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A note on acylindrical hyperbolicity of Mapping
Class Groups

Piotr Przytycki and Alessandro Sisto

Abstract.

The aim of this note is to give the simplest possible proof that
Mapping Class Groups of closed hyperbolic surfaces are acylindrically
hyperbolic, and more specifically that their curve graphs are hyperbolic
and that pseudo-Anosovs act on them as loxodromic WPDs.

§1. Introduction

Following Osin [Osi15], we say that a group is acylindrically hyper-
bolic if it is not virtually cyclic and it acts on a (Gromov-)hyperbolic
space non-trivially in the sense that there is a loxodromic WPD (weakly
proper discontinuous) element. Recall that an element g of a group act-
ing on a metric space X is loxodromic if for each x ∈ X there exists ε > 0
such that for any integer n we have dX(x, gnx) ≥ ε|n|. Also, g is WPD
if, given any x ∈ X and any R ≥ 0, for any sufficiently large n there
are only finitely many elements h ∈ G satisfying dX(x, hx) ≤ R and
dX(gnx, hgnx) ≤ R. The notion of WPD element is due to Bestvina–
Fujiwara [BF02].

Acylindrical hyperbolicity has strong consequences: All acylindri-
cally hyperbolic groups are SQ-universal, contain free normal sub-
groups [DGO11], contain Morse elements and hence have cut-points in
all asymptotic cones [Sis15], and have infinite dimensional bounded co-
homology in degrees 2 [HO13] and 3 [FPS13]. Moreover, acylindrically
hyperbolic groups without finite normal subgroups have simple reduced
C∗-algebra [DGO11] and their commensurating endomorphisms are in-
ner automorphisms [AMS13].

Mapping Class Groups of closed surfaces of genus at least 2 are
among the motivating examples of acylindrically hyperbolic groups. A
natural hyperbolic space on which the Mapping Class Group MCG(S)
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of the surface S as above acts is the curve graph C(S) of S. The vertices
of C(S) are isotopy classes of essential simple closed curves on S, and
two isotopy classes are joined by an edge (of length 1) if they contain
disjoint representatives. From now on a curve means the isotopy class
of an essential simple closed curve on S, and we say that two curves
are disjoint (resp. intersecting ≤ M times) if they can be represented
disjointly (resp. intersecting ≤ M times).

The fact that C(S) is hyperbolic was proved by Masur–
Minsky [MM99], who also proved that any pseudo-Anosov element acts
loxodromically, while the fact that any pseudo-Anosov is WPD is due
to Bestvina–Fujiwara [BF02]. (Bowditch proved a stronger property,
namely acylindricity [Bow08].)

As it turns out, there are relatively simple proofs of all these facts,
which we present in this note. We think that a result as important as
the acylindrical hyperbolicity of Mapping Class Groups deserves such
a(n almost) self-contained account.

In Section 2 we show that curve graphs are hyperbolic (Theo-
rem 2.1), while in Section 3 we show that pseudo-Anosovs are loxodromic
(Corollary 3.7) and WPD (Corollary 3.9).

§2. Curve graphs are hyperbolic

Here is the main theorem of the section.

Theorem 2.1. Let S be a closed orientable surface of genus at
least 2. Then its curve graph C(S) is hyperbolic.

Our proof is inspired by the one in [HPW15]. It also yields uniform
hyperbolicity (since in Proposition 2.2 the hyperbolicity constant of X
is bounded in terms of D only), but we do not record it in this note.

We will actually prove hyperbolicity of the augmented curve graph
Caug(S), the metric graph with the same vertex set as C(S) and edges
connecting pairs of curves that intersect at most twice. Notice that
Caug(S) is quasi-isometric to C(S). This follows from the fact that two
curves that intersect at most twice have a common neighbour in C(S):
the neighbourhood of their union is a non-closed surface of Euler charac-
teristic ≥ −2, whence of genus ≤ 1, and thus has an essential boundary
component.

We will use the following criterion for hyperbolicity due to Masur–
Schleimer [MS13]. A one page proof is available in [Bow14]. Here ND(η)
denotes the D-neighbourhood of a subset η of a metric space.
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Proposition 2.2. Let X be a metric graph, and let D ≥ 0. Suppose
that to every pair of vertices x, y ∈ X(0) we have assigned a connected
subgraph η(x, y) containing x and y in such a way that

(1) for all x, y ∈ X(0) with dX(x, y) ≤ 1 we have diamX(η(x, y)) ≤
D,

(2) for all x, y, z ∈ X(0) we have η(x, y) ⊆ ND

(
η(x, z) ∪ η(z, y)

)
.

Then X is hyperbolic.

In our proof of Theorem 2.1, the sets η(·, ·) will be spanned by the
following curves.

Definition 2.3. (Bicorn curves) Let a and b be curves on S. Con-
sider their representatives on S in minimal position (i.e. intersecting a
minimal number of times); we will call them also a and b slightly abusing
the notation. Recall that minimal position is unique up to isotopy.

A curve c is a bicorn curve between a and b if either c = a or c = b
or c is represented by the union of an arc a′ of a and an arc b′ of b, which
we call the a-arc and the b-arc of c. If c = a, then its a-arc is a and
its b-arc is empty, similarly if c = b, then its b-arc is b and its a-arc is
empty.

Notice that whenever we have arcs a′ of a and b′ of b that only
intersect at their endpoints, such arcs define a (bicorn) curve which is
essential, because a and b are in minimal position.

Also, notice that, given a and b, there are only finitely many bicorn
curves between a and b.

Lemma 2.4. Let a and b be curves on S, and let η(a, b) be the full
subgraph in Caug(S) spanned by all bicorn curves between a and b. Then
η(a, b) is connected.

In the proof, we will use the following order on the set of bicorn
curves.

Definition 2.5. Fix curves a, b. For c and c′ bicorn curves between
a and b, we write c < c′ if the b-arc of c′ strictly contains the b-arc of c.

Proof of Lemma 2.4. All bicorn curves in this proof are bicorn
curves between a and b.

We claim that if c is a bicorn curve and c �= b, then there exists a
bicorn curve c′ such that c < c′ and c′ is a neighbour of c in Caug(S).
Since the set of bicorn curves is finite, the claim implies that η(a, b) is
connected.

We now justify the claim. Let c �= b be a bicorn curve. First, if c
and b intersect at most twice, then we can take c′ = b, so let us assume
that this is not the case.
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If c = a, then let b′ be a minimal arc of b whose both endpoints lie
in a. Let c′ be any of the two bicorn curves defined by b′ and an arc
of a with the same endpoints. It is easy to check that the intersection
number of a and c′ is at most 1, and clearly c < c′.

If c �= a with a-arc a′ and b-arc b′, then consider a minimal arc
b′′ � b′ with both endpoints in a′. The arc b′′ and the subarc a′′ of
a′ with the same endpoints as b′′ define a new bicorn curve c′ with
c < c′ and intersection number at most 1 with c. This justifies the
claim. Q.E.D.

The following lemma says that bicorn curve triangles are 1-slim.

Lemma 2.6. Let a, b and d be curves and let c be a bicorn curve
between a and b. Then there is a bicorn curve c′ between a and d or
between b and d that intersects c at most twice.

Proof. If the intersection number of c and d is at most 2, then we
can take c′ = d. Otherwise, again slightly abusing the notation, we
consider representatives a, b and d on S pairwise in minimal position.

We claim that there is an arc d′ of d intersecting a′ (or b′) only
at its endpoints and either intersecting b′ (resp. a′) at most once, or
intersecting it exactly twice: at the endpoints. Indeed, to justify the
claim it suffices to take the minimal arc d′ of d with both endpoints in
a′ or both endpoints in b′; such an arc exists since d intersects c at least
3 times.

Let d′ be the arc guaranteed by the claim and assume without loss
of generality that its endpoints lie in a′. Then d′ and the subarc of a′

with the same endpoints as d′ define a bicorn curve c′ between a and d,
and c′ intersects c at most twice, as desired. Q.E.D.

Proof of Theorem 2.1. For vertices a, b of Caug(S), we define η(a, b)
to be the full subgraph spanned in Caug(S) by the bicorn curves be-
tween a and b, as in Lemma 2.4. Clearly, η(a, b) contains a and b. By
Lemma 2.4, the subgraph η(a, b) is connected, as required in Proposi-
tion 2.2.
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Hypothesis (1) of Proposition 2.2 is obviously satisfied with D = 1.
Hypothesis (2) of Proposition 2.2 is satisfied with D = 1 by Lemma 2.6.
Thus by Proposition 2.2, the graph Caug(S) is hyperbolic. Q.E.D.

§3. Pseudo-Anosovs are loxodromic WPD

3.1. Notation

Throughout the section we fix a pseudo-Anosov homeomorphism
φ : S → S, where S is a closed surface. We will use some well-known
facts about pseudo-Anosovs discovered by Thurston [Thu88]. Recall
that φ comes with a one-parameter family of locally CAT(0) Euclidean
metrics with singularities {dt}t∈R on S. We denote the length of the
path α with respect to the metric dt by lt(α). The metrics {dt} have
the following properties:

• the finitely many singularities of the metrics coincide and they
are invariant under φ.

• the metrics all have the same geodesics, up to reparametrisa-
tion.

• the push-forward of dt by φ is dt+1.
• S has two transverse singular foliations, called the horizontal
and the vertical foliation, that form an angle of π/2 at every
non-singular point with respect to any Euclidean structure dt.

• the singularities have cone angle larger than 2π with respect
to any Euclidean structure dt, and in particular the metrics dt
are locally CAT(0).

• φ preserves the horizontal and the vertical foliation, and there
exists λ > 1 so that if α is a subpath of the horizontal (resp.

vertical) foliation then lt(α) = λt−t′ lt′(α) (resp. lt(α) =

(1/λ)t−t′ lt′(α)).
• any half-leaf of either foliation is dense in S.
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A saddle connection is either a closed geodesic or a geodesic on S
whose intersection with the singular set consists of its endpoints. Note
that a saddle connection cannot be contained in the horizontal or the
vertical foliation. The balanced time β(γ) of a saddle connection γ is the
only t ∈ R such that lt(γ) is minimal, or, equivalently, the only t such
that γ forms an angle of π/4 with the horizontal and vertical foliations
with respect to the metric dt at any point in its interior. It should be
mentioned that the balanced time also plays a role in [MM99], where
arguments of a similar nature to the ones below are used.

Definition 3.1. Given a curve c, we denote by S(c) the set of all
saddle connections contained in the geodesic representative of c with
respect to a (hence any) metric dt, each counted with multiplicity.

Moreover, we denote by β(c) the average over all γ ∈ S(c) (counted
with multiplicity) of the balanced time of γ.

Remark 3.2. The map β is clearly φ-equivariant, meaning that for
every curve c we have β(φ(c)) = β(c) + 1.

In fact, due to Lemmas 3.3 and 3.4, any function β(c) with values
between minγ∈S(c) β(γ) and maxγ∈S(c) β(γ) satisfying Remark 3.2 would
work for our purposes.

We will be interested in points of transverse intersection of pairs
of saddle connections. Note that an intersection point of the saddle
connections γ1 and γ2 is not a point of transverse intersection if and
only if it is either a common endpoint of γ1 and γ2 or an interior point
of γ1 = γ2.

3.2. Preliminary lemmas

In both lemmas below, part 2) will be a (technical) generalisation of
part 1). We will use parts 1) to show that φ is loxodromic and part 2)
to show that it is WPD. Hence, on first reading, the reader may wish to
read parts 1), then the proof that φ is loxodromic and only afterwards
move on to parts 2) and the proof that φ is WPD.

Lemma 3.3. There exists a constant C so that

(1) if the saddle connections γ1 and γ2 do not have points of trans-
verse intersection, then |β(γ1)− β(γ2)| ≤ C.

(2) for each M there exists D with the following property. If the
saddle connections γ1 and γ2 satisfy |β(γ1) − β(γ2)| ≥ C and
lβ(γ1)(γ2) ≥ D, then γ1 and γ2 have at least M points of trans-
verse intersection.

Proof. We will say that a geodesic in a (hence any) metric dt is
Euclidean if it intersects the singular set at most at the endpoints. Notice
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that such a geodesic forms a well-defined angle with the horizontal and
vertical foliation with respect to any metric dt.

Let γ1 and γ2 be saddle connections. From now on, lengths and
angles will be measured in the metric d0.

Up to using the action of φ, we can assume that the balanced time of
γ1 is within 0 and 1, so that (in the metric d0) the angle that γ1 forms
with both the horizontal and the vertical foliation is bounded below
by some ε > 0 depending only on the pseudo-Anosov φ. Also, by the
discreteness of the singular set, up to decreasing ε we can assume that
the length of γ1 is ≥ ε.

Now, by the compactness of S and since half-leaves of both foliations
are dense, there exists δ > 0 so that any Euclidean geodesic γ with
length ≥ 1/δ forming an angle ≤ δ with either the horizontal or vertical
foliation intersects transversally every Euclidean geodesic of length ≥ ε
that forms an angle ≥ ε with both foliations.

We can now prove 1). Whenever |β(γ2)| is large enough, the angle
that γ2 forms with one of the foliations is ≤ δ. Moreover, notice that
there is a uniform (in t) lower bound on the length of a saddle connection
in a metric dt, since each dt is isometric to some dt′ with t′ ∈ [0, 1). In
particular, for |β(γ2)| large enough, the length of γ2 is ≥ 1/δ. We
can thus apply the above statement with γ = γ2 and conclude that γ2
intersects γ1 transversally, as desired.

In order to prove 2), notice that whenever |β(γ2)| is large enough
and γ2 is sufficiently long, then we can split it into several γ’s as above.

Q.E.D.

Lemma 3.4. (1) If the curves c1 and c2 are disjoint (includ-
ing the case c1 = c2) then no saddle connection of S(c1) inter-
sects transversally a saddle connection of S(c2).

(2) Let c1 and c2 be curves and let γ1
1 , . . . , γ

k
1 ∈ S(c1), γ2 ∈ S(c2)

be saddle connections so that γi
1 and γ2 intersect transversally

at Mi points. Then the intersection number of c1 and c2 is at
least

∑
Mi.

Proof. Let us prove 1) first. Let α1 and α2 be the geodesic repre-
sentatives of c1 and c2. Suppose that α1 contains a saddle connection
that intersects transversally a saddle connection contained in α2. We
can lift α1 and α2 to the universal cover of (S, d0) to two bi-infinite
geodesics α̃1 and α̃2 that intersect transversally at a point. The univer-
sal cover of (S, d0) is a CAT(0) space quasi-isometric to H2. Thus α̃1

and α̃2 intersect exactly once and moreover the points at infinity of α̃1

separate the points at infinity of α̃2. Thus any representatives of c1 and
c2 intersect, a contradiction.
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To prove 2), we can proceed similarly and this time find M =
∑

Mi

lifts α̃1
1, . . . , α̃

M
1 each intersecting transversally α̃2, in distinct orbits of

the stabiliser of α̃2 in π1(S) (regarded as the group of deck transforma-
tions). The conclusion follows. Q.E.D.

3.3. Pseudo-Anosovs are loxodromic

Proposition 3.5. The balanced time map β : C(S)(0) → R from
Definition 3.1 is coarsely Lipschitz, namely there exists L ≥ 1 so that
for all curves c1 and c2 we have

|β(c1)− β(c2)| ≤ LdC(S)(c1, c2).

Proof. It is enough to show that there exists L so that |β(c1) −
β(c2)| ≤ L when c1 and c2 are disjoint. By Lemma 3.4, no γ ∈ S(ci)
intersects transversally a γ′ ∈ S(cj), for i, j ∈ {1, 2}. Hence, we get
|β(γ) − β(γ′)| ≤ C for C as in Lemma 3.3. Thus we can take L =
C. Q.E.D.

Remark 3.6. Notice that we have also just proved that for any
curve c and any γ ∈ S(c) we have |β(γ)− β(c)| ≤ C for C as in Lemma
3.3.

Corollary 3.7. φ acts loxodromically on the curve graph.

Proof. Recall from Remark 3.2 that β is φ-equivariant, meaning
that for every curve c we have β(φ(c)) = β(c) + 1. Hence, in view of
Proposition 3.5, for any fixed curve c and integer n we have

dC(S)(c, φ
n(c)) ≥ |β(φn(c))− β(c)|/L = |n|/L,

so that φ is loxodromic as required. Q.E.D.

3.4. Pseudo-Anosovs are WPD

To simplify notation, we will denote cn = φn(c) for any curve c.

Proposition 3.8. For every curve c and R ≥ 0 the following holds.
For every sufficiently large n there are only finitely many curves of the
form hc or hcn where h ∈ MCG(S) satisfies dC(S)(c, hc) ≤ R and
dC(S)(cn, hcn) ≤ R.

Proof. Let us show finiteness of the set of curves of the form hcn,
since finiteness of the set of curves of the form hc can be proven sym-
metrically.

Our aim is to show that whenever n is large enough we can bound
lt(hcn) (meaning the length of the geodesic representative) with t = β(c).
Once we do this, we get that there are finitely many possible hcn’s since
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there are only finitely many geodesics whose length with respect to dt is
bounded above by any given constant.

We now have to choose constants carefully. Let C be as in
Lemma 3.3 and L be the coarsely Lipschitz constant for β as in Proposi-
tion 3.5. Suppose that n ≥ 2LR+3C, and let M − 1 be the intersection
number of c and cn. Finally, let D be as in Lemma 3.3 for the given M ,
and let D′ = λLR+CMD.

Now, assume by contradiction lt(hcn) ≥ D′. Notice that by Propo-
sition 3.5 we have |β(hc) − β(c)| ≤ LR and |β(hcn) − β(cn)| ≤ LR, so
that

|β(hc)− β(hcn)| ≥ |β(c)− β(cn)| − 2LR ≥ n− 2LR ≥ 3C.

In particular, for every γ ∈ S(hc) and γn ∈ S(hcn) we have |β(γ) −
β(γn)| ≥ C by Remark 3.6.

First, suppose that S(hcn) contains at least M elements. Notice
that each saddle connection in S(hcn) intersects transversally any saddle
connection in S(hc) by Lemma 3.3-(1). Hence, by Lemma 3.4-(2) the
intersection number of hc and hcn is at least M , a contradiction.

Otherwise, there exists γn ∈ S(hcn) such that lt(γn) ≥ D′/M . Pick
any γ ∈ S(hc). Then, since |t−β(γ)| ≤ |β(c)−β(hc)|+ |β(hc)−β(γ)| ≤
LR+ C (by Proposition 3.5 and Remark 3.6), we have

lβ(γ)(γn) ≥ lt(γn)λ
−LR−C ≥ D.

Hence, by Lemma 3.3-(2), γ and γn intersect transversally at least M
times, so that by Lemma 3.4-(2) the intersection number of hc and hcn
is at least M , a contradiction. Q.E.D.

Recall that φ ∈ MCG(S) is WPD (for the action on C(S)) if, given
any curve c and any R ≥ 0, for any sufficiently large n there are only
finitely many elements h ∈ MCG(S) satisfying dC(S)(c, hc) ≤ R and
dC(S)(cn, hcn) ≤ R.

Corollary 3.9. φ is WPD.

Proof. Fix any curve c and any R ≥ 0. For n sufficiently large the
curves c and cn form a filling pair, that is, the complementary regions
of the union of the representatives of c and cn in minimal position are
discs. By Proposition 3.8, there are finitely many possibilities for b = hc
and bn = hcn. Since the complementary regions of c ∪ cn are disks, for
fixed b and bn there are only finitely many h satisfying hc = b, hcn = bn.
Hence, there are finitely many possibilities for h, as required. Q.E.D.
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