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Rotation number and lifts of a Fuchsian action of
the modular group on the circle

Yoshifumi Matsuda

Abstract.

We characterize the semi-conjugacy class of a Fuchsian action of
the modular group on the circle in terms of rotation numbers of two
standard generators and that of their product. We also show that
among lifts of a Fuchsian action of the modular group, only 5-fold lift
admits a similar characterization. These results indicate similarity and
difference between rotation number and linear character.

§1. Introduction

Rotation number of an orientation-preserving homeomorphism of
the circle has similar properties to absolute value of the trace of an
element in PSL(2,R). For example, they are invariant under conjuga-
tion and furthermore, Jørgensen’s criterion of discreteness for subgroups
of PSL(2,R) [11, Theorem 2], which can be described in terms of abso-
lute value of the trace, has an analogue for the group of real analytic
diffeomorphisms of the circle (see [13, Theorem 1.2]). In this article, we
give another similarity between rotation number and linear character
from a viewpoint given by D. Calegari and A. Walker [5].
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1.1. Rotation number

We denote by Homeo+(S
1) the group of orientation-preserving

homeomorphisms of the circle. We regard the circle S1 as the quotient
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R/Z and denote by p : R → S1 the projection. Let H̃omeo+(S
1) be the

group of lifts of orientation-preserving homeomorphisms to R, namely,
homeomorphisms of R commuting with integral translations.

For f̃ ∈ H̃omeo+(S
1), we define the translation number r̃ot(f̃) ∈ R

of f̃ by

r̃ot(f̃) = lim
n→∞

(f̃)n(x̃)− x̃

n
,

where x̃ ∈ R. Note that the limit exists and does not depend on the
choice of a point x̃ ∈ R. For f ∈ Homeo+(S

1), we define the rotation
number rot(f) ∈ R/Z of f by

rot(f) = r̃ot(f̃) mod Z,

where f̃ ∈ H̃omeo+(S
1) is a lift of f to R.

Among several properties of rotation number, we recall that rot(f) =
p
q , where

p
q is a reduced fraction if and only if f has a period point of

period q. In particular, rot(f) = 0 if and only if f has a fixed point (see
for example [9] in detail and other properties of rotation number).

1.2. Lifts of a group action on the circle

For a group Γ, we denote by R(Γ) the space of homomorphisms
from Γ to Homeo+(S

1). We equip R(Γ) with the uniform convergence
topology on generators if necessary.

We define a lift of a group action on the circle.
Let k ≥ 2 be a positive integer and denote by pk : S

1 → S1 the k-fold
covering map. For a group Γ, a homomorphism φ ∈ R(Γ) is a k-fold lift
of a homomorphism ψ ∈ R(Γ) if pk ◦ φ(γ) = ψ(γ) ◦ pk for every γ ∈ Γ.

We remark that if φ ∈ R(Γ) is a k-fold lift of a homomorphism
ψ ∈ R(Γ), then we have k rot(φ(γ)) = rot(ψ(γ)) for every γ ∈ Γ.

1.3. Semi-conjugacy class

Semi-conjugacy between two actions of a group on the circle has
been defined in several ways (see [8], [9], [1]). In this paper, we follow
the way presented in [3].

For φ1, φ2 ∈ R(Γ), we say that φ1 is semi-conjugate to φ2 if there
exists a continuous degree-one monotone map such that h ◦ φ1(γ) =
φ2(γ)◦h for every γ ∈ Γ. Here, a map h : S1 → S1 is called a degree-one

monotone map if it admits a lift h̃ : R → R commuting with integral
translations, and nondecreasing on R.

Note that semi-conjugacy is not symmetric and is not an equiva-
lence relation. We consider the equivalence relation generated by semi-
conjugacy, which is called monotone equivalence in [3]. We call the
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monotone equivalence class of φ ∈ R(Γ) the semi-conjugacy class of
φ. Note that if two minimal homomorphisms belong to the same semi-
conjugacy class, then they are topologically conjugate. We define the
semi-conjugacy class of an orientation-preserving homeomorphism of the
circle in a similar way.

A classical result due to H. Poincaré says that two homeomorphisms
are in the same semi-conjugacy class if and only if their rotation numbers
coincide, which is similar to the fact that two matrices in SL(2,R)\{±E}
are conjugate if and only if their traces coincide.

As for group actions, however, φ1, φ2 ∈ R(Γ) do not belong to
the same semi-conjugacy class if we only suppose that rot(φ1(γ)) =
rot(φ2(γ)) for every γ. It can be seen by considering Fuchsian actions
corresponding to hyperbolic structures on 2-orbifolds (see for example
[6] about 2-orbifolds and hyperbolic structures on them).

1.4. Fuchsian actions

Let O be a compact, connected, oriented 2-orbifold with negative
orbifold Euler characteristic χorb(O) < 0. For each hyperbolic struc-
ture on the interior of O compatible with the orientation of O, we
have a homomorphism from the orbifold fundamental group πorb

1 (O) to

PSL(2,R) by identifying the universal cover Õ with the hyperbolic plane
H2. By considering the action on the ideal boundary ∂H2 � S1, we ob-
tain a homomorphism φO ∈ R(πorb

1 (O)). We call such a homomorphism
a Fuchsian action associated to O. Note that the semi-conjugacy class
of a Fuchsian action associated to a fixed 2-orbifold O is independent of
the choice of a hyperbolic structure and that a Fuchsian action corres-
ponding to a hyperbolic structure with finite area is minimal.

In general, we cannot characterize the semi-conjugacy class of a
Fuchsian action only by rotation numbers of all elements. In fact, for a
Fuchsian action φS associated to a compact, connected, oriented surface
S with negative Euler characteristic, the homeomorphism φS(γ) has a
fixed point for every γ ∈ Γ but there is no global fixed point. This means
that rot(φS(γ)) = 0 for every γ ∈ Γ but the Fuchsian action φS does
not belong to the semi-conjugacy class of the trivial action.

Now we show, however, that we can characterize the semi-conjugacy
classes of a Fuchsian action of a specific 2-orbifold and its certain lift by
only rotation numbers of finite elements.

1.5. Main result

We focus on a special 2-orbifold. Let O2,3 be the 2-orbifold which
is obtained from a 2-disk by making two cone-points of orders 2, 3.
Note that the interior of O2,3 is homeomorphic to H2/PSL(2;Z) and
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πorb
1 (O2,3) is isomorphic to the modular group PSL(2,Z). We fix a

presentation

πorb
1 (O2,3) = 〈α, β | α2 = β3 = 1〉 ∼= Z2 ∗ Z3,

where α =
[
0 −1
1 0

]
and β =

[
1 1−1 0

]
. Let φO2,3 be a Fuchsian action of

O2,3 which is equal to the action by linear fractional transformations on
R ∪ {∞} � S1. It follows that

φO2,3(α)(0) = ∞, φO2,3(α)(∞) = 0,

φO2,3(β)(0) = ∞, φO2,3(β)(∞) = −1, φO2,3(β)(−1) = 0 and

φO2,3(αβ)(0) = 0.

Hence we have

(rot(φO2,3(α)), rot(φO2,3(β)), rot(φO2,3(αβ))) =

(
1

2
,
1

3
, 0

)
.

It follows from the presentation of πorb
1 (O2,3) that there exists a

k-fold lift φ
(k)
O2,3

of φO2,3 if and only if k ≡ ±1 mod 6 and that such a

lift is unique if it exists. We also have

(rot(φ
(k)
O2,3

(α)), rot(φ
(k)
O2,3

(β)), rot(φ
(k)
O2,3

(αβ)))

=

⎧⎪⎪⎨⎪⎪⎩
(
1

2
,
1

3
,
k − 1

k

)
(k ≡ 1 mod 6),(

1

2
,
2

3
,
1

k

)
(k ≡ −1 mod 6).

Now we are ready to state the main result.

Theorem 1.1. Let φ ∈ R(πorb
1 (O2,3)).

(1) If (rot(φ(α)), rot(φ(β)), rot(φ(αβ))) =
(
1
2 ,

1
3 , 0

)
, then φ belongs

to the semi-conjugacy class of a Fuchsian action φO2,3 .

(2) If (rot(φ(α)), rot(φ(β)), rot(φ(αβ))) =
(
1
2 ,

2
3 ,

1
5

)
, then φ belongs

to the semi-conjugacy class of the 5-fold lift φ
(5)
O2,3

of a Fuchsian

action φO2,3 .

Remark 1.2. (1) Theorem 1.1 cannot be generalized to the other
lifts of φO2,3 . Indeed for each positive integer k ≥ 2 we denote by
O2,3,k a compact, connected, oriented 2-orbifold which is obtained from
a 2-sphere by making three cone-points of orders 2, 3, k. Now suppose
that k ≡ ±1 mod 6 and k �= 5. Then we have χorb(O2,3,k) < 0. Let
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φO2,3,k
∈R(πorb

1 (O2,3,k)) be a Fuchsian action of O2,3,k. For a suitable
presentation

πorb
1 (O2,3,k) = 〈α, β, γ | α2 = β3 = γk = αβγ = 1〉,

we have

(rot(φO2,3,k
(α)), rot(φO2,3,k

(β)), rot(φO2,3,k
(γ)))

=

(
1

2
,
1

3
,
1

k

)
and hence

(rot(φO2,3,k
(α)), rot(φO2,3,k

(β)), rot(φO2,3,k
(αβ)))

=

(
1

2
,
1

3
,
k − 1

k

)
.

Let q be the homomorphism from πorb
1 (O2,3) onto πorb

1 (O2,3,k) such that
q(α) = α and q(β) = β and let ι be the automorphism of πorb

1 (O2,3) such

that ι(α) = α and ι(β) = β−1. We define a homomorphism φ̂O2,3,k
∈

R(πorb
1 (O2,3)) by

φ̂O2,3,k
=

{
φO2,3,k

◦ q (k ≡ 1 mod 6),

φO2,3,k
◦ q ◦ ι (k ≡ −1 mod 6).

Since both φO2,3,k
and φO2,3 are minimal, it follows that both φ̂O2,3,k

are

φ
(k)
O2,3

are also minimal. It follows that

(rot(φ̂O2,3,k
(α)), rot(φ̂O2,3,k

(β)), rot(φ̂O2,3,k
(αβ)))

= (rot(φ
(k)
O2,3

(α)), rot(φ
(k)
O2,3

(β)), rot(φ
(k)
O2,3

(αβ))).

Note that if k ≡ −1 mod 6, then we have

rot(φ̂O2,3,k
(αβ))

= rot(φO2,3,k
(αβ−1))

= rot(φO2,3,k
(β)(φO2,3,k

(αβ))−1(φO2,3,k
(β))−1)

= − rot(φO2,3,k
(αβ)).

On the other hand φ̂O2,3,k
and φ

(k)
O2,3

do not belong to the same semi-

conjugacy class. Indeed if they belonged the same conjugacy class, then
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they would be topologically conjugate by minimality. However this con-
tradicts the fact that

φ̂O2,3,k
((αβ)k) = id �= φ

(k)
O2,3

((αβ)k).

(2) We can prove Theorem 1.1 (1) by generalizing the notion of
the bounded Euler number defined in [2] to actions of 2-orbifold groups.
It will be indicated in a forthcoming paper together with generalizations
of Theorem 1.1 to actions of other 2-orbifold groups.

(3) Theorem 1.1 can be considered as a weak analogue of the fol-
lowing classical theorem about linear character [7], which we write in a
specified form. Let F 〈α, β〉 be a free group of rank two with a basis α, β.

Theorem 1.3. Let φ, ψ : F 〈α, β〉 → SL(2,R) be homomorphisms.
If we have

(tr(φ(α)), tr(φ(β)), tr(φ(αβ)))

= (tr(ψ(α)), tr(ψ(β)), tr(ψ(αβ)))

= (x, y, z)

with x2 + y2 + z2 − xyz �= 4, then φ and ψ are conjugate by an element
of PSL(2,R).

(4) When the author mentioned Theorem 1.1 in his talk given in
the conference “Geometry and Foliations 2013”, E. Ghys informed us
the following theorem about linear character.

Theorem 1.4 ([10, Example 8.2]). Let Fm be a free group of rank
m ≥ 2. For every positive integer n, there exist mutually non-conjugate
elements w1, . . . , wn of Fm such that for every homomorphism φ : Fm →
SL(2,R), we have

tr(φ(w1)) = · · · = tr(φ(wn)).

After that, he asked the following question.

Question 1.5. Does the following analogue of Theorem 1.4 hold
for Homeo+(S

1)? Namely, for every positive integer m ≥ 2 and every
positive integer n, does there exist mutually non-conjugate elements
w1, . . . , wn of Fm such that for every homomorphism φ ∈ R(Fm),
we have

rot(φ(w1)) = · · · = rot(φ(wn))?

Note that D. Calegari asked this question for the case where m = 2,
n = 2 and w2 is fixed as the identity element [4].
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§2. Proof of Theorem 1.1

For r1, r2, r3 ∈ R/Z, we put

R(r1, r2, r3)

= {φ ∈ R(πorb
1 (O2,3)) | (rot(φ(α)), rot(φ(β)), rot(φ(αβ))) = (r1, r2, r3)}.

2.1. Proof of (1)

Let φ ∈ R
(
1
2 ,

1
3 , 0

)
. The following sufficient condition for belonging

to the same semi-conjugacy class given in [12] is a corollary of a criterion
in [14].

Proposition 2.1 ([12, Corollary 7.5]). Let Γ be a group and U ⊂
R(Γ) be connected. Suppose that rot(φ1(γ)) = rot(φ2(γ)) for every
φ1, φ2 ∈ U and every γ ∈ Γ, then U is contained in a single semi-
conjugacy class.

In view of Proposition 2.1, it suffices to show the following.

Lemma 2.2. rot(φ(γ)) = rot(φO2,3(γ)) for every γ ∈ πorb
1 (O2,3).

Lemma 2.3. The space R
(
1
2 ,

1
3 , 0

)
is path-connected.

Proof of Lemma 2.2. We denote by ã (resp. b̃) the lift of φ(α)

(resp. φ(β)) with r̃ot(ã) = 1
2 (resp. r̃ot(b̃) = 1

3 ). Since 0 < r̃ot(ã) < 1,
we have

x̃ < ã(x̃) < x̃+ 1

for every x̃ ∈ R. Hence we have

b̃(x̃) < (ãb̃)(x̃) < b̃(x̃) + 1

for every x̃ ∈ R. This implies that

1

3
= r̃ot(b̃) ≤ r̃ot(ãb̃) ≤ r̃ot(b̃) + 1 =

4

3
.

Since rot(φ(αβ)) = 0, we have r̃ot(ãb̃) = 1. Then there exists a point

x̃0 ∈ R such that (ãb̃)(x̃0) = x̃0 + 1. Since both ã2 and b̃3 are the
translation by one, we have

x̃0 < ã(x̃0) = b̃(x̃0) < b̃2(x̃0) < x̃0 + 1.
We put

I = p([x̃0, b̃(x̃0)] and

J = p([b̃(x̃0), x̃0 + 1]).
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Then we have
φ(α)(J) = I and

φ(β±1)(I) ⊂ J.

We claim that if γ ∈ Γ is not conjugate to a power of α, β, then
there exists a closed interval K ⊂ S1 such that φ(γ)(K) ⊂ K. Indeed by
taking conjugates if necessary, we may assume that γ = αβe1 · · ·αβen ,
where ei ∈ ±1 for i ∈ {1, . . . , n}. Then we have φ(γ)(I) ⊂ I.

This implies that if γ is not conjugate to a power of α, β, then
rot(φ(γ)) = 0. This finishes the proof of the lemma. Q.E.D.

Proof of Lemma 2.3. Let φ0, φ1 ∈ R
(
1
2 ,

1
3 , 0

)
. We show that there

exists a path in R
(
1
2 ,

1
3 , 0

)
from φ0 to φ1. For t ∈ {0, 1}, we de-

note by ãt (resp. b̃t) the lift of φt(α) (resp. φt(β)) with r̃ot(ãt) = 1
2

(resp. r̃ot(b̃t) = 1
3 ). By taking conjugates, we may assume that both

φ0(b) and φ1(b) are the rotation by 1
3 , and that (ãtb̃t)(0) = 1 for

t ∈ {0, 1}. We take a path {ãt}t∈[0,1] in H̃omeo+(S
1) from ã0 to ã1

such that (ãt)
(
1
3

)
= 1 and (ãt)

2 is the translation by one. We denote

by at ∈ Homeo+(S
1) the projection of ãt. Then the path {φt}t∈[0,1] in

R
(
1
2 ,

1
3 , 0

)
defined by the condition that φt(α) = at and φt(β) is the

rotation by 1
3 is a desired one. Q.E.D.

2.2. Proof of (2)

Let φ ∈ R
(
1
2 ,

2
3 ,

1
5

)
. Then φ has no finite orbits. In fact if there

were finite orbits, then the map rot ◦φ : Z2 ∗Z3 → R/Z must be a homo-
morphism, which is impossible since rot(φ(α)) = 1

2 , rot(φ(β)) =
2
3 and

rot(φ(αβ)) = 1
5 . Therefore the action φ admits a unique minimal set,

either a Cantor set or the whole circle. Passing to a semi-conjugate
action, we may assume the latter, that is, the action is minimal.

By Theorem 1.1 (1), it suffices to show that φ is the 5-fold lift of
some action, namely, there exists a homeomorphism θ ∈ Homeo+(S

1)
which is φ(πorb

1 (O2,3))-equivariant and periodic of period 5.

We denote by ã (resp. b̃) the lift of φ(α) (resp. φ(β)) with r̃ot(ã) = 1
2

(resp. r̃ot(b̃) = 2
3 ). Since 0 < r̃ot(ã) < 1, we have

x̃ < ã(x̃) < x̃+ 1

for every x̃ ∈ R. Hence we have

b̃(x̃) < (ãb̃)(x̃) < b̃(x̃) + 1

for every x̃ ∈ R. This implies that

2

3
= r̃ot(b̃) ≤ r̃ot(ãb̃) ≤ r̃ot(b̃) + 1 =

5

3
.
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Since rot(φ(αβ)) = 1
5 , we have r̃ot(ãb̃) = 6

5 . We denote by ãb the lift

of φ(αβ) with r̃ot(ãb) = 1
5 . Then there exists a point x̃0 ∈ R such that

(ãb)5(x̃0) = x̃0 + 1. Note that ãb̃(x̃) = ãb(x̃) + 1 for every x̃ ∈ R.

Lemma 2.4. We have the following.

(1) ã(x̃) < b̃(x̃) for every x̃ ∈ R.

(2) (ãb)2ã(x̃) < x̃+ 1 for every x̃ ∈ R.

(3) (ãb)l(x̃0) < b̃(ãb)l+2(x̃0)− 1 < b̃2(ãb)l+4(x̃0)− 2 < (ãb)l+1(x̃0)
for every l ∈ Z.

Proof. (1) Since r̃ot(ãb̃) = 6
5 > 1, we have

ã2(x̃) = x̃+ 1 < ãb̃(x̃)

for every x̃ ∈ R. This implies the desired inequality.
(2) It follows from (1) that for every x̃ ∈ R we have

(ãb)2ã(x̃) = (ãb̃)2ã(x̃)− 2 < ãb̃3ã(x̃)− 2 = ã2(x̃) = x̃+ 1.

(3) By substituting b̃(ãb)l+2(x̃0) for x̃ in inequality (2), it fol-
lows that

(ãb)2ãb̃(ãb)l+2(x̃0) < b̃(ãb)l+2(x̃0) + 1.

Since we have

(ãb)2ãb̃(ãb)2((ãb)l(x̃0)) = (ãb)5((ãb)l(x̃0)) + 1 = (ãb)l(x̃0) + 2,

we obtain the first inequality. Since l ∈ Z is an arbitrary integer, it
follows that

(ãb)l+2(x̃0) < b̃(ãb)l+4(x̃0)− 1.

This implies the second inequality. Similarly we have

(ãb)l+4(x̃0) < b̃(ãb)l+6(x̃0)− 1 = b̃(ãb)l+1(x̃0).

This implies the third inequality. Q.E.D.

The following lemma follows from Lemma 2.4 (3) and the equality

ã(ãb)l(x̃0) = b̃(ãb)l+4(x̃0)− 1.

Lemma 2.5. For every integer l ∈ Z, we put

Ĩl = ((ãb)l(x̃0), (b̃(ãb)
l+2)(x̃0)− 1] and

J̃l = ((b̃(ãb)l+2)(x̃0)− 1, (ãb)l+1(x̃0)].

Then we have the following.
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(1) b̃−1((ãb)l(x̃0)) ∈ Int(J̃l−4) and (b̃ã)((ãb)l(x̃0)) ∈ Int(J̃l+5).

(2) ã(J̃l) = Ĩl+3, b̃(Ĩl) ⊂ J̃l+3 and b̃−1(Ĩl) ⊂ J̃l−4.

We denote by ˜φ(πorb
1 (O2,3)) the subgroup of H̃omeo+(S

1) consist-

ing of lifts of elements of φ(πorb
1 (O2,3)) to R. We define a map θ̃ of

˜φ(πorb
1 (O2,3))(x̃0) onto itself by

θ̃(φ̃(γ)(x̃0)) = φ̃(γ)(ãb(x̃0)),

where γ ∈ πorb
1 (O2,3) and φ̃(γ) is a lift of φ(γ) to R.

Lemma 2.6. The map θ̃ is well-defined and strictly increasing.

Proof. First we prove that θ̃ is well-defined. It suffices to show that

for φ̃(γ) ∈ ˜φ(πorb
1 (O2,3)) with φ̃(γ)(x̃0) = x̃0, we have φ̃(γ)(ãb(x̃0)) =

ãb(x̃0).
If γ = βe0αβe1 · · ·αβen , where e0 ∈ {0,±1} and ei ∈ {±1} for

i ∈ {1, . . . , n}, then we have ei �= −1 for i ∈ {0, 1, . . . , n}. Indeed
if (ei, ei+1, . . . , en) = (−1, 1, . . . , 1) for some i ∈ {0, 1, . . . , n}, then it
would follow from Lemma 2.5 (1) that

b̃ei · · · ãb̃en(x̃0) = b̃−1(ãb̃)n−i(x̃0)

= b̃−1((ãb)n−i(x̃0)) + (n− i) ∈ Int(J̃6(n−i)−4)
and hence

φ̃(γ)(x̃0) ∈ Int(Ĩl) ∪ Int(J̃l)

for some l ∈ Z by Lemma 2.5 (2), which contradicts the assumption.
Therefore we have γ = βe0(αβ)n, where e0 ∈ {0, 1} and it follows from
Lemma 2.4 (3) we have e0 �= 1. Hence there exists an integer m ∈ Z

such that
φ̃(γ)(x̃) = (ãb)n(x̃) +m

for every x̃ ∈ R. We have n = −5m by the assumption and hence

φ̃(γ)(ãb(x̃0)) = (ãb)−5m+1(x̃0) +m = ãb(x̃0).

If γ = βe0αβe1 · · ·αβenα, where e0 ∈ {0,±1} and ei ∈ {±1} for
i ∈ {1, . . . , n}, then we have ei �= 1 for i ∈ {0, 1, . . . , n}. Indeed if
(ei, ei+1, . . . , en) = (1,−1, . . . ,−1) for some i ∈ {0, 1, . . . , n}, then it
would follow from Lemma 2.5 (1) that

b̃ei · · · ãb̃en(x̃0) = (b̃ã)(b̃−1ã)n−i(x̃0)

= (b̃ã)((ãb)−(n−i)(x̃0)) ∈ Int(J̃−(n−i)+5)
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and hence
φ̃(γ)(x̃0) ∈ Int(Ĩl) ∪ Int(J̃l)

for some l ∈ Z by Lemma 2.5 (2), which contradicts the assumption.
Therefore we have γ = βe0α(βα)n−1, where e0 ∈ {0,−1} and it follows
from Lemma 2.4 (3) that we have e0 �= 0. Hence there exists an integer
m ∈ Z such that

φ̃(γ)(x̃) = (ãb)−(n+1)(x̃) +m

for every x̃ ∈ R. We have n = 5m− 1 by the assumption and hence

φ̃(γ)(ãb(x̃0)) = (ãb)−5m+1(x̃0) +m = ãb(x̃0).

Next we prove that θ̃ is strictly increasing. It suffices to show that for

φ̃(γ) ∈ ˜φ(πorb
1 (O2,3)) with x̃0 < φ̃(γ)(x̃0), we have θ̃(x̃0) < θ̃(φ̃(γ)(x̃0)).

If γ = βe0αβe1 · · ·αβen , where e0 ∈ {0,±1} and ei ∈ {±1} for
i ∈ {1, . . . , n}, then it follows from Lemma 2.5 (2) that

φ̃(γ)(Ĩ0) ⊂ Ĩl ∪ J̃l

for some non-negative integer l ∈ Z. This implies that

φ̃(γ)(Ĩ1) ⊂ Ĩl+1 ∪ J̃l+1

and hence θ̃(x̃0) < θ̃(φ̃(γ)(x̃0)).
If γ = βe0αβe1 · · ·αβenα, where e0 ∈ {0,±1} and ei ∈ {±1} for

i ∈ {1, . . . , n}, then it follows from Lemma 2.5 (2) that

φ̃(γ)(J̃−1) ⊂ Ĩl ∪ J̃l

for some non-negative integer l ∈ Z. This implies that

φ̃(γ)(J̃0) ⊂ Ĩl+1 ∪ J̃l+1

and hence θ̃(x̃0) < θ̃(φ̃(γ)(x̃0)). Q.E.D.

The map θ̃ is ˜φ(πorb
1 (O2,3))-equivariant and we have θ̃5(φ̃(γ)(x̃0)) =

φ̃(γ)(x̃0)+1 for every element φ̃(γ) of ˜φ(πorb
1 (O2,3)). Since φ is minimal,

˜φ(πorb
1 (O2,3))(x̃0) is dense in R and hence θ̃ can be extended to an elem-

ent of H̃omeo+(S
1), which we also denote by θ̃. The homeomorphism θ̃

is ˜φ(πorb
1 (O2,3))-equivariant and we have θ̃5(x̃) = x̃+ 1 for every x̃ ∈ R.

This gives the desired homeomorphism θ ∈ Homeo+(S
1).
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