0 = A6
〈x1,y0,A,B,M,C〉

= (x2 = x3 = y1...d−1 = L = 0) ⊂ Ad+8
〈x1...3,y0...d−1,A,B,L,M,C〉.

The Pfaffians of (4.6) clearly vanish on D0, so D0 is contained in the
pullback and we can unproject it to get VABLM .

For our application, this proves that VABLM exists (for any d ≥ 2),
and we could stop there. However, this case still has a general point
to teach us: namely, how the Pfaffians of (4.6) fit together with the
unprojection equations of x0.

Starting from the bottom, as in (2.3), we have

x1y0 = ABd−1C2 + Lx0 and x0y1 = xd−2
1 ABd−2C +My20 .

(We add a variable C as annotation on x2, making its tag equation
Cx2 = x1x3 in VAB and VLM .) It contains the unprojection divisor
D : (x0 = y0 = ABd−2C = 0), leading to the pentagram x1, y0, y0, y1, ξ
and the 4× 4 Pfaffians of

(4.8)

⎛
⎜⎜⎝
x1 BC −L −ξ

x0 ABd−2C −My0
y0 xd−2

1

y1

⎞
⎟⎟⎠ .

The unprojection variable ξ here must be x3 (rather than x2 with the

tag e = 1), as one sees for example from the Pfaffian Pf12.35 = xd−1
1 −

x0ξ +BMCy0.
We link the equations together by adding a final (d + 4)th column

to (4.6):

(4.9)

⎛
⎜⎜⎜⎜⎝
−C x1 B y0 y1 . . . yd−2 x0

LM x3 y1 y2 . . . yd−1 y0M

x2 x3AB
d−2 x2

3AB
d−3 . . . xd−1

3 A ABd−1M

xd−2
1 L xd−3

1 L2M . . . Ld−1Md−2 xd−1
1

. . .

⎞
⎟⎟⎟⎟⎠

with the same lower right entries mi+5,j+5 as (4.7), and the last column
ending in

m4+i,4+d = −AC(Bx1)
d−1−i × (x1x3)

i − (BLM)i

x1x3 −BLM
for i = 1, . . . , d− 1.
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The 4×4 Pfaffians of (4.9) provide all but one of the equations of VABLM .
Comparing (4.8) with (4.9), we see that the equation

x1y0 = −ABd−1C2 + x0L

is missing, although M times it is the Pfaffian Pf12.3(d+4) (in fact its

multiples by xd−2
1 , x2, x3, y1, . . . , yd−1 are also in the ideal of Pfaffians

of (4.9)).
The little problem we face is how to cancel the common factor M in

the entries m2,3, m2,d+4 and m3,d+4 of (4.9), or in the 3× 3 submatrix(
LM y0M

ABd−1M

)
formed by rows and colums 2, 3, d + 4, without spoiling

the other Pfaffians. We do this by floating M from the entries with
indices 2, 3, d+4 to the complementary entries with 1, 4, . . . , d+3, adding
the 4×4 Pfaffians of the floated matrix, including the equation for x1y0,
to those of (4.9).

The full set of equations is a mild form of crazy Pfaffian, analogous
to Riemenschneider’s quasi-determinantal [R]: rather than floating M
as a factor in two matrixes, we can view it as a multiplier between entries
with indices 2, 3, d + 4 and those with 1, 4, . . . , d + 3; when evaluating
a crazy Pfaffian, we include M as a factor whenever a product crosses
between these two regions. Thus the factors M in the triangle m2,3,
m2,d+4 and m3,d+4 of (4.9) appear as before in most Pfaffians, but not
in Pf12.3(d+4) or Pf23.i(d+4) for i = 4, . . . , d+ 3.

We discussed a case of floating in [TJ], 9.1, especially around (9.4),
but the present instance displays the phenomenon in a particularly clear
form. This type of crazy Pfaffians or floating factors occur frequently
in our experience of working with Gorenstein rings of codimension ≥ 4,
and seem to be a basic device in understanding how one vertebra links
to the next. We expect to return to this in future publications.

§5. The cases de = 3 and parallel unprojection

In 5.1, we construct all remaining cases de = 3 with k = 4 or 5 of
(4.1) to complete the construction of all diptych varieties with de ≤ 4.
Finally, in 5.2, we observe that each of these can be realised as a regular
pullback from a single key variety, a 10-fold W ⊂ A16.

5.1. Small diptychs by pentagrams

When k = 4, the cases (d, e) = (1, 3) or (3, 1) are distinct. In each
case, we pass to the reduced model, which is isomorphic to the diptych
variety we seek but easier to treat because it has lower codimension, and
then adjoin the redundant generators using pentagrams.
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Case [3, 1, 3, 1]. Write x0, x1, x2, x3, x4 with VAB tags [(0), 1, 3, 1, 3]
opposite y0, y1, y2. We work up from the reduced model, that has only
x0, x4 against y0, y1, y2; we eliminate y2 from this getting the codimen-
sion 2 complete intersection

x0y1 = AB +My0 and x4y0 = By21 + Lx0,

and adjoin y2 by the pentagram x4, x0, y0, y1, y2 and its Pfaffian matrix

M1 =

⎛
⎜⎜⎝
x4 y21 −L −y2

x0 B −M
y0 A

y1

⎞
⎟⎟⎠

x0y2 = x4A+My21 ,
y0y2 = y31 +AL,
x4y1 = y2B + LM.

These five Pfaffian equations define the reduced model in codimension 3.
We recover the full set of equations by adjoining the redundant x2,

then x1 and x3 in either order. Adjoin x2 by the pentagram x0, x0, y0,
y1, x2:

M2 =

⎛
⎜⎜⎝
x0 AB −M −x2

y0 1 −y1B
y1 Lx0

x4

⎞
⎟⎟⎠

x2 = x0x4 − y1BM
and

x2y0 = y1AB
2 + Lx2

0,
x2y1 = x4AB + LMx0.

Adjoin x1 by the pentagram x0, y1, x4, x2, x1:

M3 =

⎛
⎜⎜⎝
x0 x2 −BM −x1

y1 1 −AB
x4 LMx0

x2

⎞
⎟⎟⎠

x1 = x0x2 − AB2M
and

x1x4 = x2
2 + x0BLM2,

x1y1 = x2AB + LMx2
0.

Finally adjoin x3 by the pentagram x2, x0, y1, x4, x3:

M4 =

⎛
⎜⎜⎝
x2 x4AB −LM −x3

x0 1 −BM
y1 x2

x4

⎞
⎟⎟⎠

x3 = x2x4 −BLM2

and
x0x3 = x2

2 + x4AB
2M,

x3y1 = x2
4AB + LMx2.

The five Pfaffians of M1 together with the three equations for x1, x2, x3

define VABLM ⊂ A11
〈x0...4,y0...1,A,B,L,M〉.
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Case [1, 3, 1, 3]. Write x0, x1, x2, x3, x4 with VAB tags [(0), 3, 1, 3, 1]
against y0, y1. The reduced model is in codimension 4 on variables
x0, x1, x3, x4, y0, y1; eliminating x4 then x3 from this leaves two equa-
tions

x0y1 = Ax1 + y20M and x1y0 = A2B + Lx0

To recover the reduced model, we adjoin x3 and then x4. Adjoin x3 by
the pentagram x1, x0, y0, y1, x3:

M1 =

⎛
⎜⎜⎝
x1 AB −L −x3

x0 A −My0
y0 x1

y1

⎞
⎟⎟⎠

x0x3 = x2
1 + y0ABM,

x3y0 = y1AB + x1L,
x1y1 = x3A+ LMy0.

The unprojection divisor of x4 is (x0 = x1 = y0 = A), so that the
reduced model exists. We adjoin x4 by the pentagram x3, x1, y0, y1, x4:

M2 =

⎛
⎜⎜⎝
x3 y1B −L −x4

x1 A −LM
y0 x3

y1

⎞
⎟⎟⎠

x1x4 = x2
3 + y1BLM,

x3y1 = x4A+ L2M,
x4y0 = y21B + x3L.

These 8 equations define the reduced model in codimension 4 together
with a residual A4

〈x0,x4,B,M〉. Calculating with syzygies or saturating

against y0 (say) recovers the long equation

x0x4 = x1x3 + y0y1BM +ABLM.

In terms of the Tom and Jerry unprojections of [TJ], the calculation to
this point is a standard double Jerry; see [TJ] Section 9.2 which gives a
closed form statement of the result, apart from the long equation.

Finally, we adjoin the redundant generator x2 by the pentagram
x1, y0, y1, x3, x2:

M3 =

⎛
⎜⎜⎝
x1 x3A −LM −x2

y0 1 −AB
y1 x1L

x3

⎞
⎟⎟⎠

x1x3 = x2 +ABLM,
x2y0 = x3A

2B + x2
1L,

x2y1 = x2
3A+ x1L

2M.

Thus the diptych in this case is the graph of x2 = x1x3 − ABLM over
its reduced model, in codimension 5 with 10× 25 resolution.

Remark 5.1. Since x2 has tag 1, it makes sense to give him anno-
tation C; in the pentagram equations above, this can be done simply by
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replacing the 1 in M3 by C. Computer algebra experiments (after sat-
urating these pentagram equations against y0LM) show that this gives
a 7-fold VABCLM in codimension 5 with 14 × 35 resolution and serial
unprojection form. (The webpage [Dip] has files to download and run
in Magma [Ma] to run this calculation and other experiments.)

Case [1, 3, 1, 3, 1]. When k = 5, we consider tags [1, 3, 1, 3, 1] on
VAB; this also covers the case [3, 1, 3, 1, 3] by top-to-bottom reflection.
Write x0, x1, x2, x3, x4, x5, y0, y1 with VAB tags [0, 1, 3, 1, 3, 1]. The re-
duced model has only x0, x5 against y0, y1, with two equations

x0y1 = A+ y0M and x5y0 = y31B + L.

The diptych variety is isomorphic to A6
〈x0,x5,y0,y1,B,M〉, and is the graph

over it of A,L, x4, x2, x1, x3 expressed as functions by

A = x0y1 − y0M,
L = x5y0 − y31B,

x1 = x0x2 −A2BM,
x2 = x0x4 − y1ABM,
x3 = x2x4 −ABLM2,
x4 = x0x5 − y21BM.

It is a fun exercise to compute all of this with magic pentagrams as in
previous cases.

5.2. A key variety by parallel unprojection

There is a uniform treatment of the cases k = 4 and 5 and de = 3 as
regular pullbacks of a key 10-fold W that is given by a parallel unprojec-
tion construction similar to that of Papadakis and Neves [PN]. We start
from the codimension 2 complete intersection W0 ⊂ A12

〈u1...4,s1...4,a1...4〉
given by

u1u3 = a2s1s2u2 + a4s3s4u4,

u2u4 = a1s1s4u1 + a3s2s3u3,

which is a normal 10-fold containing as divisors the four codimension 3
complete intersections

(s1, u3, u4), (s2, u4, u1), (s3, u1, u2), (s4, u2, u3).

Parallel unprojection of these four divisors gives a codimension 6
Gorenstein subvariety W ⊂ A16

〈u1...4,v1...4,s1...4,a1...4〉 with a 20 × 66 reso-

lution, by standard application of the Kustin–Miller unprojection the-
orem. The full set of equations is obtained as follows. Each individual
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unprojection variable vi is adjoined by a pentagram, giving three linear
unprojection equations such as

(5.1)

⎛
⎜⎜⎝
u2 a1s4u1 −a3s2s3 −v1

u3 s1 −a4s3s4
u4 a2s2u2

u1

⎞
⎟⎟⎠

s1v1 = u1u2 − a3a4s2s
2
3s4,

u4v1 = a1s4u
2
1 + a2a3s

2
2s3u2,

u3v1 = a1a4s3s
2
4u1 + a2s2u

2
2.

In addition, there are 6 bilinear equations for vivj , making 2+4×3+6 =
20 equations. Four of these also come from pentagrams, the first of which
gives

(5.2) v1v2 = a2u
3
2 + a1a3a

2
4s

3
3s

3
4,

whereas the remaining two are “long equations”

v1v3 = a1a4s
3
4v4 + a2a3s

3
2v2 + 3a1a2a3a4s1s

2
2s3s

2
4,

v2v4 = a1a2s
3
1v1 + a3a4s

3
3v3 + 3a1a2a3a4s

2
1s2s

2
3s4

that can be computed using syzygies.
The construction has 4-fold cyclic symmetry (1234), apparent in the

picture

�

�

u1

u2 u3

u4

�

�

�
�

�
�

�
�
�
�

�

�

� �

�
�

�
�

�
�
�
�

v4

v1

v2

v3

We view the vi as tagged by 1 and annotated by si (by the first equation
of (5.1)), and the ui as tagged by 3 and annotated by ai (by (5.2)). We
get Gorenstein projections on eliminating any subset of the vi, but we
can only eliminate ui after projecting out the neighbouring vi−1 and vi.

We use this variety as a model for diptych varieties. The diptychs
with de = 3 and k = 4, 5 of 5 arise by pullback from W on making the
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following substitutions:

Case [3, 1, 3, 1] :

v1 = x1

v2 = x3

v3 = y2
v4 = y0

u1 = x0

u2 = x2

u3 = x4

u4 = y1

a1 = L

a2 = 1

a3 = A

a4 = 1

s1 = 1

s2 = 1

s3 = B

s4 = M

Case [1, 3, 1, 3] :

v1 = x2

v2 = x4

v3 = z

v4 = x0

u1 = x1

u2 = x3

u3 = y1
u4 = y0

a1 = 1

a2 = 1

a3 = B

a4 = M

s1 = 1

s2 = A

s3 = 1

s4 = L

Case [3, 1, 3, 1, 3] :

v1 = x1

v2 = x3

v3 = x5

v4 = y0

u1 = x0

u2 = x2

u3 = x4

u4 = y1

a1 = L

a2 = 1

a3 = 1

a4 = B

s1 = 1

s2 = 1

s3 = A

s4 = M

where, in the second case, z = y0y1 −AL is a redundant generator.
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