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Geometric inflexibility of hyperbolic cone-manifolds

Jeffrey Brock and Kenneth Bromberg

Abstract.

We prove 3-dimensional hyperbolic cone-manifolds are geometri-
cally inflexible: a cone-deformation of a hyperbolic cone-manifold de-
termines a bi-Lipschitz diffeomorphism between initial and terminal
manifolds in the deformation in the complement of a standard tubular
neighborhood of the cone-locus whose pointwise bi-Lipschitz constant
decays exponentially in the distance from the cone-singularity. Esti-
mates at points in the thin part are controlled by similar estimates on
the complex lengths of short curves.

§1. Introduction

In our earlier paper [BB2], we developed an explicit realization of the
qualitative idea that deformations at infinity of hyperbolic 3-manifolds
have effect on the internal geometry that decays exponentially fast with
the depth in the convex core. This notion of geometric inflexibility,
suggested by McMullen and exhibited in the restrictive setting of injec-
tivity bounds, proved sufficiently robust to give a new analytic proof of
Thurston’s Double-Limit Theorem for iteration of pseudo-Anosov map-
ping classes and a new “stand-alone” proof of the hyperbolization theo-
rem for 3-manifolds that fiber over the circle with pseudo-Anosov mon-
odromy.

This paper extends our inflexibility results to the setting where the
change in the geometry is the result of a “cone-deformation,” in which
the cone-angle at a closed, geodesic singular locus is changed while the
conformal structure at infinity is held fixed. Our results control the
best pointwise bi-Lipschitz constant outside of a tubular neighborhood
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of the singular locus in domain and range. The optimal bi-Lipschitz con-
stant decays to 1 exponentially fast with the distance from the tubular
neighborhood of the singular locus.

Theorem 1.1. Given α0, L,K, ε > 0 and B > 1 there exists an
R > 0 and a d > 0 such that the following holds. Let (M, gα) be a
geometrically finite hyperbolic cone-manifold with all cone-angles α < α0

and the length of the singular locus is at most L. Then there exists a
one-parameter family of geometrically finite hyperbolic cone-manifolds
(M, gt) defined for t ∈ [0, α] so that each component of the singular locus
of (M, gt) has cone-angle t and the conformal boundary is the same as
the conformal boundary of (M, gα) so that the following holds:

(1) If Uα is the R-tubular neighborhood of the singular locus in
(M, gα) and Ut is a tubular neighborhood of the singular locus
in (M, gt) such that area(∂Ut) = area(∂Uα), then there exists
B-bi-Lipschitz diffeomorphisms

φt : Mα\Uα → Mt\Ut

such that φt is the identity map on M in the ε-thick part of
Mα.

(2) If p is in the ε-thick part of (M, gα) then the pointwise bi-
Lipschitz constant of the maps

φt : Mα → Mt

satisfies

log bilip(φt, p) ≤ C1e
−C2dα(p,Mα\Uα)

where the constants C1 and C2 depend on the α0, L,K, ε and B.

Similar techniques control the behavior of the complex lengths of
short geodesics in the manifold under the cone deformation, and once
again the distortion decays exponentially in the distance from the tubu-
lar neighborhood of the cone-singularity.

Theorem 1.2. Let Mt = (M, gt) be the one parameter family of
geometrically finite cone-manifolds given by Theorem 1.1. Let γ be an
essential simple closed curve in M and γt its geodesic representatives
in Mt. Assume that �α(γ) < � for some � > 0. Then there exists
constants C1 and C2 depending on the constants α0, L,K, ε and B from
Theorem 1.1 and on � such that the following holds:
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(1) If ε ≤ �α(γ) ≤ � then∣∣∣∣log �t(γ)

�α(γ)

∣∣∣∣ ≤ C1e
−C2dα(γα,Uα).

(2) If �α(γ) ≤ ε/B then∣∣∣∣log �t(γ)

�α(γ)

∣∣∣∣ ≤ C1e
−C2dα(Uα

ε (γ),Uα).

The idea that complete hyperbolic 3-manifolds are increasingly in-
flexible as one takes basepoints deeper and deeper in the convex core is a
natural outgrowth of Mostow and Sullivan rigidity. McMullen made this
qualitative notion precise in the presence of injectivity bounds in [Mc],
but his method made strong use of geometric limit arguments possible
only in the complete setting. Our original argument for the complete
case in [BB2] shows this pointwise exponential decay for points out-
side the thin part, which is an optimal result (each tubular thin part is
controlled using the complex lengths of the core geodesics).

Here, the cone-deformation version generalizes the cone-rigidity the-
orems of Hodgson-Kerckhoff [HK1] and the second author, and enhances
the bi-Lipschitz metric control away from the cone locus obtained in
[BB1] to give explicit decay estimates in terms of the distance from a
standard tubular neighborhood of the cone locus.

Inflexibility and ending laminations. Geometric inflexibility has
provided a range of new tools to analyze the geometry and deforma-
tion theory of hyperbolic 3-manifolds. A key application of the work
in the present paper will be an approach to the geometric classifica-
tion of finitely generated Kleinian groups via their ending laminations,
combinatorial invariants that are naturally associated to infinite vol-
ume geometric ’ends’ of the convex core of a hyperbolic 3-manifold with
finitely generated fundamental group, which we briefly describe. The
ending lamination records the asymptotics of simple closed curves on
a surface cutting of an end of a hyperbolic 3-manifold, whose geodesic
representatives in the 3-manifold have an a priori length bound (and
therefore must exit the end of the convex core).

A Theorem of Minsky [Min] guarantees that for any hyperbolic 3-
manifold M in a Bers slice BY with the ending lamination λ there is
an almost canonical (up to bounded choice at each stage) sequence of
pants decompositions Pn → λ that arises with uniformly bounded total
length �M (Pn) < L in M .

The notion of grafting [Brm3, BB1] may be employed with a cover-
ing argument similar to that of [BS], to allow us to drill the curves in Pn
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in M with a cone-deformation that sends the cone angle to zero. This
produces a maximal cusp Cn ∈ BY , and as the pants decompositions Pn

move deeper and deeper into the convex core, the inflexibility theorem
guarantees that the cone-deformations deform the geometry of a com-
pact core M in a manner that decays with the distance of the geodesic
representatives of the curves in Pn from M. It follows that Cn limits to
M , and as Pn depend only on λ, the lamination λ determines M . We
take up this approach in [BBES].

Acknowledgements. We thank the referee for a careful reading of
the manuscript and many helpful suggestions for its improvement. We
gratefully acknowledge the support of the National Science Foundation.

§2. Deformations

Let (M, gt) be a one-parameter family of Riemannian manifolds.
The time zero derivative η of this family of metrics is given by the
formula

dgt(v, w)

dt
|t=0 = 2g(η(v), w).

This derivative is a symmetric tensor of type (1, 1). We can define a
pointwise norm of η by fixing an orthonormal basis {e1, . . . , en} for TpM
and setting

‖η‖2 =
∑
i

g(η(ei), η(ei)).

As the L2-norm bounds the sup norm we have the inequality

‖η(v)‖ ≤ ‖η‖‖v‖
which will be useful in controlling the change in geometry throughout
the flow.

In this paper we will be interested in the case when (M, gt) is a family
of hyperbolic 3-manifolds and the derivative η is a harmonic strain field.
Loosely speaking, η is harmonic if it locally minimizes the L2-norm.
Here is a precise definition. Every point p in M has a chart U and a
smooth family of maps φt : U → H

3 such that on U the hyperbolic
metric gt is the φt-pullback of the hyperbolic metric on H3. For each
q ∈ U , φt(q) is a smooth path in H

3 and the time zero tangent vector of
this path defines a vector field on φ0(U). Let v be the φ0-pullback of this
vector to U . If D is the covariant derivative for g then η = symDv. The
infinitesimal change in volume is measured by the trace of symDV , the
divergence of the vector field. The traceless, symmetric part, sym0 Dv
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is the strain of v and it measures the infinitesimal change in conformal
structure. A vector field is harmonic if it satisfies the equation

D∗Dv + 2v = 0

where D∗ is the formal adjoint of D. While it might be more natural to
define v to be harmonic when D∗Dv = 0 we include the 0-th order term
as we want infinitesimal isometries to be harmonic. This extra term
comes from the fact that the Ricci curvature of hyperbolic space is −2.
We then say that η is a harmonic strain field if η = symDv where v is
a divergence free, harmonic vector field.

On a hyperbolic 3-manifold with boundary, a global bound on the
norm of a harmonic strain field leads to exponential decay, in distance
from the boundary, of the pointwise norm in the thick part of the man-
ifold. Before we state the main results from [BB2] we make some more
definitions. Let Mt = (M, gt) be a one-parameter family of hyperbolic

3-manifolds. Then M≥ε
t is the ε-thick part of Mt, those points where the

injectivity radius is ≥ ε. Here is a key structural theorem from [BB2].

Theorem 2.1. Let gt be a one-parameter family of hyperbolic met-
rics on a 3-manifold M with t ∈ [a, b]. Let ηt be the time t derivative of
the metrics gt and let Nt be a family of submanifolds of M such that ηt
is a harmonic strain field on Nt. Also assume that∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K2

for some K > 0. Let p be a point in M such that for all t ∈ [a, b], p is

in M≥ε
t and

dMt(p,M\Nt) ≥ d

where d > ε. Then

log bilip(Φt, p) ≤ (t− a)KA(ε)e−d

where Φt is the identity map from Ma to Mt,

A(ε) =
3eε

√
2 vol(B)

4πf(ε)

and
f(ε) = cosh(ε) sin(

√
2ε)−

√
2 sinh(R) cos(

√
2R).

In the thin part of the manifold, close to a short geodesic, we lack
this level of control. Instead, we control the length of the short geodesic
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where the change will decay exponentially in the depth of certain tubu-
lar neighborhoods of the short curves. More specifically, given a short
geodesic γ we will measure the depth of a tubular neighborhood U of γ
where the area of ∂U is bounded below.

Theorem 2.2. Let gt be a one-parameter family of hyperbolic met-
rics on a 3-manifold M with t ∈ [a, b]. Let ηt be the time t derivative of
the metrics gt and let Nt be a family of submanifolds of M such that ηt
is a harmonic strain field on Nt. Also assume that∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K2

for some K > 0. Let γt be the geodesics representative on (M, gt) of a
closed curve γ and let �γ(t) be the length of γ.

(1) Assume that γt is in M≥ε
t for all t ∈ [a, b], and that

dMt(γt,M\Nt) ≥ d.

Then ∣∣∣∣log �γ(b)

�γ(a)

∣∣∣∣ ≤ √
2/3A(ε)(b− a)Ke−d.

(2) Assume γt has a tubular neighborhood Ut of radius ≥ R and
the area of ∂Ut is ≥ B. Also assume that

dMt(Ut,M\Nt) ≥ d

for all t ∈ [a, b]. Then∣∣∣∣log �γ(b)

�γ(a)

∣∣∣∣ ≤ C(R)(b− a)Ke−d

√
B

where

1/C(R) = 2 tanhR

(
2 +

1

cosh2 R

)
.

The Margulis lemma provides an embedded tubular neighborhood
about a sufficiently short geodesic in a hyperbolic 3-manifold: there is
a ε0 such that if γ is a primitive closed geodesic and length(γ) < ε < ε0
then the component of the ε-thin part that contains γ will be a tubular
neighborhood which we denote Uε(γ). This is the ε-Margulis tube about
γ and the area of ∂Uε(γ) is bounded below by πε2. In particular we can
apply (2) of the above theorem to such tubes. In this paper, we will
be studying singular hyperbolic manifolds so we will need to adapt this
slightly to find our tubes.
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§3. Cone-manifolds

We now turn our attention to deformations of hyperbolic cone-
manifolds. We begin with a definition. We let H̃3 be the set

{(r, θ, z)|r > 0, θ, z ∈ R}
with the incomplete Riemannian metric

dr2 + sinh2 rdθ2 + cosh2 rdz2.

Then H̃
3 is isometric to the lift to the universal cover of the hyperbolic

metric on H3 \ � where � is a complete geodesic. For each α > 0, let

H3
α be the metric completion of the quotient of H̃3 under the isometry

(r, θ, z) �→ (r, θ + α, z). Note that H
3
α is a topological ball. Let N be

a compact 3-manifold with boundary and g a complete metric on the
interior of N . The metric g is a hyperbolic cone-metric if every point
in the interior of N has a neighborhood isometric to a neighborhood of
a point in H

3
α for some α > 0. The pair (N,h) is a hyperbolic cone-

manifold. Let C be the subset of N where the metric h is singular. Then
C will be a collection of isolated simple curves in N . In this paper we
will assume that C is compact which implies that it is a finite collection
of disjoint simple closed curves.

Let c be a component of C. Then there is a unique α > 0 such that
each point p in c has a neighborhood isometric to the neighborhood of
a singular point in H

3
α. This α is the cone-angle of the component c.

Recall that H3 is naturally compactified by Ĉ. The union is a closed
3-ball and isometries of H3 extend continuously to conformal automor-

phisms of Ĉ. Let ∂0N be the components of ∂N that are not tori. Then
(N, g) is a geometrically finite cone-manifold if each point p in ∂0N has
a neighborhood V in N and a chart φ : V → H̄3 such that φ restricted
to V ∩ int(N) is an isometry and φ restricted to V ∩ ∂N is a map into

∂H̄3 = Ĉ. Note that the restriction of the charts to ∂0N defines an atlas
for a conformal structure on ∂0N . In fact, as we will be important in
the next section, this conformal atlas determines a complex projective
structure on ∂0N .

Theorem 3.1. Given α0, L,K, ε > 0 and B > 1 there exists an
R > 0 and a d > 0 such that the following holds. Let Mα = (M, gα)
be a geometrically finite hyperbolic cone-manifold with all cone-angles
α < α0, each component of the singular locus has an embedded tubu-
lar neighborhood of radius R and the length of the singular locus is at
most L. Then there exists a one-parameter family of geometrically finite
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hyperbolic cone-manifolds Mt = (M, gt) defined for t ∈ [0, α] with the
following properties:

(1) Each component of the singular locus of Mt has cone-angle
t and the conformal boundary is the same as the conformal
boundary of Mα.

(2) The derivative ηt of gt is a family of harmonic strain fields

outside of a radius sinh−1(1/
√
2) neighborhood of the singular

locus.
(3) Let Uα be the R-tubular neighborhood of the singular locus in

Mα and let Ut be a tubular neighborhood of the singular locus
in Mt such that area(∂Ut) = area(∂Uα). Then∫

Mt\Ut

‖ηt‖2 + ‖Dtηt‖2 ≤ K2.

(4) There exists B-bi-Lipschitz diffeomorphisms φt : Mα\Uα →
Mt\Ut such that φt is the identity map on M in the ε-thick
part of Mα.

(5) If p ∈ (Mα\Uα)
≥ε then p ∈ (Mt\Ut)

≥ε/B and

dt(p, Ut) ≥ dα(p, Uα)

B
.

(6) If γ is a closed curve in M then

dt(γt, Ut) ≥ dα(γα, Uα)

B
− d.

(7) If γ is a closed curve in M with �α(γ) < ε/B then

dt(U
t
ε (γ), Ut) ≥ dα(U

α
ε (γ), Uα)

B
− d.

Proof. Statements (1)-(4) are proven in [Brm2] (see Theorem 5.3
and its proof). When the singular locus is sufficiently short this was
proven in [Brm1, BB1] building on Hodgson and Kerckhoff’s founda-
tional work on deformations of hyperbolic cone-manifolds in [HK1, HK2,
HK3].

Statement (5) follows directly from (4). Statements (6) and (7) are
more difficult. To prove them we need to modify the metrics gα and
gt in Uα and Ut so that they are complete metrics of pinched negative
curvature and by then extending the map φt to a bi-Lipschitz map for
these new metrics.
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The construction of such metrics is straightforward: they are doubly
warped products using cylindrical coordinates. Given an r0 > 0 define
a metric on R3 by

dr2 + fr0(r)
2dθ2 + gr0(r)

2dz2

where fr0(r) and gr0(r) are convex functions with fr0(r) = sinh r and
gr0(r) = cosh r for r ∈ [r0/2, r0] and fr0(r) = gr0(r) =

1
2e

r for r ≤ r0/4.

We can also assume that sinh r ≤ fr0(t) ≤ 1
2e

r and 1
2e

r ≤ gr0(r) ≤
cosh r. When r ≥ r0/2 or r ≤ r0/4 then this metric is hyperbolic. For
r ∈ (r0/4, r0/2) the sectional curvature will be pinched within δ of −1
where δ only depends on r0 and δ → 0 as r0 → ∞. Details of this
calculation can be found in Section 1.2 of [Koj] where the construction
is attributed to Kerckhoff.

The map (r, θ, z) �→ (r, θ+ x, z + y) is an isometry in this metric. If
we take the quotient of the set of points with r ∈ (−∞, r0] by isometries
(r, θ, z) �→ (r, θ + t, z) and (r, θ + x, z + �) we get a complete metric on
T 2×(−∞, r0]. If r0 = Rt is the tube radius of Ut and �+ıx is the complex
length of the singular locus of (M, gt) then the Rt/2-neighborhood of the
boundary is isometric to the Rt/2-neighborhood of ∂Ut. We then define
g′t on Ut by replacing the original metric with the above metric. Since
the two metrics agree in a collar neighborhood of ∂Ut the metric g′t is
smooth and g′t is a complete metric onM with sectional curvature within
δ of −1.

We now construct a bi-Lipschitz diffeomorphism φ′
t : (M, g′α) →

(M, g′t) by extending the map φt from (4). The original map φt restricted
to ∂Uα is a B-bi-Lipschitz diffeomorphism from ∂Uα to ∂Ut. This map
can then be extended to a map on (Uα, g

′
α) in the obvious way. Namely

there are nearest point projections of (Uα, g
′
α) and (Ut, g

′
t) onto ∂Uα and

∂Ut respectively. Then on Uα, φ
′
t is the unique map that commutes with

these projections and that takes a point distance r from ∂Uα to a point
distance r from ∂Ut. We need to calculate the bi-Lipschitz constant of
this map.

To do so we make a few observations. First the functions fR(r) and
gR(r) converge uniformly to 1

2e
r as R → ∞. Second we note that by

construction the derivative of the map is an isometry in the r-direction.
For a vector v tangent to the tori of fixed r-coordinate a direction cal-
culation shows that

1

B

fRt(r
′)

fRt(Rt)

gRα(Rα)

gRα(r)
‖v‖ ≤ ‖ (φ′

t)∗ v‖ ≤ B
gRt(r

′)
gRt(Rt)

fRα(Rα)

fRα(r)
‖v‖

where Rα − r = Rt − r′. Therefore the map is B′-bi-Lipschitz where B′

is the maximum of the factor on the right side of the inequality and the
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inverse of the factor on left side of the inequality. Since the functions
fR(r) and gR(r) converge uniformly to 1

2e
r, the quotients fR(r1)/fR(r0)

and gR(r1)/gR(r0) converge uniformly to er1−r0 . By Theorem 2.7 of
[HK2] the length of the singular locus is an increasing function of t.
This implies that Rt is a decreasing function in t and therefore the bi-
Lipschitz constant, B′, depends only on B and R.

By the Morse Lemma (see e.g. [BH]) the φt-image of a geodesic
is contained in the d-neighborhood of a geodesic where d only depends
on B′ and the curvature bounds of the modified metric (which we have
uniformly controlled). In particular, φt(γα) is contained in the
d-neighborhood of γt. Since φt isB-bi-Lipschitz onMα\Uα and φt(Uα) =
Ut we have dt(φt(γα), Ut) ≥ dα(γα, Uα)/B and therefore dt(γt, Ut) ≥
dα(γα, Uα)/B − d which is (6).

For (7) we choose ε such that the Bε is less than than Margulis
constant for manifolds with curvature pinched between−1−δ and −1+δ.
Then if �α(γ) < ε/B we have that �t(γ) < ε < Bε and both U t

Bε(γ)
and U t

ε/B(γ) will be embedded tubular neighborhoods. Furthermore we

have U t
ε/B(γ) ⊆ φt(U

α
ε (γ)) ⊆ U t

Bε(γ). By [BM] the width of the collar

U t
Bε(γ)−U t

ε/B(γ) is bounded by a constant that is independent of �t(γ).

This gives uniform control of the distance between φt(U
α
ε (γ)) and U t

ε (γ)
and then (7) follows in a similar manner as (6). Q.E.D.

We can now prove the bi-Lipschitz inflexibility theorem for cone-
manifolds.

Theorem 3.2. Let Mt = (M, gt) be the one-parameter family of
geometrically finite cone-manifolds given by Theorem 3.1. If p is in the
ε-thick part of (M, gα) then the pointwise bi-Lipschitz constant of the
maps

φt : Mα → Mt

satisfies
log bilip(φt, p) ≤ C1e

−C2dα(p,Uα)

where the constants C1 and C2 depend on the α0, L,K, ε and B as in
Theorem 3.1.

Proof. We apply Theorem 2.1 to Mt with Nt = Mt\Ut. By (2) of
Theorem 3.1 the derivative ηt of Mt is a harmonic strain field on Nt and
by (3) we have that ∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K2.
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Let B > 1 be the bi-Lipschitz constant given by (4) and then, by (5), a

point p ∈ M≥ε
α will be in M

≥ε/B
t and

dt(p, Ut) ≥ dα(p, Uα)/B.

The result then follows from Theorem 2.1 with C1 = αKA(ε/B) and
C2 = 1/B. Q.E.D.

Next we state and prove the length inflexibility statement.

Theorem 3.3. Let Mt = (M, gt) be the one parameter family of
geometrically finite cone-manifolds given by Theorem 3.1. Let γ be an
essential simple closed curve in M and γt its geodesic representative
in Mt. Assume that �α(γ) < � for some � > 0. Then there exists
constants C1 and C2 depending on the constants α0, L,K, ε and B from
Theorem 3.1 and on � such that the following holds.

(1) If ε ≤ �α(γ) ≤ � then∣∣∣∣log �t(γ)

�α(γ)

∣∣∣∣ ≤ C1e
−C2dα(γα,Uα).

(2) If �α(γ) ≤ ε/B then∣∣∣∣log �t(γ)

�α(γ)

∣∣∣∣ ≤ C1e
−C2dα(Uα

ε (γ),Uα).

Proof. As in the proof of Theorem 3.2 we let Nt = Mt/Ut and then
by (2) and (3) of Theorem 3.1 the derivative of Mt on Nt is a harmonic
strain field ηt with ∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K2.

If B > 1 is the bi-Lipschitz constant from (4) then by (6) there is a
constant d > 0 such that

dt(γt, Ut) ≥ dα(γα, Uα)/B − d.

The first inequality the follows from (1) of Theorem 2.2 with

C1 =

√
2

3
A
( ε

B

)
αKe−d

and C2 = 1/B.
The second inequality is proved similarly but we use (7) of Theorem

3.1 instead of (6). Q.E.D.
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§4. Schwarzian derivatives

As was noted when defining geometrically finite hyperbolic cone-
manifolds, the conformal boundary of a hyperbolic cone-manifold also
has a projective structure. While the conformal boundary will be fixed
throughout the deformations given by Theorem 3.1, the projective struc-
ture will vary. The variation in a projective structure is measured by
the Schwarzian derivative and in this section we will use our inflexibility
theorems to control the size of the Schwarzian derivative.

We very briefly discuss projective structures and the Schwarzian
derivatives. For more detail see Section 6 of [BB2]. A projective struc-

ture on a surface is (PSL2(C), Ĉ)-structure; each projective structure has
an underlying conformal structure and we let P (X) denote the space of
projective structures with conformal structure X. If Σ0 and Σ1 are two
projective structures in P (X) we let f : Σ0 → Σ1 be the conformal map
between them. In projective charts, the Schwarzian derivative S(f) of
f , naturally a quadratic differential on Σ0, measures the deviation of f
from being a Möbius transformation. We use this to define a distance
on P (X) by setting

d(Σ0,Σ1) = ‖S(f)‖∞.

There is also an infinitesimal version of the Schwarzian derivative:
in a projective chart the derivative of a smooth 1-parameter family of
projective structures is a conformal vector field. Using the chart this

is a vector field v on a domain in Ĉ. At each point there is a unique
projective vector field that best approximates v. In such a way v defines

a map from the domain in Ĉ to sl2C the Lie algebra of projective vector
fields. The derivative of this map is the Schwarzian derivative of the
deformation and it naturally identified with a holomorphic quadratic
differential on the conformal structure.

Given two projective structures we define the notion of a projective
map between them in the usual way via charts. For example a round disk

in Ĉ inherits a projective structure as a subspace of Ĉ. On a arbitrary
projective structure Σ a round disk is a projective map from a round
disk to Σ. Note that we don’t assume that this map is an embedding.

Every round disk in Ĉ bounds a half space H
3. If Σ is the projective

boundary of a hyperbolic 3-manifold M then a round disk in Σ bounds
a half space in M if there is an isometry from a half space in H3 into M
that extends to a projective map on the boundary round disk. We will
need the following lemma about round disks.

Lemma 4.1. Let Σ be projective structure with trivial holonomy.
The every round disk is embedded.
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Proof. Let Σ̃ be the universal cover of Σ. Recall that there is a

projective developing map D : Σ̃ → Ĉ and a representation ρ : π1(Σ) →
PSL2(C) such that D ◦ γ = ρ(γ) ◦ D where the action of γ in the left
side of the inequality is by deck transformations. By assumption the
holonomy representation ρ is the trivial representation.

Let U be a round disk in Ĉ and φ : U → Σ projective map. Let φ̃ :

U → Σ̃ be the lift of φ. Then D ◦ φ̃ is a projective map of U ⊂ Ĉ into Ĉ.
Since D◦φ̃ is the restriction of an element of PSL2(C) it is an embedding

and hence φ̃ is an embedding. If φ is not an embedding then there exists
x, y ∈ U such that φ(x) = φ(y). Since φ̃(x) �= φ̃(y) there must be a

γ ∈ π1(Σ) such that γ(φ̃(x)) = φ̃(y). Since D ◦γ(φ̃(y)) = ρ(γ)◦D(φ̃(y))

and ρ(γ) is the identity we have D(φ̃(x)) = D(φ̃(y)). Since D ◦ φ̃ is
injective this is a contradiction and hence φ is injective. Q.E.D.

We now state the main inflexibility theorem for Schwarzian deriva-
tives from [BB2].

As the projective structure is at infinity we cannot measure its dis-
tance from the cone singularity. Instead we assume that each round disk
in the projective structure bounds a half space in the manifold and then
measure the distance to the half space.

Theorem 4.2. Let gt, t ∈ [a, b], be a one-parameter family of hy-
perbolic metrics on the interior of a 3-manifold M with boundary. Let
ηt be the time t derivative of the metrics gt and let Nt be a family of
submanifolds of M with compact boundary such that ηt is a harmonic
strain field on Nt. Also assume that∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K2

for some K > 0. Let S be a component of ∂M such that each hyperbolic
metric gt extends to a fixed conformal structure X on S and a family
of projective structures Σt on S. Assume that at every embedded round
disk in Σt bounds an embedded half space H in Nt and that

dMt(H,M\Nt) ≥ d

for some d > 0. Then

d(Σa,Σb) ≤ CKe−d

where C is a constant depending on the sup-norm of the Schwarzian de-
rivative of the quadratic differential from the unique Fuchsian projective
structure with conformal structure X and the injectivity radius of X.
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To apply this result we need to know that round disks in the pro-
jective boundary of a hyperbolic cone-manifold bound half spaces.

Lemma 4.3. Let M be the non-singular part of a 3-dimensional hy-
perbolic cone-manifold. Then every round disk on the projective bound-
ary of M extends to a half-space in M , and if the disk is embedded the
half space is embedded.

Proof. In Lemma 3.3 of [Brm1] it is shown that every embedded
round disk extends to an embedded half space so we only need to show
that every (possibly immersed) round disk extends to a half space. To

do this we would like to apply the lemma to the universal cover M̃ of
the non-singular part of the hyperbolic cone-manifold. We first observe
that if Σ̃ is a component of the projective boundary then its holonomy
representation will be trivial so by Lemma 4.1 every round disk in Σ̃ will
be embedded. On the other hand, M̃ is not a hyperbolic cone-manifold
in the sense that is used in the proof of Lemma 3.3 of [Brm1] so we will
briefly review the proof to see that it applies in our situation.

A hyperbolic half space H ⊂ H
3 is foliated by constant curvature

planes Pd where Pd is the locus of points distance d from the hyperbolic
plane that bounds H. LetHd ⊂ H be the union of the Pt with t > d. Let
U be a round disk in Σ̃ whose closure is compact. Using a compactness
argument we can extend the round disk to Hd for some large d. We
identify Hd with its image in M̃ . When d > 0 the boundary of Hd is
strictly concave so M̃\Hd is strictly convex and therefore the closure of

Hd is embedded in M̃ if d > 0. This implies that we can extend the
round disk to H0. Q.E.D.

If Σ is the projective boundary of a hyperbolic cone-manifold M we
define its neighborhood N (Σ) to be the union of all half-spaces that are
bounded by round disks in Σ. Since two half-spaces in M will intersect
if and only if their boundary round disks intersect, disjoint components
of the projective boundary will determine disjoint neighborhoods.

Thurston parameterized the space of projective structures on a sur-
face S by the product of the Teichmüller space and the space of measured
laminations. In his proof he extends a projective structure to a hyper-
bolic structure on Σ × [0,∞) where the boundary is a locally concave
pleated surface (or a locally convex pleated surface if it is embedded in
a larger manifold). Lemma 4.3 essentially shows that this hyperbolic
structure constructed by Thurston is our neighborhood N (Σ). We now
state Thurston’s result in a form that will be useful to us. For a proof
see [KT].
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Theorem 4.4 (Thurston). Each neighborhood N (Σ) is homeomor-
phic to Σ× (0,∞). If the singular locus does not intersect the boundary
of N (Σ) then the boundary is a locally convex pleated surface.

Our inflexibility theorems will be vacuous if the singular locus is on
the boundary of N (Σ) so we can effectively assume that this is not the
case and that the boundary of N (Σ) is a locally convex pleated surface.

The convex core of a complete manifold of pinched negative curva-
ture is the smallest convex subset whose inclusion is a homotopy equiv-
alence. As the non-singular part of a cone-manifold is not complete we
need to be more careful in how we define the convex core. The following
lemma will be essential.

Lemma 4.5. Let (M, g) be the non-singular part of a 3-dimensional
hyperbolic cone-manifold such that the singular locus is contained in
M\N (Σ) and let (M, g′) be a complete Riemannian metric on M with
pinched negative curvature such that g = g′ on N (Σ). Then M\N (Σ)
is the convex core of (M, g′).

Proof. By Theorem 4.4 the manifold M deformation retracts onto
M\N (Σ) so the inclusion of M\N (Σ) into M will be a homotopy equiv-
alence. The boundary of M\N (Σ) will be locally convex in (M, g) and
therefore also in (M, g′). This implies that M\N (Σ) is a convex sub-
manifold in (M, g′) whose inclusion is a homotopy equivalence and there-
fore the convex core is contained in M\N (Σ).

Next we show that the pleating locus of the pleated surfaces bound-
ing M\N (Σ) must be contained in the convex core. To see this we first
note that any closed geodesic is in the convex core. The pleating locus
can be approximated by closed geodesics so it must also be in the convex
core.

Finally the join of anything in the convex core will also be in the
convex core. Since the join of the pleating locus will contain the pleated
surface we have that ∂(M\N (Σ)) lies in the convex core so M\N (Σ)
lies in the convex core. Q.E.D.

Given this lemma, it is natural to define the convex core of a hyper-
bolic cone-manifold by C(M) = M\N (Σ). It is possible that the singu-
lar locus lies on the boundary of convex core, in which case the above
lemma doesn’t apply. However, when the singular locus is not deep in
the convex core our main result reduces to Theorem 1.3 in [Brm1]. For
this definition to be useful we need to know that the image of the convex
core under a bi-Lipschitz map will be uniformly close in the Hausdorff
metric to the convex core of the image manifold. This will follow from
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the following proposition which is due to McMullen when the manifold is
hyperbolic. The general case requires work of Anderson and Bowditch.

Proposition 4.6. Given B > 1 and ε ∈ (0, 1) there exists d > 0
such that the following holds. Let g0 and g1 be complete Riemannian
metrics on a manifold M with sectional curvatures in (−1 − ε,−1 + ε)
and let φ : (M, g0) → (M, g1) be B-bi-Lipschitz. Then then Hausdorff
distance between C(M, g1) and φ(C(M, g0)) is less than d.

The final piece we need to prove our Schwarzian inflexibility theorem
is a version of the deformation theorem for cone-manifolds that controls
the distance from the standard neighborhood of the singular locus to
the convex core boundary. It will be convenient to restate part of the
original deformation theorem, Theorem 3.1.

Theorem 4.7. Given α0, L,K > 0 and B > 1 there exists an
R > 0 such that the following holds. Let (M, gα) be a geometrically
finite hyperbolic cone-manifold with all cone-angles α < α0 and with
singular locus of length at most L. Then there exists a one-parameter
family of geometrically finite hyperbolic cone-manifolds (M, gt) defined
for t ∈ [0, α] with the following properties:

(1) All cone angles of (M, gt) are t and the conformal boundary is
the same as the conformal boundary of (M, gα).

(2) The derivative ηt of gt is a family of harmonic strain fields

outside of a radius sinh−1 1/
√
2 neighborhood of the singular

locus.
(3) Let Uα be the R-tubular neighborhood of the singular locus in

(M, gα) and let Ut be a tubular neighborhood of the singular
locus in (M, gt) such that area(∂Ut) = area(∂Uα). Then∫

Mt\Ut

‖ηt‖2 + ‖Dtηt‖2 ≤ K.

(4) Let X be a component of the conformal boundary and Σt the
projective structure on X induced by (M, gt). Then

d(Ut,N (Σt)) ≥ d(Uα,N (Σα))/B − d.

Proof. Except for (4) this is exactly the same Theorem 3.1. To
prove (4) we would like to apply Proposition 4.6 but since our metrics
are incomplete we cannot do so directly. We will use the same trick that
we used in the proof of Theorem 3.1 and replace the metrics gα and
gt with complete metrics of pinched negative curvature, g′α and g′t and
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then use the extended B-bi-Lipschitz diffeomorphism φ′
t from (M, g′α)

to (M, g′t). We then apply Proposition 4.6 which shows that

Bd(Ut,M\C(M, g′t)) + d ≥ d(Uα,M\C(M, g′α)).

Note that we can assume that Uα is contained in C(M, gα) for otherwise
(4) is vacuous. The inequality then follows from Lemma 4.5. Q.E.D.

We can now apply Theorems 4.2 and 4.7 to get our Schwarzian
inflexibility theorem for cone-manifolds.

Theorem 4.8. Given α0, L,K > 0 and B > 1 there exists an
R > 0 such that the following holds. Let (M, gα) be a geometrically
finite hyperbolic cone-manifold with all cone-angles α < α0, singular
locus of length at most L and tube radius of the singular locus at least
R. Let Mt = (M, gt) be the one-parameter family of geometrically finite
cone-manifolds given by Theorem 4.7. Let Σt be a component of the
projective boundary of the Mt with underlying conformal structure X.
Then

d(Σα,Σt) ≤ CKe−d(Uα,N (Σα))/B−d

where Uα is the tubular neighborhood of the singular locus of radius R0

and C is a constant depending on ‖Σα‖F = d(Σα,ΣF ) and the injectivity
radius of X, where ΣF is the unique Fuchsian projective structure with
underlying conformal structure X.

Proof. We apply Theorem 4.2 to Mt where the convex cores C(Mt)
play the role of the submanifolds Nt. Every half space H bounding a
round disk in Σt will be contained in N (Σt) so by (4) of Theorem 4.7
there exists d > 0 such that

d(Ut,N (Σt)) ≥ d(Uα,N (Σα))/B − d.

The theorem then follows from (3) of Theorem 4.7 and Theorem 4.2.
Q.E.D.
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