Diptych varieties. II: Apolar varieties

Gavin Brown and Miles Reid
 To Yujiro Kawamata in friendship and admiration

Abstract

. This paper constructs all the diptych varieties with de ≤ 4 (see [BR1], Main Theorem 3.3). Our construction involves several new classes of Gorenstein almost homogeneous spaces for $\operatorname{GL}(2) \times \mathbb{G}_{m}^{r}$, in particular two infinite series arising from the algebra of apolarity.

Contents

1. The apolar variety V_{k} 43
2. Diptych varieties and Mori flips of Type A 49
3. Application of V_{k} to diptych varieties with $d e=4$ 53
4. The apolar varieties W_{d} and diptychs with $k \leq 3$ 61
5. The cases $d e=3$ and parallel unprojection 66

Diptych varieties and Mori flips

We introduced diptych varieties in [BR1], motivated by our attempts to understand Mori's explicit calculations [M] in the Picard group of a 3-fold extremal neighbourhood. Mori's argument associates a 2-step continued fraction expansion $[d, e, d, \ldots]$ with an extremal neighbourhood. Roughly, for $C=\mathbb{P}^{1} \subset X$ a flipping curve of Type A in a 3 -fold X with two terminal singularities $P, Q \in C$ of type $c A_{n} / \boldsymbol{\mu}_{r}$ and a pair of divisors transverse to C at P and Q respectively, Mori sets up a 'continued division' algorithm that constructs a sequence of divisors

Received 10 June 2013.
Revised 2 July 2015.
2010 Mathematics Subject Classification. 14M17 (Primary); 14E99.
Key words and phrases. Keywords: Almost homogeneous space, Gorenstein variety, unprojection, apolar geometry, Mori flip.

This work was partially supported by Korean Government WCU Grant R33-2008-000-10101-0.
$F_{2 i} \sim F_{2 i-1}-d F_{2 i-2}, F_{2 i+1} \sim F_{2 i}-e F_{2 i-1}$, and proves that it terminates in the set theoretic equality $C=F_{k} \cap F_{k+1}$ for some k. This expresses a flipping curve C as the base locus of a pencil of divisors, and hence proves the existence of the flip of $C \subset X$, showing moreover that it can in principle be computed as the normalisation of the pencil. Diptych varieties are key varieties for the \mathbb{G}_{m} cover of these Type A flips: flips arise as regular pullbacks from diptychs after some massaging; see [Ki] $\S 11$ (especially 11.2) and [BR4] for details of this last step from diptychs to extremal neighbourhoods.

For completeness, we give some details in $\S 2$ of what we understand by a diptych variety; in brief, each is an affine 6 -fold $V_{A B L M}$ arising as a 4-parameter deformation of a tent, a reducible Gorenstein toric surface consisting of a cycle $T=S_{0} \cup S_{1} \cup S_{2} \cup S_{3}$ of four affine toric components meeting along their 1-dimensional strata; the four deformation parameters smooth the axes of transverse intersections of the cycle. A diptych variety is characterised by three natural numbers d, e, k, or by a 2 -step recurrent continued fraction $[d, e, d, \ldots]$ to k terms - of course, these correspond to the d, e, k of Mori's continued division algorithm.

Theorem 1.1 of [BR1] asserts that a diptych variety exists for any d, e, k (with the bounds of [BR1], Theorem 3.3, (3.7) on k in the cases $d e \leq 3)$. In the main case $d e>4$ and $d, e \geq 2$, we proved this in [BR1], Section 5. In [BR3] we treat the cases $d e>4$ with d or $e=1$ using variants of the same methods. This paper constructs diptych varieties in the remaining cases $d e \leq 4$, fulfilling the promise of [BR1], Theorem 1.1, and providing key varieties for the remaining extremal neighbourhoods of Type A.

Apolar geometry

The diptych varieties with de $=4$ have a beautiful description in terms of key 5 -folds $V_{k} \subset \mathbb{A}^{k+5}$ that play a principal role in this paper (see $\S 1$, and especially 1.3). These are almost homogeneous spaces that are easy to describe based on the algebra of apolarity, and we offer several alternative approaches. With a final unprojection argument, any of these descriptions is enough to prove the existence of diptych varieties with $d e=4$.

Geometrically, the V_{k} are almost homogeneous spaces for the group $G=\mathrm{GL}(2) \times \mathbb{G}_{m}$: each is the closure of the orbit of an 'apolar' vector in a reducible representation of G, and we refer to them as apolar varieties, as yet with no general formal definition, but see 1.3. It would be interesting to know whether apolar varieties such as the V_{k} and the W_{d} introduced in 4.1 arise naturally in other parts of geometry and representation theory;
we see similar phenomena in other calculations in codimension ≥ 4, and this type of apolar geometry should apply more widely.

From the point of view of equations, we express the V_{k} using a generalised form of Cramer's rule. This provides all the equations of V_{k} in closed form, in contrast to the small subset of Pfaffian equations that we get away with in [BR1]. The varieties V_{k} are serial unprojections, although this does not itself provide all the equations directly.
$\S 4$ introduces a second series of apolar varieties, this time almost homogeneous 7 -folds $W_{d} \subset \mathbb{A}^{d+9}$, and applies them as models for diptychs with $k=2$. With a single additional unprojection, they also provide a format for diptychs with $k=3$ involving crazy Pfaffians, reminiscent of Riemenschneider's 'quasi-determinants' [R]; see 4.2 where we discuss the equations in terms of floating factors. $\S 5$ handles the few remaining cases with $k=4,5$ and $d e=3$, where unprojection methods and pentagrams provide the equations directly. Rather than our apolar varieties V_{k} and W_{d} given by serial unprojection, these cases are most naturally described as regular pullbacks from a parallel unprojection key variety, a 10 -fold $W \subset \mathbb{A}^{16}$.

Gorenstein rings in high codimension

Gorenstein rings arise naturally in geometry as homogeneous coordinate rings of Fanos, Calabi-Yaus, regular canonical n-folds, and other constructions - and, most notably for our purposes here, of 3-fold extremal neighbourhoods. Thus a supply of model Gorenstein rings, with explicit information about their generators and relations, gradings and so on, is of practical importance. It is hard to construct Gorenstein rings in high codimension in general; there is no practical classification beyond codimension 3 (although see [R2, R3] for a first structure theorem in codimension 4). Grojnowski and Corti and Reid [CR] study weighted homogeneous spaces or closed orbits in highest weight representations of semisimple algebraic groups, in particular for $\operatorname{SL}(5)$ and SO(10); Qureshi and Szendrői [QS] generalise these to more classes of examples. The almost homogeneous spaces V_{k} in $\S 1$ (dimension 5 , codimension k), W_{d} in $\S 4$ (dimension 7 , codimension $d+2$) and W in $\S 5$ (dimension 10, codimension 6) present new Gorenstein rings purpose built to model certain 3 -fold flips of Type A.

§1. The apolar variety V_{k}

The apolar varieties $V_{k} \subset \mathbb{A}^{k+5}$ introduced here provide an infinite family of affine Gorenstein 5 -folds that are almost homogeneous spaces
under $\mathrm{GL}(2) \times \mathbb{G}_{m}$. We treat the V_{k} as varieties in their own right from several different points of view.

1.1. The definition by equations

We define 5 -folds $V_{k} \subset \mathbb{A}_{\left\langle x_{0 \ldots k}, a, b, c, z\right\rangle}^{k+5}$ for each $k \geq 3$. First set up $2 \times k$ and $k \times(k-2)$ matrixes

$$
M=\left(\begin{array}{ccccc}
x_{0} & \ldots & x_{i-1} & \ldots & x_{k-1} \\
x_{1} & \ldots & x_{i} & \ldots & x_{k}
\end{array}\right)
$$

and

$$
N=\left(\begin{array}{ccccccc}
a & & & & & & \\
b & a & & & & & \\
c & b & a & & & & \\
& \vdots & & & & \vdots & \\
& & & & c & b & a \\
& & & & c & & b \\
& & & & & & c
\end{array}\right)
$$

Our variety $V_{k} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, z, a, b, c\right\rangle}^{k+5}$ is defined by two sets of equations:

$$
\begin{equation*}
\text { (I) } \quad M N=0 \quad \text { and } \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\bigwedge^{2} M=z \cdot \bigwedge^{k-2} N \tag{II}
\end{equation*}
$$

(I) is a recurrence relation

$$
\begin{equation*}
a x_{i-1}+b x_{i}+c x_{i+1}=0 \quad \text { for } i=1, \ldots, k-1 . \tag{1.2}
\end{equation*}
$$

(II) is a $(k-2) \times k$ adaptation of Cramer's rule giving the Plücker coordinates of the space of solutions of (I) up to a scalar factor z. The order and signs of the minors in (II) is not a problem here, as one sees from the guiding cases

$$
x_{i-1} x_{i+1}-x_{i}^{2}=a^{i-1} c^{k-i-1} z \text { and } x_{i-1} x_{i+2}-x_{i} x_{i+1}=a^{i-1} b c^{k-i-2} z
$$

(However, in subsequent cases, in particular when we work with Pfaffians in 1.2, we need to fix a convention on their order and signs.) Note that the maximal $(k-2) \times(k-2)$ minors of N include a^{k-2} (delete the last two row) and c^{k-2} (delete the first two). More generally, deleting two adjacent rows $i-1, i$ gives $a^{i-1} c^{k-i-1}$ as a minor (only the diagonal contributes), whereas deleting two rows $i-1, i+1$ gives the minor $a^{i-1} b c^{k-i-2}$.

Thus our second set of equations is

$$
x_{i-1} x_{j+1}-x_{i} x_{j}=z \operatorname{det} N(i-1, j) .
$$

Relations for $x_{i} x_{j}-x_{k} x_{l}$ for all $i+j=k+l$ are obtained as combinations of these; for example

$$
\begin{aligned}
x_{i-1} x_{j+2}-x_{i+1} x_{j} & =x_{i-1} x_{j+2}-x_{i} x_{j+1}+x_{i} x_{j+1}-x_{i+1} x_{j} \\
& =z N(i-1, j+1)+z N(i, j) .
\end{aligned}
$$

Theorem 1.1. For $k \geq 3$, (I) and (II) define a reduced irreducible Gorenstein 5-fold

$$
V_{k} \subset \mathbb{A}_{\left\langle x_{0 \ldots k}, a, b, c, z\right\rangle}^{k+5}
$$

This also holds for $k=2$, with (II) involving interpreting the 0×0 minors as the single equation $1 \cdot z=x_{0} x_{2}-x_{1}^{2}$.

This theorem follows at once from the following lemma.

Lemma 1.2. (i) z is a regular element for V_{k}.

(ii) The section $z=0$ of V_{k} is the quotient of the hypersurface

$$
\widetilde{W}:\left(g:=a u^{2}+b u v+c v^{2}=0\right) \subset \mathbb{A}_{\langle a, b, c, u, v\rangle}^{5}
$$

by the $\boldsymbol{\mu}_{k}$ action $\frac{1}{k}(0,0,0,1,1)$. It is Gorenstein because

$$
\frac{\mathrm{d} a \wedge \mathrm{~d} b \wedge \mathrm{~d} c \wedge \mathrm{~d} u \wedge \mathrm{~d} v}{g} \in \omega_{\mathbb{A}^{5}}(\widetilde{W})
$$

is $\boldsymbol{\mu}_{k}$ invariant.
(iii) Also z, a, c is a regular sequence, and the section $z=a=$ $c=0$ of V_{k} is the toric Gorenstein surface (three-sided tent) consisting of $\frac{1}{k}(1,1)$ with coordinates x_{0}, \ldots, x_{k} and two copies of \mathbb{A}^{2} with coordinates x_{0}, b and x_{k}, b.

Proof. First, if $c \neq 0$ then a, b, c, x_{0}, x_{1} are free parameters, and the recurrence relation (I) gives x_{2}, \ldots, x_{k} as rational function of these. One checks that the first equation in (II) gives $z=-\frac{a x_{0}^{2}+b x_{0} x_{1}+c x_{1}^{2}}{c^{k-1}}$ and the remainder follow. Similarly if $a \neq 0$.

If $a=c=0$ and $b \neq 0$ then one checks that x_{0}, x_{k}, b are free parameters, $x_{i}=0$ for $i=1, \ldots, k-1$ and $z=\frac{x_{0} x_{k}}{b^{k-2}}$. Finally, if $a=b=c=0$ then x_{0}, \ldots, x_{k} and z obviously parametrise $\frac{1}{k}(1,1) \times \mathbb{A}^{1}$.

Therefore, no component of V_{k} is contained in $z=0$, proving (i).
After we set $z=0$, the equations (II) become $\bigwedge^{2} M=0$, and define the cyclic quotient singularity $\frac{1}{k}(1,1)$ (the cone over the rational normal curve). Introducing u, v as the roots of x_{0}, \ldots, x_{k}, with $x_{i}=u^{k-i} v^{i}$, boils the equations $M N=0$ down to the single equation $g:=a u^{2}+$ $b u v+c v^{2}=0$. This proves (ii). (iii) is easy.
Q.E.D.

1.2. The equations as Pfaffians

The equations of V_{k} fit together as 4×4 Pfaffians of a skew matrix. For this, edit M and N to get two new matrixes,

$$
M^{\prime}=\left(\begin{array}{cccccc}
x_{0} & \ldots & x_{i-1} & x_{i} & \ldots & x_{k-2} \tag{1.3}\\
x_{1} & \ldots & x_{i} & x_{i+1} & \ldots & x_{k-1} \\
x_{2} & \ldots & x_{i+1} & x_{i+2} & \ldots & x_{k}
\end{array}\right)
$$

which is $3 \times(k-1)$ and N^{\prime}, the $(k-1) \times(k-3)$ matrix with the same display as N (that is, delete the first (or last) row and column of N). Equations (I) can be rewritten ($a, b, c) M^{\prime}=0$.

Now all of the equations (1.1) can be written as the 4×4 Pfaffians of the $(k+2) \times(k+2)$ skew matrix

$$
\left(\begin{array}{ccc}
c & -b & \tag{1.4}\\
& a & M^{\prime} \\
& & \\
& & z \bigwedge^{k-3} N^{\prime}
\end{array}\right)
$$

The Pfaffians $\operatorname{Pf}_{12.3(i+3)}$ give the recurrence relation (1.2), while the remaining Pfaffians give (II). In more detail, the big matrix is
with bottom right $(k-1) \times(k-1)$ block equal to the $(k-3)$ rd wedge of N^{\prime} (with signs).

Small values of k. Our family starts with $k \geq 3$; the case $k=2$ would give the hypersurface $a x_{0}+b x_{1}+c x_{2}=0$, with $z:=x_{0} x_{2}-x_{1}^{2}$.

The first regular case is $k=3$, which gives the 5×5 skew determinantal

$$
\left(\begin{array}{cccc}
c & -b & x_{0} & x_{1} \\
& a & x_{1} & x_{2} \\
& & x_{2} & x_{3} \\
& & & z
\end{array}\right)
$$

a regular section of the affine Grassmannian $\operatorname{aGr}(2,5)$. The case $k=4$ is

$$
\left(\begin{array}{ccccc}
c & -b & x_{0} & x_{1} & x_{2} \\
& a & x_{1} & x_{2} & x_{3} \\
& & x_{2} & x_{3} & x_{4} \\
& & & z c & -z b \\
& & & & z a
\end{array}\right)
$$

an easy case of the standard extrasymmetric 6×6 determinantal of Dicks and Reid, [TJ], 9.1, equation (9.4).

The first really new case is $k=5$, with equations the 4×4 Pfaffians of the 7×7 skew matrix

$$
\left(\begin{array}{cccccc}
c & -b & x_{0} & x_{1} & x_{2} & x_{3} \\
& a & x_{1} & x_{2} & x_{3} & x_{4} \\
& x_{2} & x_{3} & x_{4} & x_{5} \\
& & & z c^{2} & -z b c & z\left(b^{2}-a c\right) \\
& & & & z a c & -z a b \\
& & & & & z a^{2}
\end{array}\right)
$$

We first arrived at this matrix by guesswork (with the z floated over from the row-columns $4,5,6,7$ to $1,2,3$), determining the superdiagonal entries $c^{2}, a c, a^{2}$ and those immediately above $-b c,-a c$ by eliminating variables to smaller cases; the entry $b^{2}-a c$ is then fixed so that the bottom 4×4 Pfaffian vanishes identically.

1.3. The variety V_{k} by apolarity

We can treat V_{k} as an almost homogeneous space under $\mathrm{GL}(2) \times \mathbb{G}_{m}$. For this, view x_{0}, \ldots, x_{k} as coefficients of a binary form and a, b, c as coefficients of a binary quadratic form in dual variables, so that the equations $M N=0$ or $(a, b, c) M^{\prime}=0$ are the apolarity relations. In general terms, polarity can be described as a choice of splitting of maps
such as $\operatorname{Sym}^{d-1} U \otimes U \rightarrow \operatorname{Sym}^{d} U$ (here $U=\mathbb{C}^{2}$ is the given representation of GL(2)), or more vaguely as a way of viewing the $2 \times d$ matrix $\left(\begin{array}{cccc}y_{0} & \ldots & y_{d-1} \\ y_{1} & \ldots & y_{d}\end{array}\right)$ or his bigger cousin (1.3) as a single object in determinantal constructions.

More formally, write

$$
\begin{aligned}
& q=a \check{u}^{2}+2 b \check{u} \check{v}+c \check{v}^{2} \in \operatorname{Sym}^{2} U^{\vee} \text { and } \\
& f=x_{0} u^{k}+k x_{1} u^{k-1} v+\binom{k}{2} x_{2} u^{k-2} v^{2}+\cdots+x_{k} v^{k} \in \operatorname{Sym}^{k} U
\end{aligned}
$$

Including the factor $\binom{k}{i}$ in the coefficient of $u^{i} v^{k-i}$ is a standard move in this game.

The second polar of f is the polynomial

$$
\begin{aligned}
& \Phi\left(u, v, u^{\prime}, v^{\prime}\right)= \frac{1}{k(k-1)}\left(\frac{\partial^{2} f}{\partial u^{2}} \otimes u^{\prime 2}+2 \frac{\partial^{2} f}{\partial u \partial v} \otimes u^{\prime} v^{\prime}+\frac{\partial^{2} f}{\partial v^{2}} \otimes v^{\prime 2}\right) \\
&= \sum_{i=0}^{k-2}\binom{k-2}{i} x_{i} u^{k-i-2} v^{i} \otimes u^{\prime 2} \\
&+2 \sum_{i=1}^{k-1}\binom{k-2}{i-1} x_{i} u^{k-i-1} v^{i-1} \otimes u^{\prime} v^{\prime} \\
&+\sum_{i=2}^{k}\binom{k-2}{i-2} x_{i} u^{k-i} v^{i-2} \otimes v^{\prime 2} \\
&= \sum_{i=0}^{k-2}\binom{k-2}{i} u^{k-2-i} v^{i} \otimes\left(x_{i} u^{\prime 2}+2 x_{i+1} u^{\prime} v^{\prime}+x_{i+2} v^{\prime 2}\right) \\
& \in \operatorname{Sym}^{d-2} U \otimes \operatorname{Sym}^{2} U .
\end{aligned}
$$

We apply $q \in \operatorname{Sym}^{2} U^{\vee}$ to the second factor and equate to zero to obtain the recurrence relation $(a, b, c) M=0$. In other words, substitute $u^{\prime 2} \mapsto a, u^{\prime} v^{\prime} \mapsto \frac{1}{2} b$, and $v^{\prime 2} \mapsto c$ in Φ.

Moreover, the second set of equations follows from the first by substitution, provided (say) that $c \neq 0$ and we fix the value of $x_{0} x_{2}-x_{1}^{2}$; for example, in

$$
x_{i} x_{i+2}-x_{i+1}^{2}
$$

substituting $x_{i+2}=-\frac{a}{c} x_{i}-\frac{b}{c} x_{i+1}$ gives

$$
x_{i}\left(-\frac{a}{c} x_{i}-\frac{b}{c} x_{i+1}\right)-x_{i+1}^{2}=-\frac{a}{c} x_{i}^{2}-\left(\frac{b}{c} x_{i}+x_{i+1}\right) x_{i+1},
$$

and we can substitute $-\frac{a}{c} x_{i-1}$ for the bracketed expression, to deduce that

$$
x_{i} x_{i+2}-x_{i+1}^{2}=\frac{a}{c}\left(x_{i-1} x_{i+1}-x_{i}^{2}\right), \quad \text { etc. }
$$

A normal form for a quadratic form under GL(2) is $u v$, so that a typical solution to the equations is

$$
(a, b, c)=(0,1,0), \quad\left(x_{0 \ldots k}\right)=(1,0, \ldots, 0,1), \quad z=1
$$

in the representation $\operatorname{Sym}^{2} U^{\vee} \oplus \operatorname{Sym}^{k} U \oplus \mathbb{C}^{1}$ of $\mathrm{GL}(2) \times \mathbb{G}_{m}$, where the final \mathbb{G}_{m} acts by homotheties on U^{\vee}, so acts on $q \in \operatorname{Sym}^{2} U^{\vee}$ by $q \mapsto \lambda^{2} q$ and on z by $z \mapsto \lambda^{2} z$. Then V_{k} is the closure of the orbit of this typical apolar vector.

§2. Diptych varieties and Mori flips of Type A

The varieties $V_{k} \subset \mathbb{A}^{k+5}$ form a simple and natural series of Gorenstein 5 -folds, each with an action of a large algebraic group and, by Lemma 1.2 , a regular sequence z, a, c whose common zero locus is a reducible toric surface composed of a cycle of three affine toric surfaces.

In [BR1], we introduce a rather more complicated series of Gorenstein varieties: these are 6 -folds

$$
V_{A B L M} \subset \mathbb{A}^{k+l+6}
$$

(where l is the number appearing in (2.1)), each admitting a regular sequence A, B, L, M whose common zero locus $T \subset V_{A B L M}$ is a reducible toric surface composed of a cycle of four affine toric surfaces which we call a tent. There is more combinatorial structure inside $V_{A B L M}$: namely $V_{L M}:=(A=B=0)$ and $V_{A B}:=(L=M=0)$ are toric 4-folds inside $V_{A B L M}$ whose intersection equals T. In the language of $[\mathrm{AH}], V_{A B L M}$ is an affine T -variety (T for torus, not for tent): it admits an action of a torus $\mathbb{T}=\left(\mathbb{G}_{m}^{\times}\right)^{4}$ which restricts to the intrinsic torus action on each of the toric strata described so far.

Each diptych variety depends on a 2-step recurrent continued fraction $[d, e, d, \ldots]$ to k terms. Starting from nothing, this data determines the toric configuration $V_{A B} \supset T \subset V_{L M}$, and the existence of diptych varieties is then the claim that this configuration arises inside an irreducible 6 -fold, the diptych variety, as above; this claim is proved in the case $d e>4, d, e \geq 2$ in [BR1].

In $\S 3$ we use V_{k} to prove the existence of diptych varieties in the case $d e=4$. We need some of the definitions and notions of [BR1] for this. Given integers $d, e, k \geq 1$, consider the continued fraction expansion with k terms

$$
[d, e, d, \ldots]=d-\frac{1}{e-\cdots}
$$

Define $\left[b_{1}, \ldots, b_{l-1}\right]$ to be the complementary continued fraction of a truncation as follows. Truncate the expansion $[d, e, d, \ldots]$ to $k-1$ terms
and reverse it, and then consider the uniquely defined minimal sequence of $b_{j} \geq 2$ for which

$$
\begin{equation*}
\left[\ldots, d, e, d, 1, b_{l-1}, \ldots, b_{1}\right]=0 \tag{2.1}
\end{equation*}
$$

For example, starting with $[4,3,4]$, one calculates $[3,4,1,2,2,3,2]=0$, so in this case $\left[b_{1}, b_{2}, b_{3}, b_{4}\right]=[2,3,2,2]$. (This is the Riemenschneider complementary continued fraction, in the sense of [BR1] Proposition 2.1(d).) Set $b_{l}=1$.

Now define a toric variety $V_{A B}$ as follows. Start with four variables x_{k}, y_{l}, A, B. Define the Laurent monomial $x_{k-1}=A x_{k}^{d} y_{l}^{-1}$, and then

$$
\begin{equation*}
x_{k-2 i}=x_{k-2 i+1}^{e} x_{k-2 i+2}^{-1} \quad \text { and } \quad x_{k-2 i-1}=x_{k-2 i}^{d} x_{k-2 i+1}^{-1} \tag{2.2}
\end{equation*}
$$

alternating the exponents d, e until you reach x_{0}. Similarly define $y_{l-1}=$ $B x_{k}^{-1} y_{l}^{b_{l}}$, and then

$$
y_{j-1}=y_{j}^{b_{j}} y_{j+1}^{-1}
$$

until you reach y_{0}. We treat these expressions in two ways: first as monomials in a lattice $\mathbb{M}_{A B}=\mathbb{Z}^{4}$ based by A, B, x_{k}, y_{l}; second as independent variables $A, B, x_{0 \ldots k}, y_{0 \ldots l}$ on affine space \mathbb{A}^{k+l+4}. The cone

$$
\sigma_{A B}=\left\langle A, B, x_{0}, \ldots, x_{k}, y_{0}, \ldots, y_{l}\right\rangle \subset \mathbb{M}_{A B}
$$

defines a toric variety $V_{A B}=X_{\sigma_{A B}}$ which embeds naturally as

$$
V_{A B} \subset \mathbb{A}^{k+l+4}
$$

defined by the relations above (after multiplying up denominators) and others that follow from syzygies. (In other words, the relations above define a union of components, of which $V_{A B}$ is the unique component not contained in a coordinate hyperplane.)

Similarly we define $V_{L M}$ starting from the four variables x_{0}, y_{0}, L, M and applying analogous relations for x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots but with the terms of the reversed continued fraction: that is, with $[d, e, d, \ldots]$ if k is even, and from $[e, d, e, \ldots]$ to k terms if k is odd. Again there is a lattice $\mathbb{M}_{L M}$ containing the defining cone $\sigma_{L M}$.

We sketch all of this data in a picture, called a pair of long rectangles, as in Figure 2.1, in which the bullet points represent $x_{0}, x_{1}, \ldots, x_{k}$ up the left-hand side of each long rectangle and y_{0}, \ldots, y_{l} up the right-hand side, the tags d, e and b_{j} appear next to the corresponding variable on which they appear as an exponent, and the four auxilliary variables, or annotations, A, B, L, M positioned near the corners where they appear in the initial defining relations. Influenced by this picture, we refer to

Figure 2.1. The pair of long rectangles for $[d, e, d, \ldots]$ to k terms
data associated to x_{0}, y_{0} as the bottom end of the long rectangles, and to x_{k}, y_{l} as the top end.

Notice from the defining relations that the lattices $\mathbb{M}_{A B}$ and $\mathbb{M}_{L M}$ are in fact identical, and so we identify them as \mathbb{M}. To avoid prejudice, we use the impartial basis L, M, A, B of \mathbb{M}. Although these four monomials are only a \mathbb{Q}-basis spanning an index de sublattice of \mathbb{M}, expressing lattice points in them turn out to express the antagonistic convexity properties of $\sigma_{A B}$ and $\sigma_{L M}$ most cleanly.

Although it is not completely obvious, the data assembled so far describes the toric monomial cones of the configuration $V_{A B} \supset T \subset V_{L M}$ for the initial continued fraction expansion $[d, e, d, \ldots]$; see [BR1], §3. To show the existence of the corresponding diptych 6 -fold, we simply build its equations from the bottom end up. We start by combining the equations of $V_{A B}$ and $V_{L M}$ at the bottom end in a naive way:

$$
\begin{align*}
& x_{1} y_{0}=y_{1} A^{\alpha} B^{\beta}+x_{0}^{(d \text { or } e)} L \\
& x_{0} y_{1}=A^{\gamma} B^{\delta}+y_{0} M \tag{2.3}
\end{align*}
$$

where the exponents $\alpha, \beta, \lambda, \mu$ are determined by the tag relations we started from (and, unsurprisingly, appear in convergents of the continued fraction expansion $[d, e, d, \ldots])$. These relations define a Gorenstein 6 -fold $V_{0} \subset \mathbb{A}_{\left\langle A, B, L, M, x_{0}, x_{1}, y_{0}, y_{1}\right\rangle}^{8}$, that contains a divisor

$$
D_{0}=\left(x_{0}=y_{0}=A^{\lambda} B^{\mu}=0\right) \subset V_{0}
$$

where $A^{\lambda} B^{\mu}=\operatorname{gcd}\left(A^{\alpha} B^{\beta}, A^{\gamma} B^{\delta}\right)$. We now apply the Gorenstein unprojection theorem of $[\mathrm{PR}]$ serially to construct a sequence of pairs $D_{\nu} \subset V_{\nu}$, adding the remaining variables x_{i}, y_{j} one at a time until we reach $V_{\nu}=V_{A B L M}$.

We demonstrate the first step by use of a magic pentagram: we seek to include the variable x_{2} and calculate any relations that involve it. Consider the 5×5 antisymmetric matrix (we write only the strict upper triangle), which we also refer to as the Pfaffian matrix,

$$
M_{0}=\left(\begin{array}{cccc}
x_{1} & y_{1} A^{\alpha-\lambda} B^{\beta-\mu} & -x_{0}^{(d \text { or } e)-1} L & -x_{2} \tag{2.4}\\
& x_{0} & A^{\lambda} B^{\mu} & -M \\
& & y_{0} & A^{\gamma-\lambda} B^{\delta-\mu} \\
& & & y_{1}
\end{array}\right) .
$$

The first and last of the maximal Pfaffians of M give precisely the pair of relations (2.3). The other three maximal Pfaffians involve expressions for $x_{2} \cdot I_{D_{0}}$, where $I_{D_{0}}=\left(x_{0}, y_{0}, A^{\lambda} B^{\mu}\right)$ is the defining ideal of the unprojection divisor $D_{0} \subset V_{0}$. These five Pfaffians define a Gorenstein variety $V_{1} \subset \mathbb{A}^{9}$ in variables $A, B, L, M, x_{0}, x_{1}, x_{2}, y_{0}, y_{1}$. If $k=1$, then this is $V_{A B L M}$, otherwise it contains a divisor

$$
D_{1}=\left(x_{0}=x_{1}=y_{0}=A^{?} B^{?}=0\right) \subset V_{1}
$$

where the exponents on $A^{?} B^{?}$ can be determined from the particular values of d, e, k. One can check that the 4 -fold locuses $(A=B=0)$ and $(L=M=0)$ and their surface intersection correspond to the toric configuration; this is part of the claim of the existence of diptych varieties. The five equations constructed here have leading terms

$$
\begin{gathered}
x_{0} y_{1}=\cdots \quad x_{1} y_{0}=\cdots \\
x_{2} x_{0}=\cdots \quad x_{2} y_{0}=\cdots \quad x_{1} y_{1}=\cdots,
\end{gathered}
$$

and joining these pairs of variables on Figure 2.1 draws a pentagram hence the name. (It is magic because it works.)

The order we add the variables is important. We lay a bar at the level of variables we have considered so far: we start with the bar $x_{1}-y_{1}$, to indicate that we have all variables below these, then raise it to $x_{2}-y_{1}$ and so on as we add subsequent variables. Fortunately the precise order required is a technical point that our use of V_{k} in this paper sidesteps.

As an exercise, one can write an alternative proof of Theorem 1.1 above in the style of [BR1]: start with any of the codimension 2 complete intersections

$$
\binom{x_{i-1} x_{i+1}=x_{i}^{2}+a^{i-1} c^{k-i-1} z}{a x_{i-1}+b x_{i}+c x_{i+1}=0} \subset \mathbb{A}_{\left\langle x_{i-1}, x_{i}, x_{i+1}, a, b, c, z\right\rangle}^{7}
$$

and add the remaining variables one at a time as a serial unprojection using magic pentagrams at each step. (Or see [BR1], 1.2, for a fullyworked example of a similar calculation.)

Once set up properly, much of this construction is automatic. Curiously, the hardest part, and the bulk of the subtle machinery developed in [BR1], is to show that the natural unprojection divisor D_{ν} is a subscheme of V_{ν}. Again, our use of the V_{k} here completely sidesteps that point - when we need to make unprojection arguments in $\S 3$, the inclusion of the divisor is straightforward.

The contrast between the simple geometric constructions of this paper and the delicate and lengthy methods of [BR1] is striking. The varieties V_{k} arise naturally from the representation theory of GL $(2) \times \mathbb{G}_{m}$, in contrast to any construction we could find in [BR1]. There is still some work to do in Section 3 to go from V_{k} to the diptych varieties, but it is easy compared to [BR1]. Whether the other diptychs of [BR1] can be modelled on almost homogeneous spaces in a similar way remains a mystery; this point has eluded us for a couple of decades.

§3. Application of V_{k} to diptych varieties with $d e=4$

Diptych varieties $V_{A B L M}$ depend on three parameters $d, e, k \geq 1$. The solutions of $d e=4$ are $(d, e)=(2,2),(4,1)$ and $(1,4)$, and we allow any $k \geq 1$. In each case, we construct almost all of the coordinate ring of $V_{A B L M}$ by a regular pullback from the key variety V_{k} of $\S 1$. We then adjoin the remaining few variables by an unprojection argument using the ideas of §2. Our proofs here are selfcontained, but we refer to [BR1] in places this clarifies the argument; see especially the worked example [BR1], 1.2.)

3.1. Case [2, 2]

We first construct the diptych variety $V_{A B L M}$ with the monomial cones $\sigma_{A B}$ and $\sigma_{L M}$ of Figure 3.1. It has variables $x_{0 \ldots k}$ on the left

Figure 3.1. Case [2, 2]
against $y_{0 \ldots 2}$ on the right, tagged as in Figure 3.1, together with A, B, L, M. Although we do not yet own $V_{A B L M}$, we know some of its equations: by (2.3), we find the two bottom equations:

$$
\begin{equation*}
x_{1} y_{0}=A^{k-1} B^{k}+x_{0}^{2} L \quad \text { and } \quad x_{0} y_{1}=A B x_{1}+y_{0} M \tag{3.1}
\end{equation*}
$$

Then, following the model of (2.4), the pentagram $y_{1}, y_{0}, x_{0}, x_{1}, x_{2}$ adjoins x_{2}, and x_{3}, \ldots, x_{k} are adjoined by a long rally of flat pentagrams $y_{1}, x_{i-1}, x_{i}, x_{i+1}, x_{i+2}$ with matrixes

$$
\left(\begin{array}{cccc}
y_{1} & x_{1} & -M & -x_{2} \tag{3.2}\\
& y_{0} & A B & -x_{0} L \\
& & x_{0} & A^{k-2} B^{k-1} \\
& & & x_{1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccc}
y_{1} & x_{i+1} & -L M & -x_{i+2} \\
& x_{i-1} & A B & -x_{i} \\
& & x_{i} & (A B)^{k-i-2}(L M)^{i-1} B M \\
& & & x_{i+1}
\end{array}\right)
$$

giving the Pfaffian equations

$$
\begin{gathered}
y_{1} x_{i}=A B x_{i+1}+L M x_{i-1}, \quad x_{i-1} x_{i+1}=x_{i}^{2}+(A B)^{k-i-1}(L M)^{i-1} B M \\
\text { and } \quad x_{i-1} x_{i+2}=x_{i} x_{i+1}+(A B)^{k-i-2}(L M)^{i-1} B M y_{1}
\end{gathered}
$$

We see that these are the equations of V_{k} after the substitution

$$
\begin{equation*}
(a, b, c, z) \mapsto\left(L M,-y_{1}, A B, B M\right) \tag{3.3}
\end{equation*}
$$

Thus to construct our diptych variety, we pull back $V_{k} \subset \mathbb{A}^{k+5}$ by (3.3), then adjoin the two corners y_{0}, y_{2} as unprojection variables. Adjoining either of these is easy, but adjoining the second then requires a simple application of some of the main ideas of proof in Sections $4-5$ of [BR1] which we work out here.

Lemma 3.1. Define $W_{0} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{1}, A, B, L, M\right\rangle}^{k+6}$ to be the pullback of V_{k} under the morphism $\mathbb{A}^{k+6} \rightarrow \mathbb{A}^{k+5}$ given by (3.3).
(i) $W_{0} \subset \mathbb{A}^{k+6}$ is an irreducible 6-fold.
(ii) $D_{0}=\left(x_{1}=\cdots=x_{k}=M=0\right)$ is contained in W_{0} as a divisor.
(iii) The unprojection $W_{1} \subset \mathbb{A}^{k+6} \times \mathbb{A}_{\left\langle y_{0}\right\rangle}^{1}$ of $D_{0} \subset W_{0}$ with unprojection variable y_{0} includes the equations (3.1) as generators of its defining ideal.

Proof. (ii) is immediate from the defining equations (1.1) of V_{k} : setting $x_{1}=\cdots=x_{k}=0$ leaves only terms divisible by M. It is a divisor because it has the right dimension. (iii) follows from the Pfaffians of the matrix (3.2), that express the unprojection variable y_{0} as a rational function in $x_{0}, x_{1}, y_{1}, A, B, L, M$ with a simple pole on D. This includes the equations (3.1).
Q.E.D.

Once we own $y_{0} \in \mathbb{C}\left[W_{1}\right]$, we have to establish that the unprojection divisor of y_{2} is contained in the variety W_{1}. The detailed statement is Theorem 3.3 below. (This is the same as the key point of the proof of [BR1], but our case here is much easier.) To prove it, we work with the \mathbb{T}-weights of each homogeneous polynomial in $x_{0}, \ldots, y_{2}, A, B, L, M$, written in terms of the impartial basis dual to the monomials L, M, A, B (compare [BR1], Proposition 4.1). These base a slightly smaller lattice, giving some of the impartial coordinates of monomials little denominators d or e. The tag equations of $V_{A B}$ and $V_{L M}$ from Figure 3.1 determine the impartial coordinates, as follows.

Lemma 3.2. In the impartial basis L, M, A, B, the monomials x_{0}, \ldots, y_{2} have \mathbb{T}-weights:

$$
\begin{aligned}
& L \quad M \quad A \quad B \\
& x_{0}=\left(\begin{array}{cccc}
-\frac{1}{2} & 0 & \frac{k-1}{2} & \frac{k}{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\left(\begin{array}{cccc}
\frac{1}{2} & 1 & \frac{k-3}{2} & \frac{k-2}{2}
\end{array}\right) \quad y_{0}=\left(\begin{array}{llll}
0 & -\frac{1}{2} & \frac{k}{2} & \frac{k-1}{2}
\end{array}\right) \\
& \text { and } y_{1}=\left(\begin{array}{llll}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& x_{i}=\left(\begin{array}{cccc}
\frac{i-1}{2} & \frac{i}{2} & \frac{k-i-1}{2} & \frac{k-i}{2}
\end{array}\right) \quad y_{2}=\left(\begin{array}{cccc}
\frac{k}{2} & \frac{k+1}{2} & 0 & -\frac{1}{2}
\end{array}\right) \\
& x_{k-1}=\left(\begin{array}{llll}
\frac{k-2}{2} & \frac{k-1}{2} & 0 & \frac{1}{2}
\end{array}\right) \\
& x_{k}=\left(\begin{array}{llll}
\frac{k-1}{2} & \frac{k}{2} & -\frac{1}{2} & 0
\end{array}\right)
\end{aligned}
$$

Proof. These vectors satisfy all the tag relations of the pair of long rectangles; or if you prefer, plug in the formulas from [BR1], Proposition 4.1.
Q.E.D.

The following statement specifies the unprojection divisor $D_{1} \subset W_{1}$ of y_{2}, completing our construction.

Theorem 3.3. In the notation of Lemma 3.1, define

$$
D_{1}=\left(x_{0}=\cdots=x_{k-1}=y_{0}=B=0\right) \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{0}, y_{1}, A, B, L, M\right\rangle}^{k+7}
$$

Then $D_{1} \subset W_{1}$, and the unprojection of D_{1} in W_{1} is the diptych variety $V_{A B L M}$ on the pair of long rectangles of Figure 3.1.

Proof. Most of the generators of $I_{W_{1}}$ are already in the ideal of $I_{W_{0}}$, and so lie in the ideal $I_{D_{1}}$ by the argument of Lemma 3.1 applied to y_{2} rather than y_{0}. The equation (3.1) of the form $x_{0} y_{1}=\cdots$ is known by Lemma 3.1(iii), and also lies in $I_{D_{1}}$.

The remaining generators of $I_{W_{1}}$ have leading terms $x_{i} y_{0}$ for $i=$ $1, \ldots, k$. To prove that each of these lies in $I_{D_{1}}$, we prove a stronger statement: every monomial in any of these generator relations is divisible by one of $x_{0 \ldots k-1}, y_{0}$ or B. In fact, we prove some stronger still. As in [BR1], 5.1, rather than working directly with these generators, we work with their \mathbb{T}-weights, and we show that any monomial of \mathbb{T} weight equal to that of $x_{i} y_{0}$ (that is, any monomial that could appear in a \mathbb{T}-homogeneous equation which included $x_{i} y_{0}$) is divisible by one of $x_{0 \ldots k-1}, y_{0}$ or B.

For monomials m, n, write $m \stackrel{\mathbb{T}}{\sim} n$ if m and n have the same \mathbb{T}-weight, or equivalently, the same impartial coordinates. Suppose $m \in \mathbb{C}\left[W_{1}\right]$ is a monomial with $m \stackrel{\mathbb{T}}{\sim} x_{i} y_{0}$ for some $i=1, \ldots, k$. (Any term in the equation having leading term $x_{i} y_{0}$ satisfies this equivalence, so if each such monomial lies in $I_{D_{1}}$ then certainly the generator itself does.) We may assume that the monomial m is of the form $x_{k}^{\xi} y_{2}^{\eta} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$, since the other variables already lie in $I_{D_{1}}$. We may assume further that $\xi=0$: otherwise, dividing through by x_{i}, the \mathbb{T}-weight of y_{0} can be calculated from that of $\left(x_{k} / x_{i}\right) x_{k}^{\xi-1}$ times other variables whose M coefficient is nonnegative; but this has M coefficient >0, whereas y_{0} has M coefficient $=-1 / 2$, a contradiction.

Now compare $x_{i} y_{0}$ and $m=y_{1}^{\eta} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$: their impartial coordinates are

$$
\begin{aligned}
x_{i} y_{0} & =\left(\begin{array}{cccc}
\frac{i-1}{2} & \frac{i-1}{2} & \frac{2 k-i-1}{2} & \frac{2 k-1+1}{2}
\end{array}\right) \\
y_{1}^{\eta} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta} & =\left(\begin{array}{cccc}
\frac{\eta}{2}+\lambda & \frac{\eta}{2}+\mu & \frac{\eta}{2}+\alpha & \frac{\eta}{2}+\beta
\end{array}\right) .
\end{aligned}
$$

Since $\alpha \geq 0$, it follows from the coefficient of A that $\eta / 2 \leq(2 k-i-1) / 2$, so now from the coefficient of B we have $\beta \geq 1$. In other words, B divides the monomial m, and $m \in I_{D_{1}}$ as required.
Q.E.D.

3.2. Case $[4,1]$ with even $l=2 k$

The odd numbered x_{i} are redundant generators, and omitting them gives Figure 3.2. The diptych variety has variables $x_{0 \ldots k}, y_{0 \ldots 4}, A, B$, L, M with the two bottom equations

$$
x_{1} y_{0}=A^{k-1} B^{2 k-1} y_{1}+x_{0}^{3} L \quad \text { and } \quad x_{0} y_{1}=A^{k} B^{2 k+1}+y_{0} M
$$

We adjoin y_{2}, then x_{2}, \ldots, x_{k} by a game of pentagrams centred on a long

Figure 3.2. Case $[4,1]$ with even $l=2 k$
rally of flat pentagrams, with y_{2} against $x_{i-1}, x_{i}, x_{i+1}, x_{i+2}$ and Pfaffian equations

$$
\begin{gathered}
y_{2} x_{i}=A B^{2} x_{i+1}+L M^{2} x_{i-1}, \\
x_{i-1} x_{i+1}=x_{i}^{2}+\left(A B^{2}\right)^{k-i-1}\left(L M^{2}\right)^{i-1} B M \\
\text { and } x_{i-1} x_{i+2}=x_{i} x_{i+1}+\left(A B^{2}\right)^{k-i-2}\left(L M^{2}\right)^{i-1} B M y_{2}
\end{gathered}
$$

These are the equations of V_{k} after the substitution

$$
\begin{equation*}
(a, b, c, z) \mapsto\left(L M^{2},-y_{2}, A B^{2}, B M\right) \tag{3.4}
\end{equation*}
$$

Lemma 3.4. In the impartial basis L, M, A, B, the monomials x_{0}, \ldots, y_{4} have \mathbb{T}-weights as listed in Table 1.

Proof. Once more, either observe that these vectors satisfy all the tag relations of the pair of long rectangles, or plug in the formulas from [BR1], Proposition 4.1, then delete every alternate x variable (the ones tagged with a 1) and relabel to get these $x_{0 \ldots k}$.
Q.E.D.

The proof below that we can make the remaining unprojections is similar to that of Theorem 3.3, so we restrict ourselves to setting out the steps and indicating how to modify them for this case.

Theorem 3.5. The diptych variety on the pair of long rectangles of Figure 3.2 exists.

$$
\begin{array}{rl}
L & M \\
A & B \\
x_{0} & =\left(\begin{array}{cccc}
-\frac{1}{4} & 0 & \frac{2 k-1}{4} & k
\end{array}\right) \\
x_{1} & =\left(\begin{array}{cccc}
\frac{1}{4} & 1 & \frac{2 k-3}{4} & k-1
\end{array}\right) \\
x_{2} & =\left(\begin{array}{llll}
\frac{3}{4} & 2 & \frac{2 k-5}{4} & k-2
\end{array}\right) \\
& \vdots \\
x_{i} & =\left(\begin{array}{llll}
\frac{2 i-1}{4} & i & \frac{2 k-2 i-1}{4} & k-i
\end{array}\right) \\
& \vdots \\
x_{k-1} & =\left(\begin{array}{llll}
\frac{2 k-3}{4} & k-1 & \frac{1}{4} & 1
\end{array}\right) \\
x_{k} & =\left(\begin{array}{llll}
\frac{2 k-1}{4} & k & -\frac{1}{4} & 0
\end{array}\right) \\
y_{0} & =\left(\begin{array}{llll}
0 & -1 & k & 2 k+1
\end{array}\right) \\
y_{1} & =\left(\begin{array}{llll}
\frac{1}{4} & 0 & \frac{2 k+1}{4} & k+1
\end{array}\right) \\
y_{2} & =\left(\begin{array}{llll}
\frac{1}{2} & 1 & \frac{1}{2} & 1
\end{array}\right) \\
y_{3} & =\left(\begin{array}{llll}
\frac{2 k+1}{4} & k+1 & \frac{1}{4} & 0
\end{array}\right) \\
y_{4} & =\left(\begin{array}{cccc}
k & 2 k+1 & 0 & -1
\end{array}\right)
\end{array}
$$

Table 1. x_{0}, \ldots, y_{4} in the impartial basis L, M, A, B.

Proof. First construct the 6 -fold $W_{0} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{2}, A, B, L, M\right\rangle}^{k+6}$ as the pullback of V_{k} by the morphism (3.4). From the equations (1.1) of V_{k}, one sees that $D_{0} \subset W_{0}$, where $I_{D_{0}}=\left(x_{1 \ldots k}, M\right)$, and we can unproject this to construct W_{1} with new ambient variable y_{1}.

We define $D_{1} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{1}, y_{2}, A, B, L, M\right\rangle}^{k+7}$. To show that $D_{1} \subset W_{1}$ we check that any monomial m with the same \mathbb{T}-weight as a generator of $I_{W_{1}}$ that has not already been considered is already in $I_{D_{1}}$. For example, if $m \stackrel{\mathbb{T}}{\sim} x_{i} y_{1}$, for any $i=1, \ldots, k$, then we can suppose without loss of generality that $m=x_{0}^{\xi} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$. By Lemma 3.4, in impartial L, M, A, B coordinates we see that

$$
x_{i} y_{1}=\left(\frac{i}{2}, i, k-\frac{i}{2}, 2 k-i+1\right) .
$$

His M-coordinate is $i \geq 1$, and since $x_{0}=(-1 / 4,0,(2 k-1) / 4, k)$, the only contribution to the M-coordinate on the right comes from M^{μ}, so $\mu \geq 1$. In other words, M divides m, so $m \in I_{D_{1}}$ as required.

The only other equation to check has leading term $x_{0} y_{2} \stackrel{\mathbb{T}}{\sim} m=$ $x_{0}^{\xi} y_{1}^{\eta} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$. Since both x_{0} and y_{1} have zero M coefficient, the same argument works again. Thus $D_{1} \subset W_{1}$, and we can unproject with
new variable y_{0} to obtain $W_{2} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{0} \ldots 2, A, B, L, M\right\rangle}^{k+8}$. The pentagrams confirm the tag equations at the bottom corners.

We continue to unproject y_{3} and then y_{4} to conclude. For the first of these, define $D_{2} \subset \mathbb{A}^{k+8}$ by the ideal $I_{D_{2}}=\left(x_{0 \ldots k-1}, y_{0 \ldots 1}, B\right)$ and check that $D_{2} \subset W_{2}$. We check the critical equations (those that are not automatically in $I_{D_{2}}$ as a corollary of previous checks). First suppose that $x_{k} y_{0} \stackrel{\mathbb{T}}{\sim} m=y_{2}^{\eta} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$. Since

$$
x_{k} y_{0}=\left(\frac{2 k-1}{4}, k-1, k-\frac{1}{4}, 2 k+1\right) \quad \text { and } \quad y_{2}=\left(\frac{1}{2}, 1, \frac{1}{2}, 1\right)
$$

consideration of the A-coordinate shows that $\eta<2 k$, so the B-coordinate shows that $\beta \geq 2$; in particular, $m \in I_{D_{2}}$ as required.

Now consider $y_{0} y_{2} \stackrel{\mathbb{T}}{\sim} m=x_{k}^{\xi} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$. We have

$$
y_{0} y_{2}=(1 / 2,0, k+1 / 2,2(k+1)) \quad \text { and } \quad x_{k}=((2 k-1) / 4, k,-1 / 4,0),
$$

so $\beta \geq 2(k+1)$, whence B divides m and $m \in I_{D_{2}}$.
Thus we obtain $W_{3} \subset \mathbb{A}_{\left\langle x_{0} \ldots k, y_{0} \ldots 3, A, B, L, M\right\rangle}^{k+9}$ by unprojecting $D_{2} \subset$ W_{2}. Finally we observe that $D_{3} \subset W_{3}$, where $I_{D_{3}}=\left(x_{0 \ldots k-1}, y_{0 \ldots 2}, B\right)$ for similar reasons. For example, if $y_{0} y_{3} \stackrel{\mathbb{T}}{\sim} m=x_{k}^{\xi} L^{\lambda} M^{\mu} A^{\alpha} B^{\beta}$, then $y_{0} y_{3}=\left(\frac{2 k+1}{4}, k, k+1 / 4,2 k+1\right)$ and $x_{k}=\left(\frac{2 k-1}{4}, k,-1 / 4,0\right)$ shows that $\beta \geq k+1$, so again B divides m and so $m \in I_{D_{3}}$. Unprojecting $D_{3} \subset W_{3}$ gives the diptych variety we seek.

3.3. Case $[1,4]$ with even $l=2 k$

Omit the even numbered x_{i}, giving Figure 3.3. The diptych variety

Figure 3.3. Case $[4,1]$ with even $l=2 k$
has variables $x_{0 \ldots k}, y_{0 \ldots 2}, A, B, L, M$ with the two bottom equations

$$
x_{1} y_{0}=A^{2 k-1} B^{k}+x_{0} L \quad \text { and } \quad x_{0} y_{1}=x_{1}^{2} A^{2} B+y_{0}^{2} M
$$

As before, adjoining x_{2}, \ldots, x_{k} features a long rally of flat pentagrams, with y_{1} against $x_{i-1}, x_{i}, x_{i+1}, x_{i+2}$ and Pfaffian equations

$$
\begin{gathered}
y_{1} x_{i}=A^{2} B x_{i+1}+L^{2} M x_{i-1} \\
x_{i-1} x_{i+1}=x_{i}^{2}+\left(A^{2} B\right)^{k-i-1}\left(L^{2} M\right)^{i-1} A L \\
\text { and } x_{i-1} x_{i+2}=x_{i} x_{i+1}+\left(A^{2} B\right)^{k-i-2}\left(L^{2} M\right)^{i-1} B M y_{2}
\end{gathered}
$$

These are the equations of V_{k} after the substitution

$$
(a, b, c, z) \mapsto\left(L^{2} M,-y_{1}, A^{2} B, B M\right)
$$

We omit the formal statement and proof of the analogue of Theorem 3.5: the diptych variety on the pair of long rectangles of Figure 3.3 exists, and after the substitution the proof unprojects y_{0} and y_{2} by similar arguments in impartial coordinates.

3.4. Case $[1,4]$ with odd $l=2 k+1$

This is $[1,4]$ read from the top, but $[4,1]$ read from the bottom, so is a mix of the two preceding cases. Omit the odd numbered x_{i}, giving Figure 3.4. The diptych variety has variables $x_{0 \ldots k}, y_{0 \ldots 3}, A, B, L, M$

Figure 3.4. Case $[1,4]$ with odd $l=2 k+1$
with the two bottom equations

$$
x_{1} y_{0}=y_{1} A^{2 k-3} B^{k-1}+x_{0}^{3} L \quad \text { and } \quad x_{0} y_{1}=A^{2 k-1} B^{k}+y_{0} M
$$

Adjoin y_{2} then x_{2} by

$$
\left(\begin{array}{cccc}
y_{1} & A^{2} B & M & y_{2} \\
& y_{0} & A^{2 k-3} B^{k-1} & x_{0}^{2} L \\
& & x_{0} & y_{1} \\
& & & x_{1}
\end{array}\right) \text { then }\left(\begin{array}{cccc}
y_{2} & x_{1} & M & x_{2} \\
& y_{1} & A^{2} B & x_{0} L M \\
& & x_{0} & y_{2} A^{2 k-5} B^{k-2} \\
& & & x_{1}
\end{array}\right)
$$

After this, adjoining x_{3}, \ldots, x_{k-1} is the usual long rally of flat pentagrams, with y_{2} against $x_{i-1}, x_{i}, x_{i+1}, x_{i+2}$ and

$$
\left(\begin{array}{cccc}
y_{2} & x_{i+1} & L M^{2} & x_{i+2} \\
& x_{i-1} & A^{2} B & x_{i} \\
& & x_{i} & \left(A^{2} B\right)^{k-i-3}\left(L M^{2}\right)^{i-1} A B M y_{2} \\
& & & x_{i+1}
\end{array}\right)
$$

and the Pfaffian equations

$$
\begin{gathered}
y_{2} x_{i}=A^{2} B x_{i+1}+L M^{2} x_{i-1} \\
x_{i-1} x_{i+1}=x_{i}^{2}+\left(A^{2} B\right)^{k-i-2}\left(L M^{2}\right)^{i-1} A B M y_{2} \\
\text { and } x_{i-1} x_{i+2}=x_{i} x_{i+1}+\left(A^{2} B\right)^{k-i-3}\left(L M^{2}\right)^{i-1} A B M y_{2}^{2} .
\end{gathered}
$$

These are the equations of $V(k-1)$ after the substitution

$$
(a, b, c, z) \mapsto\left(L M^{2},-y_{2}, A^{2} B, B M\right)
$$

We again omit the formal statement and proof: the diptych variety on the pair of long rectangles of Figure 3.4 exists, and after the substitution the proof unprojects y_{3}, y_{1} and y_{0} by arguments in impartial coordinates.

§4. The apolar varieties W_{d} and diptychs with $k \leq 3$

By [BR1], Classification Theorem 3.3, (3.7), when $d e<3$, the cases to treat are

$$
\left.\begin{array}{lll}
(d, e)=(1,1), & k \leq 2 & (d, e)=(2,1), \tag{4.1}
\end{array} \quad k \leq 3\right)
$$

The case $k=1$ is already in [BR1], (3.9): for any values of d, e we get the codimension 2 complete intersection

$$
\left(x_{1} y_{0}=B+L x_{0}^{e}, x_{0} y_{1}=A x_{1}^{d}+M\right) \subset \mathbb{A}_{\left\langle x_{0}, x_{1}, y_{0}, y_{1} A, B, L, M\right\rangle}^{8} .
$$

In $\S 4.1$ we discuss the case $k=2$ for arbitrary d, e : again there is an almost homogeneous variety W_{d} that serves as a model for the equations.

The cases with $k \geq 3$ have some x_{i} variables with tags $=1$, which, by the tag relations (2.2), are therefore redundant generators. Eliminating them leaves a variety in low codimension that we can specify by
equations. For $k \geq 3$, the reduced models are as follows (for odd k, top-to-bottom symmetry swaps d, e; we only list the cases with $d=1$):

k	$V_{A B}$ tags	codim as given	reduced codim
3	$[1,2,1,(0)]$	4	2
3	$[1,3,1,(0)]$	5	4
4	$[1,3,1,3,(0)]$	5	4
4	$[3,1,3,1,(0)]$	6	3
5	$[1,3,1,3,1,(0)]$	6	2

Eliminating the redundant generators is convenient to establish that the varieties exist, but leaving them in has its own advantages. It allows us to write their equations more naturally (in fact, usually as Tom unprojections, in the language of [TJ], 2.2-2.3), sometimes in closed Pfaffian formats. In addition, we can put an extra deformation parameter as coefficient in front of each variable tagged with 1 , thus exhibiting the variety as a section of a bigger key variety.

4.1. Case $k=2$, any d, e; the apolar variety W_{d}

For any $d, e \geq 1$, the variables and tags on $V_{A B}$ are as follows: going up the lefthand side we have x_{0}, x_{1}, x_{2} tagged with (0), e, d, against $y_{0 \ldots d}$ tagged with $(-e+1), 2, \ldots, 2,1$. In $V_{A B}$ the projection sequence first eliminates the variables $y_{d}, y_{d-1}, \ldots, y_{2}$, and then the top left corner x_{2}; in $V_{L M}$ the sequence of projections is $y_{0}, y_{1}, \ldots, y_{d-2}$, then the bottom left corner x_{0}. Following the model equations (2.3) (or [BR1], 1.2), one calculates the two equations at the bottom of the long rectangle as

$$
x_{1} y_{0}=A B^{d}+L x_{0}^{d} \quad \text { and } \quad x_{0} y_{1}=-x_{1}^{e-1} A B^{d-1}+y_{0} M
$$

One can then restore variables in the reverse order to the projection sequence using magic pentagrams, as in (2.4). The 5×5 matrixes can be combined into a single $(d+4) \times(d+4)$ skew matrix

$$
\begin{equation*}
\left(\right) \tag{4.2}
\end{equation*}
$$

in which we have replaced x_{1}^{e-1} by the token C in m_{12}; the bottom right entries are

$$
\begin{equation*}
m_{i+5, j+5}=A L C\left(x_{0} B\right)^{d-j-1}\left(x_{2} M\right)^{i} \cdot \frac{\left(x_{0} x_{2}\right)^{j-i}-(B M)^{j-i}}{x_{0} x_{2}-B M} \tag{4.3}
\end{equation*}
$$

for $0 \leq i<j \leq d-1$. The 4×4 Pfaffians of this $(d+4) \times(d+4)$ skew matrix provide the remaining equations.

If we treat C as an independent variable, then the Pfaffians of (4.2) generate the ideal of a 7 -fold

$$
W_{d} \subset \mathbb{A}_{\left\langle x_{0} \ldots, 2, y_{0} \ldots d, A, B, L, M, C\right\rangle}^{d+9} .
$$

It can be realised by serial unprojection following [BR1], 1.2: the equations appearing in pentagrams are

$$
\begin{aligned}
x_{0} x_{2} & =-x_{1} C+B M \\
y_{i-1} y_{i+1} & =y_{i}^{2}+A L C^{2}\left(x_{0} B\right)^{d-i-1}\left(x_{2} M\right)^{i-1} \\
x_{0} y_{i} & =-x_{2}^{i-1} A B^{d-i} C+y_{i-1} M \\
x_{1} y_{i} & =A x_{2}^{i} B^{d-i}+L x_{0}^{d-i} M^{i} \\
x_{2} y_{i} & =y_{i+1} B-x_{0}^{d-i-1} C L M^{i}
\end{aligned}
$$

The equation for $x_{0} x_{2}$ and for all $x_{i} y_{j}$ are contained among the Pfaffians of the first 4 rows of (4.2). Beyond the 4 th row, each entry $m_{i+5, j+5}$ of (4.3) appears in just one generating relation, namely

$$
\begin{equation*}
\mathrm{Pf}_{2,3, i+5, j+5}=C m_{i+5, j+5}-y_{i} y_{j+1}+y_{i+1} y_{j} \tag{4.4}
\end{equation*}
$$

These varieties are interesting in several ways. Replacing x_{1}^{e-1} by the token C in m_{12} displays $V_{A B L M}$ as the section $C=x_{1}^{e-1}$ of the 7 -fold W_{d}, that is a almost homogeneous variety under GL $(2) \times \mathbb{G}_{m}^{3}$. Setting $C=0$ or $C=1$ gives invariant 6 -fold sections that are also almost homogeneous. The case $d=1$ is just the affine cone $W(1)=\operatorname{aGr}(2,5)$ on $\operatorname{Gr}(2,5)$.

Exercise 4.1. Write U for the given representation of GL(2). Use $y_{0 \ldots d}$ as coefficients of a binary form $f=\sum\binom{d}{i} y_{i} u^{d-i} v^{i} \in \operatorname{Sym}^{d} U$ and $\left(B, x_{2}\right),\left(x_{0}, M\right)$ as those of two linear forms $g=B u+x_{2} v, h=x_{0} u+$ $M v \in U$. Then the 4×4 Pfaffians of (4.2) take the form

$$
\begin{align*}
x_{1} f & =A g^{d}+L h^{d},
\end{align*} \quad C x_{1}=\operatorname{det}\left|\begin{array}{cc}
B & x_{0} \tag{4.5}\\
x_{2} & M
\end{array}\right|=\frac{g \wedge h}{u \wedge v}, ~\left(f_{u} \wedge f_{v}=d^{2} A L C^{2} \times \frac{g^{d-1} \wedge h^{d-1}}{g \wedge h},\right.
$$

where of course $f_{u}=\frac{\partial f}{\partial u}$ and $f_{v}=\frac{\partial f}{\partial v}$. As we saw in (4.3), $g^{d-1} \wedge h^{d-1}$ written out as 2×2 minors is identically divisible by $B M-x_{0} x_{2}$, so the final set of equations give (4.4). This form of the equations is manifestly $\mathrm{GL}(2)=\mathrm{GL}(U)$ invariant. A typical solution of (4.5) is $x_{0}=x_{2}=0$
and $x_{1}=A=C=L=B=M=1$, giving $g=u, h=v, f=u^{d}+v^{d}$, and one sees that W_{d} is the orbit closure of this typical solution under $\operatorname{GL}(2) \times \mathbb{G}_{m}^{3}$.

At the level of the matrix (4.2), the GL(2) action replaces rows 1 and 2 by their general linear combinations, and the d rows-and-columns $5,6, \ldots, d+4$ by the linear combinations corresponding to the $(d-1)$ st symmetric power. For example, adding λ times row 2 to row 1 (and the same for the columns to preserve skew symmetry),

$$
\lambda^{j-i} \times \text { binomial coefficient } \times \text { column }(5+j)
$$

to column $5+i$ for $j=i+1, \ldots, d$ does $x_{0} \mapsto x_{0}+\lambda M, B \mapsto B+\lambda x_{2}$ and $y_{i} \mapsto \sum \lambda^{i+j} y_{j}+(d-i) \lambda y_{i+1}+$ etc., meaning $f(u, v) \mapsto f(u+\lambda v, v)$.

4.2. Case $k=3$; floating factors and crazy Pfaffians

We only need to do $e=1$; this covers $d=1$ after top-to-bottom reflection. The case $e=1$ differs from $e \geq 2$ in the order of elimination in $V_{A B}$, as we discuss systematically in [BR3]: projecting $V_{A B}$ from the top, we eliminate x_{2} and all the y_{i} for $i=d-1, d-2, \ldots, 2$ before it becomes possible to eliminate x_{3}. This qualitative change prevents us from treating cases with $e=1$ as a limit of $e \geq 2$.

Consider the general case $k=3, d \geq 2$. In $V_{A B}$ we have $x_{0 \ldots 3}$ tagged with (0$), d, 1, d$ against $y_{0, \ldots, d-1}$ tagged with $(-d+2), 2, \ldots, 2,1$. The equations of $V_{A B L M}$ not involving x_{0} are those of a single vertebra, and we can see them as the 4×4 Pfaffians of the $(d+3) \times(d+3)$ matrix

$$
\begin{equation*}
\left(\right) \tag{4.6}
\end{equation*}
$$

with

$$
\begin{equation*}
m_{i+5, j+5}=x_{3} A L C\left(x_{1} B\right)^{d-2-j}\left(x_{3} L M\right)^{i} \frac{\left(x_{1} x_{3}\right)^{j-i}-(B L M)^{j-i}}{x_{1} x_{3}-B L M} \tag{4.7}
\end{equation*}
$$

For general d, this is the regular pullback of the apolar 7-fold $W(d-1)$ constructed in 4.1 under the substitution

$$
\begin{aligned}
\left(x_{0 \ldots 2}, y_{0 \ldots d-1}, A\right. & , B, L, M, C) \\
& \mapsto\left(-x_{1}, x_{2}, x_{3}, y_{0 \ldots d-1}, x_{3} A, B, L, L M,-C\right)
\end{aligned}
$$

The diptych variety $V_{A B L M}$ comes from this pullback on adjoining x_{0} by unprojection of the divisor

$$
\begin{aligned}
D_{0} & =\mathbb{A}_{\left\langle x_{1}, y_{0}, A, B, M, C\right\rangle}^{6} \\
& =\left(x_{2}=x_{3}=y_{1 \ldots d-1}=L=0\right) \subset \mathbb{A}_{\left\langle x_{1 \ldots 3}, y_{0} \ldots d-1, A, B, L, M, C\right\rangle}^{d+8} .
\end{aligned}
$$

The Pfaffians of (4.6) clearly vanish on D_{0}, so D_{0} is contained in the pullback and we can unproject it to get $V_{A B L M}$.

For our application, this proves that $V_{A B L M}$ exists (for any $d \geq 2$), and we could stop there. However, this case still has a general point to teach us: namely, how the Pfaffians of (4.6) fit together with the unprojection equations of x_{0}.

Starting from the bottom, as in (2.3), we have

$$
x_{1} y_{0}=A B^{d-1} C^{2}+L x_{0} \quad \text { and } \quad x_{0} y_{1}=x_{1}^{d-2} A B^{d-2} C+M y_{0}^{2} .
$$

(We add a variable C as annotation on x_{2}, making its tag equation $C x_{2}=x_{1} x_{3}$ in $V_{A B}$ and $V_{L M}$.) It contains the unprojection divisor $D:\left(x_{0}=y_{0}=A B^{d-2} C=0\right)$, leading to the pentagram $x_{1}, y_{0}, y_{0}, y_{1}, \xi$ and the 4×4 Pfaffians of

$$
\left(\begin{array}{cccc}
x_{1} & B C & -L & -\xi \tag{4.8}\\
& x_{0} & A B^{d-2} C & -M y_{0} \\
& & y_{0} & x_{1}^{d-2} \\
& & & y_{1}
\end{array}\right) .
$$

The unprojection variable ξ here must be x_{3} (rather than x_{2} with the $\operatorname{tag} e=1$), as one sees for example from the Pfaffian $\mathrm{Pf}_{12.35}=x_{1}^{d-1}-$ $x_{0} \xi+B M C y_{0}$.

We link the equations together by adding a final $(d+4)$ th column to (4.6):

$$
\begin{equation*}
\left(\right) \tag{4.9}
\end{equation*}
$$

with the same lower right entries $m_{i+5, j+5}$ as (4.7), and the last column ending in
$m_{4+i, 4+d}=-A C\left(B x_{1}\right)^{d-1-i} \times \frac{\left(x_{1} x_{3}\right)^{i}-(B L M)^{i}}{x_{1} x_{3}-B L M}$ for $i=1, \ldots, d-1$.

The 4×4 Pfaffians of (4.9) provide all but one of the equations of $V_{A B L M}$. Comparing (4.8) with (4.9), we see that the equation

$$
x_{1} y_{0}=-A B^{d-1} C^{2}+x_{0} L
$$

is missing, although M times it is the $\operatorname{Pfaffian} \mathrm{Pf}_{12.3(d+4)}$ (in fact its multiples by $x_{1}^{d-2}, x_{2}, x_{3}, y_{1}, \ldots, y_{d-1}$ are also in the ideal of Pfaffians of (4.9)).

The little problem we face is how to cancel the common factor M in the entries $m_{2,3}, m_{2, d+4}$ and $m_{3, d+4}$ of (4.9), or in the 3×3 submatrix $\left(\begin{array}{cc}L M & y_{0} M \\ & A B^{d-1} M\end{array}\right)$ formed by rows and colums $2,3, d+4$, without spoiling the other Pfaffians. We do this by floating M from the entries with indices $2,3, d+4$ to the complementary entries with $1,4, \ldots, d+3$, adding the 4×4 Pfaffians of the floated matrix, including the equation for $x_{1} y_{0}$, to those of (4.9).

The full set of equations is a mild form of crazy Pfaffian, analogous to Riemenschneider's quasi-determinantal [R]: rather than floating M as a factor in two matrixes, we can view it as a multiplier between entries with indices $2,3, d+4$ and those with $1,4, \ldots, d+3$; when evaluating a crazy Pfaffian, we include M as a factor whenever a product crosses between these two regions. Thus the factors M in the triangle $m_{2,3}$, $m_{2, d+4}$ and $m_{3, d+4}$ of (4.9) appear as before in most Pfaffians, but not in $\mathrm{Pf}_{12.3(d+4)}$ or $\mathrm{Pf}_{23 . i(d+4)}$ for $i=4, \ldots, d+3$.

We discussed a case of floating in [TJ], 9.1, especially around (9.4), but the present instance displays the phenomenon in a particularly clear form. This type of crazy Pfaffians or floating factors occur frequently in our experience of working with Gorenstein rings of codimension ≥ 4, and seem to be a basic device in understanding how one vertebra links to the next. We expect to return to this in future publications.

§5. The cases $d e=3$ and parallel unprojection

In 5.1, we construct all remaining cases $d e=3$ with $k=4$ or 5 of (4.1) to complete the construction of all diptych varieties with $d e \leq 4$. Finally, in 5.2, we observe that each of these can be realised as a regular pullback from a single key variety, a 10 -fold $W \subset \mathbb{A}^{16}$.

5.1. Small diptychs by pentagrams

When $k=4$, the cases $(d, e)=(1,3)$ or $(3,1)$ are distinct. In each case, we pass to the reduced model, which is isomorphic to the diptych variety we seek but easier to treat because it has lower codimension, and then adjoin the redundant generators using pentagrams.

Case $[3,1,3,1]$. Write $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ with $V_{A B}$ tags $[(0), 1,3,1,3]$ opposite y_{0}, y_{1}, y_{2}. We work up from the reduced model, that has only x_{0}, x_{4} against y_{0}, y_{1}, y_{2}; we eliminate y_{2} from this getting the codimension 2 complete intersection

$$
x_{0} y_{1}=A B+M y_{0} \quad \text { and } \quad x_{4} y_{0}=B y_{1}^{2}+L x_{0}
$$

and adjoin y_{2} by the pentagram $x_{4}, x_{0}, y_{0}, y_{1}, y_{2}$ and its Pfaffian matrix

$$
M_{1}=\left(\begin{array}{cccc}
x_{4} & y_{1}^{2} & -L & -y_{2} \\
& x_{0} & B & -M \\
& & y_{0} & A \\
& & & y_{1}
\end{array}\right) \quad \begin{aligned}
& x_{0} y_{2}=x_{4} A+M y_{1}^{2} \\
& y_{0} y_{2}=y_{1}^{3}+A L \\
& x_{4} y_{1}=y_{2} B+L M
\end{aligned}
$$

These five Pfaffian equations define the reduced model in codimension 3.
We recover the full set of equations by adjoining the redundant x_{2}, then x_{1} and x_{3} in either order. Adjoin x_{2} by the pentagram x_{0}, x_{0}, y_{0}, y_{1}, x_{2} :

$$
M_{2}=\left(\begin{array}{cccc}
x_{0} & A B & -M & -x_{2} \\
& y_{0} & 1 & -y_{1} B \\
& & y_{1} & L x_{0} \\
& & & x_{4}
\end{array}\right) \quad \begin{aligned}
x_{2}= & x_{0} x_{4}-y_{1} B M \\
& \text { and } \\
x_{2} y_{0} & =y_{1} A B^{2}+L x_{0}^{2} \\
x_{2} y_{1} & =x_{4} A B+L M x_{0}
\end{aligned}
$$

Adjoin x_{1} by the pentagram $x_{0}, y_{1}, x_{4}, x_{2}, x_{1}$:

$$
M_{3}=\left(\begin{array}{cccc}
x_{0} & x_{2} & -B M & -x_{1} \\
& y_{1} & 1 & -A B \\
& & x_{4} & L M x_{0} \\
& & & x_{2}
\end{array}\right) \quad \begin{aligned}
x_{1} & =x_{0} x_{2}-A B^{2} M \\
& \text { and } \\
x_{1} x_{4} & =x_{2}^{2}+x_{0} B L M^{2} \\
x_{1} y_{1} & =x_{2} A B+L M x_{0}^{2}
\end{aligned}
$$

Finally adjoin x_{3} by the pentagram $x_{2}, x_{0}, y_{1}, x_{4}, x_{3}$:
$M_{4}=\left(\begin{array}{cccc}x_{2} & x_{4} A B & -L M & -x_{3} \\ & x_{0} & 1 & -B M \\ & & y_{1} & x_{2} \\ & & & x_{4}\end{array}\right) \quad \begin{aligned} x_{3} & =x_{2} x_{4}-B L M^{2} \\ & \text { and } \\ x_{0} x_{3} & =x_{2}^{2}+x_{4} A B^{2} M, \\ x_{3} y_{1} & =x_{4}^{2} A B+L M x_{2} .\end{aligned}$
The five Pfaffians of M_{1} together with the three equations for x_{1}, x_{2}, x_{3} define $V_{A B L M} \subset \mathbb{A}_{\left\langle x_{0} \ldots 4, y_{0} \ldots 1, A, B, L, M\right\rangle}^{11}$.

Case $[1,3,1,3]$. Write $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ with $V_{A B}$ tags $[(0), 3,1,3,1]$ against y_{0}, y_{1}. The reduced model is in codimension 4 on variables $x_{0}, x_{1}, x_{3}, x_{4}, y_{0}, y_{1}$; eliminating x_{4} then x_{3} from this leaves two equations

$$
x_{0} y_{1}=A x_{1}+y_{0}^{2} M \quad \text { and } \quad x_{1} y_{0}=A^{2} B+L x_{0}
$$

To recover the reduced model, we adjoin x_{3} and then x_{4}. Adjoin x_{3} by the pentagram $x_{1}, x_{0}, y_{0}, y_{1}, x_{3}$:

$$
M_{1}=\left(\begin{array}{cccc}
x_{1} & A B & -L & -x_{3} \\
& x_{0} & A & -M y_{0} \\
& & y_{0} & x_{1} \\
& & & y_{1}
\end{array}\right) \quad \begin{aligned}
& x_{0} x_{3}=x_{1}^{2}+y_{0} A B M \\
& x_{3} y_{0}=y_{1} A B+x_{1} L \\
& x_{1} y_{1}=x_{3} A+L M y_{0}
\end{aligned}
$$

The unprojection divisor of x_{4} is $\left(x_{0}=x_{1}=y_{0}=A\right)$, so that the reduced model exists. We adjoin x_{4} by the pentagram $x_{3}, x_{1}, y_{0}, y_{1}, x_{4}$:

$$
M_{2}=\left(\begin{array}{cccc}
x_{3} & y_{1} B & -L & -x_{4} \\
& x_{1} & A & -L M \\
& & y_{0} & x_{3} \\
& & & y_{1}
\end{array}\right) \quad \begin{aligned}
& x_{1} x_{4}=x_{3}^{2}+y_{1} B L M \\
& x_{3} y_{1}=x_{4} A+L^{2} M \\
& x_{4} y_{0}=y_{1}^{2} B+x_{3} L
\end{aligned}
$$

These 8 equations define the reduced model in codimension 4 together with a residual $\mathbb{A}_{\left\langle x_{0}, x_{4}, B, M\right\rangle}^{4}$. Calculating with syzygies or saturating against y_{0} (say) recovers the long equation

$$
x_{0} x_{4}=x_{1} x_{3}+y_{0} y_{1} B M+A B L M .
$$

In terms of the Tom and Jerry unprojections of [TJ], the calculation to this point is a standard double Jerry; see [TJ] Section 9.2 which gives a closed form statement of the result, apart from the long equation.

Finally, we adjoin the redundant generator x_{2} by the pentagram $x_{1}, y_{0}, y_{1}, x_{3}, x_{2}$:

$$
M_{3}=\left(\begin{array}{cccc}
x_{1} & x_{3} A & -L M & -x_{2} \\
& y_{0} & 1 & -A B \\
& & y_{1} & x_{1} L \\
& & & x_{3}
\end{array}\right) \quad \begin{aligned}
& x_{1} x_{3}=x_{2}+A B L M \\
& x_{2} y_{0}=x_{3} A^{2} B+x_{1}^{2} L \\
& x_{2} y_{1}=x_{3}^{2} A+x_{1} L^{2} M
\end{aligned}
$$

Thus the diptych in this case is the graph of $x_{2}=x_{1} x_{3}-A B L M$ over its reduced model, in codimension 5 with 10×25 resolution.

Remark 5.1. Since x_{2} has tag 1 , it makes sense to give him annotation C; in the pentagram equations above, this can be done simply by
replacing the 1 in M_{3} by C. Computer algebra experiments (after saturating these pentagram equations against $y_{0} L M$) show that this gives a 7 -fold $V_{A B C L M}$ in codimension 5 with 14×35 resolution and serial unprojection form. (The webpage [Dip] has files to download and run in Magma [Ma] to run this calculation and other experiments.)

Case $[1,3,1,3,1]$. When $k=5$, we consider tags $[1,3,1,3,1]$ on $V_{A B}$; this also covers the case $[3,1,3,1,3]$ by top-to-bottom reflection. Write $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, y_{0}, y_{1}$ with $V_{A B}$ tags $[0,1,3,1,3,1]$. The reduced model has only x_{0}, x_{5} against y_{0}, y_{1}, with two equations

$$
x_{0} y_{1}=A+y_{0} M \quad \text { and } \quad x_{5} y_{0}=y_{1}^{3} B+L
$$

The diptych variety is isomorphic to $\mathbb{A}_{\left\langle x_{0}, x_{5}, y_{0}, y_{1}, B, M\right\rangle}^{6}$, and is the graph over it of $A, L, x_{4}, x_{2}, x_{1}, x_{3}$ expressed as functions by

$$
\begin{array}{ll}
A=x_{0} y_{1}-y_{0} M, & x_{1}=x_{0} x_{2}-A^{2} B M, \\
x_{2}=x_{0} x_{4}-y_{1} A B M \\
L=x_{5} y_{0}-y_{1}^{3} B, & x_{3}=x_{2} x_{4}-A B L M^{2}, \\
x_{4}=x_{0} x_{5}-y_{1}^{2} B M .
\end{array}
$$

It is a fun exercise to compute all of this with magic pentagrams as in previous cases.

5.2. A key variety by parallel unprojection

There is a uniform treatment of the cases $k=4$ and 5 and $d e=3$ as regular pullbacks of a key 10 -fold W that is given by a parallel unprojection construction similar to that of Papadakis and Neves [PN]. We start from the codimension 2 complete intersection $W_{0} \subset \mathbb{A}_{\left\langle u_{1} \ldots, s_{1} \ldots, a_{1} \ldots 4\right.}^{12}$ given by

$$
\begin{aligned}
& u_{1} u_{3}=a_{2} s_{1} s_{2} u_{2}+a_{4} s_{3} s_{4} u_{4}, \\
& u_{2} u_{4}=a_{1} s_{1} s_{4} u_{1}+a_{3} s_{2} s_{3} u_{3},
\end{aligned}
$$

which is a normal 10 -fold containing as divisors the four codimension 3 complete intersections

$$
\left(s_{1}, u_{3}, u_{4}\right), \quad\left(s_{2}, u_{4}, u_{1}\right), \quad\left(s_{3}, u_{1}, u_{2}\right), \quad\left(s_{4}, u_{2}, u_{3}\right)
$$

Parallel unprojection of these four divisors gives a codimension 6 Gorenstein subvariety $W \subset \mathbb{A}_{\left\langle u_{1} \ldots 4, v_{1} \ldots, s_{1 \ldots 4}, a_{1} \ldots 4\right.}^{16}$ with a 20×66 resolution, by standard application of the Kustin-Miller unprojection theorem. The full set of equations is obtained as follows. Each individual
unprojection variable v_{i} is adjoined by a pentagram, giving three linear unprojection equations such as

$$
\left(\begin{array}{ccc}
u_{2} & a_{1} s_{4} u_{1} & -a_{3} s_{2} s_{3} \tag{5.1}\\
& -v_{1} \\
u_{3} & s_{1} & -a_{4} s_{3} s_{4} \\
& u_{4} & a_{2} s_{2} u_{2} \\
& & u_{1}
\end{array}\right) \quad \begin{aligned}
& s_{1} v_{1}=u_{1} u_{2}-a_{3} a_{4} s_{2} s_{3}^{2} s_{4} \\
& u_{4} v_{1}=a_{1} s_{4} u_{1}^{2}+a_{2} a_{3} s_{2}^{2} s_{3} u_{2} \\
& u_{3} v_{1}=a_{1} a_{4} s_{3} s_{4}^{2} u_{1}+a_{2} s_{2} u_{2}^{2}
\end{aligned}
$$

In addition, there are 6 bilinear equations for $v_{i} v_{j}$, making $2+4 \times 3+6=$ 20 equations. Four of these also come from pentagrams, the first of which gives

$$
\begin{equation*}
v_{1} v_{2}=a_{2} u_{2}^{3}+a_{1} a_{3} a_{4}^{2} s_{3}^{3} s_{4}^{3} \tag{5.2}
\end{equation*}
$$

whereas the remaining two are "long equations"

$$
\begin{aligned}
& v_{1} v_{3}=a_{1} a_{4} s_{4}^{3} v_{4}+a_{2} a_{3} s_{2}^{3} v_{2}+3 a_{1} a_{2} a_{3} a_{4} s_{1} s_{2}^{2} s_{3} s_{4}^{2} \\
& v_{2} v_{4}=a_{1} a_{2} s_{1}^{3} v_{1}+a_{3} a_{4} s_{3}^{3} v_{3}+3 a_{1} a_{2} a_{3} a_{4} s_{1}^{2} s_{2} s_{3}^{2} s_{4}
\end{aligned}
$$

that can be computed using syzygies.
The construction has 4 -fold cyclic symmetry (1234), apparent in the picture

We view the v_{i} as tagged by 1 and annotated by s_{i} (by the first equation of (5.1)), and the u_{i} as tagged by 3 and annotated by a_{i} (by (5.2)). We get Gorenstein projections on eliminating any subset of the v_{i}, but we can only eliminate u_{i} after projecting out the neighbouring v_{i-1} and v_{i}.

We use this variety as a model for diptych varieties. The diptychs with $d e=3$ and $k=4,5$ of 5 arise by pullback from W on making the
following substitutions:

$$
\begin{array}{cllll}
& v_{1}=x_{1} & u_{1}=x_{0} & a_{1}=L & s_{1}=1 \\
\text { Case }[3,1,3,1]: & v_{2}=x_{3} & u_{2}=x_{2} & a_{2}=1 & s_{2}=1 \\
v_{3}=y_{2} & u_{3}=x_{4} & a_{3}=A & s_{3}=B \\
& v_{4}=y_{0} & u_{4}=y_{1} & a_{4}=1 & s_{4}=M \\
& v_{1}=x_{2} & u_{1}=x_{1} & a_{1}=1 & s_{1}=1 \\
\text { Case }[1,3,1,3]: & v_{2}=x_{4} & u_{2}=x_{3} & a_{2}=1 & s_{2}=A \\
& v_{3}=z & u_{3}=y_{1} & a_{3}=B & s_{3}=1 \\
& v_{4}=x_{0} & u_{4}=y_{0} & a_{4}=M & s_{4}=L \\
& & & & \\
\text { Case }[3,1,3,1,3]: & v_{1}=x_{1} & u_{1}=x_{0} & a_{1}=L & s_{1}=1 \\
& v_{2}=x_{3} & u_{2}=x_{2} & a_{2}=1 & s_{2}=1 \\
& v_{3}=x_{5} & u_{3}=x_{4} & a_{3}=1 & s_{3}=A \\
v_{4}=y_{0} & u_{4}=y_{1} & a_{4}=B & s_{4}=M
\end{array}
$$

where, in the second case, $z=y_{0} y_{1}-A L$ is a redundant generator.

References

[Dip] The diptych varieties website:
homepages.warwick.ac.uk/staff/G.Brown/diptych.html
contains auxiliary material, other papers in this series, homework exercises and Magma code for the calculations in this paper.
[AH] K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006) 557-607
[BR1] G. Brown and M. Reid, Diptych Varieties. I, Proc. Lond. Math. Soc. 107 (2013) 1353-1394
[BR3] G. Brown and M. Reid, Diptych varieties. III: Redundant generators, in preparation, currently 10 pp . Available from website [Dip]
[BR4] G. Brown and M. Reid, Diptych varieties. IV: Mori flips of type A, in preparation, currently 18 pp . Available from [Dip]
[TJ] G. Brown, M. Kerber and M. Reid, Fano 3-folds in codimension 4, Tom and Jerry, Part I, Compositio Math 148 (2012) 1171-1194
[CR] A. Corti and M. Reid, Weighted Grassmannians, in Algebraic geometry, de Gruyter (2002) 141-163
[D] Duncan Dicks, Surfaces with $p_{g}=3, K^{2}=4$ and extension-deformation theory, Warwick PhD thesis, September 1988, 125 + v pp.
[Du] Tom Ducat, Mori extractions from a singular curve in a smooth 3-fold, Univ. of Warwick PhD thesis, July 2015, 108 + ix pp.
[PR] S. Papadakis and M. Reid, Kustin-Miller unprojection without complexes, J. Algebraic Geom. 13 (2004) 563-577.
[QS] M.I. Qureshi and B. Szendrői, Constructing projective varieties in weighted flag varieties, Bull. Lond. Math. Soc., 43 (2011) 786-798
[Ma] Magma (John Cannon's computer algebra system): W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comp. 24 (1997) 235-265. Use online at
magma.maths.usyd.edu.au/calc/
[M] S. Mori, On semistable extremal neighborhoods, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math. 35 (2002) 157-184.
[PN] S. Papadakis and J. Neves, Parallel Kustin-Miller unprojection with an application to Calabi-Yau geometry, Proc. Lond. Math. Soc. 106 (2013) 203-223
[R1] M. Reid, Surfaces with $p_{g}=3, K^{2}=4$ according to E. Horikawa and D. Dicks, in Proc. of Algebraic geometry mini-symposium (Tokyo Univ., Dec 1989, distributed in Japan only) 1-22, get from
www.warwick.ac.uk/staff/Miles.Reid/surf/more/Dicks.pdf
[R2] M. Reid, Fun in codimension 4, in preparation, 24 pp ., get from www.warwick.ac.uk/staff/Miles.Reid/3folds/Fun.pdf
[R3] M. Reid, Gorenstein in codimension 4 - the general structure theory, Algebraic Geometry in East Asia (Taipei Nov 2011), Adv. Stud. Pure Math. 65 (2015) 201-227
[Ki] M. Reid, Graded rings and birational geometry, in Proc. of algebraic geometry symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), 1-72. Available from [Dip]
[R] O. Riemenschneider, Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel), 37 (1981) 406-417

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
E-mail address: G.Brown@warwick.ac.uk, Miles.Reid@warwick.ac.uk

