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Foliations of S3 by cyclides
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Abstract.

Throughout the last 2–3 decades, there has been great interest in
the extrinsic geometry of foliated Riemannian manifolds (see [2], [4]
and [22]).

One approach is to build examples of foliations with reasonably
simple singularities with leaves admitting some very restrictive geo-
metric condition. For example (see [22], [23] and [17]), consider in
particular foliations of S3 by totally geodesic or totally umbilical leaves
with isolated singularities.

The article [14] provides families of foliations of S3 by Dupin
cyclides with only one smooth curve of singularities. Quadrics and
other families of cyclides like Darboux cyclides provide other examples.
These foliations are built on solutions of a three contacts problem: we
show that the surfaces of the considered family satisfying three im-
posed contact conditions, if they exist, form a one parameter family of
surfaces which will be used to construct a foliation.

Finally we will study the four contact condition problem in the
realm of Darboux–d’Alembert cyclides.

§1. Introduction

Codimension one smooth foliations of 3-dimensional compact space-
form by totally geodesic, totally umbilical surfaces or even flat tori are
very rare. Allowing a finite number of singular points does not increase
much the set of examples. Allowing smooth singular curves is a com-
promise which provides more examples of foliations.

We shall first consider the basic case of ruled quadrics, which con-
tains all the notions we will need to study more general examples.
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A Dupin cyclide is the conformal image of a (regular or singular)
torus. If regular, it is covered by four families of circles: the two families
of characteristic circles (since it is a canal surfaces in two ways) and the
Villarceau circles, see [17], [14], [15], [16].

An interesting 13-dimensional family of surfaces, which contains the
Dupin cyclides is the family of Darboux cyclides. Generically, a Darboux
cyclide has the remarkable property of being covered by two families of
circles so that each circle of the first family is co-spherical with each
circle of the second. We call this the d’Alembert property.

We will see that generic Darboux cyclides split into 9-dimensional
families that we will call d’Alembert families (see Definition 3.2 and
Proposition 5.5). The d’Alembert property looks like the classical Monge
property of ruled quadrics, which are twice ruled and each line of the first
ruling cuts each line of the second. We shall see that each d’Alembert
family is closely related to the 9 parameter family of ruled quadrics.

[19] is another study of cyclides; they use the circles on these cyclides
to get webs on them.

§2. Foliations by quadrics

In [15] and [16] the authors studied the existence of Dupin cyclides
satisfying three contact conditions, i.e. that are tangent to three planes
at three points. The solutions, when they exist, form a foliation of S3

with a singular locus which is a curve where all the solutions are tangent
(see [14]).

Our aim is now to do the same using the 9-dimensional family of
ruled quadrics.

2.1. The model

In the sequel, if V is a real vector space, P(V ) the projective space of
vector lines of V , and we denote by [v] the point of P(V ) corresponding
to the non zero vector v, that is [v] = Rv.

When no special structure of the underlying vector space is involved
we will denote by P

1 the projective space P(R2), by P2 the projective
space P(R3) and by P

3 the projective space P(R4).
We shall consider foliations of P3 by projective quadrics, and from

them construct in three different ways singular foliations of S3.
Let us consider a regular planar conic Γ in a plane Ω ⊂ P3 and a

point ω ∈ P
3 \ Ω. The plane Ω, considered with multiplicity 2, and the

cone C of vertex ω on Γ generate a linear pencil of quadrics tangent
along Γ.
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Proposition 2.1. This linear system forms a foliation of P3 singular
at ω, at all points of Ω, and nowhere else.

Proof. In any homogeneous coordinates [x, y, z, t] where we choose
ω = [0, 0, 0, 1], C admits an equation of the form q(x, y, z) = 0, q homo-
geneous of degree 2 in x, y, z only. As ω is not on Ω, we may choose
for Ω the equation t = 0. Then, for any [x, y, z, t] not on Ω, we define

ρ([x, y, z, t]) = − q(x,y,z)
t2 . The map ρ is regular on P

3 \ Ω. Let us show
that it is a submersion except at ω, which proves the proposition, since
the quadrics of the linear system have equation λq(x, y, z) + μt2 = 0,
and, except Ω, are the fibres of ρ.

We may take an affine chart where t = 1. Then ρ([x, y, z, 1]) =

−q(x, y, z). If the three partial derivatives ∂q
∂x ,

∂q
∂y ,

∂q
∂z are null at (x, y, z),

by Euler relation, q(x, y, z) = 0. If (x, y, z) �= (0, 0, 0), then the point
[x, y, z, 0] is singular on the conic Γ, but Γ has no singularities. Otherwise
[x, y, z, 1] = ω. Then ρ is a submersion on P

3 \ (Ω ∪ {ω}). Q.E.D.

We shall see that the previous foliation is determined by three con-
tact conditions: the data of a triplet of points on the conic Γ and the
planes tangent at these points to the cone C. Moreover, all the foli-
ations by quadrics respecting such a triplet of contacts are constructed
in this way.

2.2. The Brianchon construction

Conversely, let us give an “algebraic” way to solve a three contacts
problem for quadrics.

Let us consider three points mi, i = 1, 2, 3 on a regular quadric
Q ⊂ P3. We shall suppose that they are in general position, which will
mean precisely that no two of them are on a line included in Q.

We first collect simple consequences of this non-alignment on the
contacts which are necessary to obtain the quadric from the data of the
three contacts.

1) First, the three points mi are not aligned (otherwise, the line
containing them would be drawn on the quadric).

2) The three planes Pi, i = 1, 2, 3 tangent to Q at mi have a unique
intersection point ω which is the pole of the plane (m1m2m3) =
Ω relative to the quadric.

3) The plane Ω does not contain ω, otherwise it would be tangent
to Q at the pole ω and at least two of the three points would
be on a line drawn on Q.

4) Finally none of the three points mi is on a tangent plane Pj ,
j �= i, otherwise the line (mimj) would be contained in Q.
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Definition 2.2. We call generic a triplet of contacts satisfying the
above four conditions.

It is known since Brianchon that another one-dimensional condi-
tion is necessary for the existence of a quadric satisfying a given generic
triplet of contacts.

Indeed, if (mi, Pi)i=1,2,3 is a generic triplet of contacts on a quadric
Q, and denoting by Ω the plane (m1m2m3), the lines Δi = Pi ∩ Ω are
respectively tangent at mi to the regular conic Γ = Q ∩ Ω.

Brianchon’s theorem ([5], 3. p. 301) states that the conic Γ is tangent
to the three lines Δi (in the same plane) respectively at mi if and only if
for ai = Δj ∩Δk (i, j, k distinct), the three lines (aimi) are concurrent.

This concurrence implies the uniqueness of Γ tangent to each Δi at
mi when these points are not an intersection of two of the lines. For a
spatial geometric proof (not the original one), see [11] p. 104.

Definition 2.3. The generic triplet (mi, Pi)i=1,2,3 of contacts in
P
3 satisfies the spatial Brianchon condition if, for ai = Δj ∩Δk (i, j, k

distincts), the three lines (aimi) of Ω are concurrent. See Figure 1.

ω

Ω

m1 m2

m3
a1a2

a3

P1

P2P3

Δ1 Δ2

Δ3

Γ

Fig. 1. Spatial Brianchon’s condition.

Theorem 2.4. For a generic triplet of contacts in P
3 satisfying the

spatial Brianchon condition, the quadrics satisfying the three contacts
(mi, Pi) form a linear pencil, together with the degenerate solution made
of the plane Ω containing the points. This pencil is generated by Ω
(counted with multiplicity 2) and the cone C on the conic Γ in Ω tangent
to the planes Pi (or the lines Δi) at the points mi. All the quadrics other
than Ω are tangent along Γ. See Figure 2.
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Proof. A quadric Q satisfying these three contacts must cut Ω in
a conic Γ′ tangent to each Δi at mi. According to Brianchon there is a
unique possible conic, which is Γ. Then all the candidate quadrics have
Γ = Q ∩ Ω in common. As ω is the pole common to all of them, they
are all tangent at any point of Γ, and all the tangent planes at points
of Γ pass through ω. Among them, we find the quadrics of the pencil
generated by Ω counted twice and the cone envelope of these tangent
planes. We must show that there are no other possible quadrics.

We choose homogeneous coordinates [x, y, z, t] of P3 in such a way
that ω = [0, 0, 1, 0] and Γ is in the projective plane z = 0. In the affine
chart t = 1, the (part of the) cone C (which is in the chart) becomes a
cylinder of equation q(x, y) = 0. Any quadric which cuts (xOy) along Γ
has an equation of the form

(1) f(x, y, z) = q(x, y) + α(x, y)z + βz2 = 0,

where α is an affine function and β a constant. If the quadric Q is
tangent to the cylinder on Γ, at a point (x, y, 0) of Γ,

∂f

∂z
= α(x, y) = 0.

This relation is true at the three pointsmi. Then if α were not identically
zero, the points mi would be aligned, which is excluded. Then f is of
the form f(x, y, z) = q(x, y) + βz2, which proves that Q is in the above
pencil of quadrics. Q.E.D.

In the affine Figure 2 (drawn in the chart t = 1), ω is not visible,
since it is the projective point [0, 0, 1, 0], and Γ, contained in the hori-
zontal plane z = 0, is an horizontal ellipse on the left part of Figure 2
and a hyperbola on the right part part of Figure 2.

The ruled quadrics of the pencil form a one parameter family of ruled
solutions foliating an open set of P3 which is one of the two components
delimited by the cone C.

To fill-in the space not covered by the foliation by ruled quadrics,
we shall need non-ruled quadrics which form, together with the ruled
ones, a singular foliation with the same singular locus.

This situation will be the prototype allowing to construct all the
foliations of S3 constructed below with d’Alembert cyclides.

Now we shall retrieve the ruled leaves of the previous foliation by a
more “dynamical” construction, without appealing to Brianchon’s con-
dition of concurrence of lines (classically relying on Pascal’s “mystic
hexagram”, or on a spatial intersection of three lines as in [11] p. 104
Fig. 109).



400 R. Langevin and J.-C. Sifre

Fig. 2. Foliation of R3 by quadrics.

2.3. The projective Ping-Pong-Pang

We start from a generic triplet (mi, Pi)i=1,2,3 of contacts in P
3, and

we want to construct the ruled quadrics respecting these contacts. As
above, we denote by Ω the plane (m1m2m3), and by ω the point P1 ∩
P2 ∩ P3.

In a projective plane P , a linear pencil of (projective) lines is always
the set of lines passing through a given common point. The set of lines of
P passing through m ∈ P will be called the pencil of lines in P passing
through m.

For two contacts (m,P ) and (m′, P ′) where neither m nor m′ are
in the line D = P ∩ P ′, there is a natural mapping ΠL′L from the
pencil L of lines in P passing through m to the pencil L′ of lines in P ′

passing through m′. It associates to d ∈ L the unique line d′ ∈ L′ which
cuts d, see Figure 3 on the left. For the three contacts (mi, Pi), whose
associate pencils of lines are Li, this defines three maps: Pang : L1 → L2,
Pong : L2 → L3, and Ping : L3 → L1. Form any d1 ∈ L1, we define (see
Figure 3 on the right):

d∗2 = Pang(d1), d3 = Pong(d∗2),

d∗1 = Ping(d3), d2 = Pang(d∗1), d∗3 = Pong(d2).

On Figure 3, the image Ping(d∗3) is represented as a (widely) dotted
line. When the three contacts are contacts in general position tangent
to a ruled quadric Q (ruled by the two families of lines F and F∗),
with d1 in F , then all the di’s and the d∗i ’s are drawn on Q. In detail,
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m m′

d
d′

P P ′

Ω

P1

P2

P3

m1

d1 d∗1

m2

d2

d∗2

m3

d3 d∗3

Fig. 3. The map ΠL′L in P3.

Pang(d1) = d∗2 is in F∗, d3 in F , and d∗1 is in F∗ the second line in
P1 = Tm1Q on the quadric Q. It implies that the widely dotted line
Ping(d∗3) in Figure 3 is in fact d1, that is:

Ping(d∗3) = Ping ◦Pong ◦Pang(d∗1)
= Ping ◦Pong ◦Pang ◦Ping ◦Pong ◦Pang(d1) = d1,

like in [11], Fig. 109 p. 104. But our use of this observation will be
different from [11].

To obtain a converse statement, we associate to a ruled quadric a
curve in the space of lines.

2.4. The space of lines

The set of affine lines of R3 is a vector bundle of dimension 6 of
base P2 and fiber R2. The projective space P3 completes R3. The set of
projective lines of P3 is isomorphic to the Grassmann manifold G(4, 2)
of nonoriented planes of R4.

Let us first show how, using Plücker coordinates, G(4, 2) can be seen

as a quadric K ⊂ P
(∧2

(R4)
)
known as Klein quadric ([12]).

The condition that a vector U of
∧2

(R4) is pure, that is of the form
u∧v, u ∈ R

4, v ∈ R
4 writes U∧U = 0; this provides a quadratic form LP :

LP (U) = U ∧U on
∧2

(R4), called the Plücker form. It is of index (3, 3).
The set of pure vectors, called Plücker cone, is therefore a quadratic cone
of equation LP (U) = 0. The Klein quadric K ⊂ P

(∧2
(R4)

)
is the set

of lines of this cone. The map which associates to a (vector) plane in
R4 (or a projective line in P3) the corresponding point in K is the Klein
correspondence.
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The incidence relation of two lines of P3 corresponding to the
2-vectors U and V ∈ ∧2

(R4) is obtained by checking that the cor-
responding 2-planes of R

4 generate a subspace of dimension at most
3; it writes LP (U, V ) = U ∧ V = 0. If U and V are not collinear
(i.e. correspond to distinct points in K), and verify LP (U, V ) = 0, they

generate a totally isotropic vector plane in
∧2

(R4). The set of lines

passing through 0 of this plane form a projective line � in P
(∧2

(R4)
)

called a light ray, which is the projective line in P
(∧2

(R4)
)
joining the

two points of K corresponding to U and V .
Conversely, a projective line � of P

(∧2
(R4)

)
contained in K is the

set of vector lines of a totally isotropic plane of
∧2

(R4) for the Plücker
form, and is thus a light-ray.

Given a projective plane P ⊂ P3 and a point m ∈ P , we call the set
of projective lines in P containing m a pencil of lines in P

3.
The projective points of a light ray � correspond in P3 to the lines

of a unique pencil of lines in P
3, since we have seen above that the

incidence condition between points of � define a common 3-dimensional
subspace of R

4. Then a light ray corresponds to a pencil of lines in
P3. It corresponds thus to a contact condition, that is a pair (m,P ),
m ∈ P ⊂ P

3.

2.5. The conics associated to a regular ruled quadric

By Klein correspondence, a ruled surface of P
3 corresponds to a

curve in K. A regular ruled quadric Q admits two disjoint families of
lines such that each line of one family intersect all the lines of the other
family. Therefore, any pair of one line in each family defines a pencil of
lines in P

3 corresponding to a projective light-ray contained in K.
To the two families of lines of Q correspond therefore two curves C

and C∗ in K such that any point of one is joined to any point of the
other by a projective light-ray.

For a projective subspace P of P(E) (set of lines passing through 0
of the vector space E), we shall denote by P the subspace of E whose
set of lines passing through 0 is P , that is the cone underlying P .

Proposition 2.5. The correspondence Q 
→ {C, C∗} is a bijection
between the set of regular ruled quadrics Q ⊂ P

3 and the set of pairs
of regular conics C = K ∩ P and C∗ = K ∩ P ∗, where the underlying
vector spaces P and P ∗ are 3-dimensional vector subspaces of

∧2
(R4)

orthogonal for the Plücker quadratic form LP .

The conics C and C∗ are called sister conics.
If P is a projective plane in P

(∧2
(R4)

)
, the following properties

are equivalent:
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1) the intersection P ∩ K is a regular conic;
2) P cuts K and the restriction to P of LP is non degenerate;

3) P cuts K and P and P⊥ are in direct sum;
4) the signature of LP restricted to P is either (2, 1) or (1, 2).

Indeed, when the restriction to P of LP is non degenerate, its sig-
nature is one of the following: (3, 0), (0, 3), (2, 1), (1, 2). For the first
two, P ∩ K is empty. For the last two, P ∩ K is a regular conic (as is
P ∗ ∩ K).

Proof of Proposition 2.5. We choose three distinct points δi = RUi

in C, i = 1, 2, 3. Let us show that the vectors U1, U2, U3 span a 3-
dimensional vector space P ⊂ ∧2

(R4). As Q is regular, the correspond-
ing lines d1, d2, d3 in the first family on Q are disjoint. If U1, U2, and
U3 were not linearly independent, as K is a quadric and a quadric con-
taining three aligned points contains the projective line joining them, d1
and d2 would intersect, which was excluded.

It is known from Monge and Chasles that the set of projective
lines cutting d1, d2 and d3 is exactly the set of lines on Q of the second
family. In the exterior algebra context, this translate as follows: C∗

is the intersection with K of the projective plane P ∗ whose underlying
3-dimensional vector space is P ∗ = P⊥ orthogonal to P for LP .

If C∗ were degenerate, it would be a union of at most two light-
rays, which would imply that two lines of the second family of the ruled
quadric Q intersect in P3. Then C∗ is non-degenerate. By symmetry,
the same is true for C. Q.E.D.

2.6. Ping-Pong-Pang map in Klein’s quadric

When two contacts (m,P ) and (m′, P ′) in P3 are such that neither
m and m′ are in the intersection P ∩ P ′, we have defined a map from
the set L of lines in P through m to the set L′ of lines of P ′ through m′

associating to d ∈ L the unique d′ ∈ L′ which cuts d, see Figure 3 on
the left. We shall translate it in the Klein’s quadric

In Klein’s quadric K, the light-ray � of points δ corresponding to
the projective lines d ∈ L is disjoint from the light-ray �′ of points δ′

corresponding to lines d′ ∈ L′. Moreover, no line d ∈ L cuts all the lines
d′ ∈ L′, which means in K that:

(∗) no point of � is conjugate for LP to all the points of �′.

Then, for any δ ∈ �, the tangent space TδK, identical to the set of
points δ′ conjugate for LP to δ, cuts �′ at only one point δ′ = π�′�(δ).
This defines a homography π�′� from � to �′ which we call a ping map.
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It means that the map L → L′ considered in Section 2.3 is in fact a
homography � → �′.

Consider now a generic triplet (mi, Pi)i=1,2,3. The corresponding
light-rays �i are disjoint and verify the condition (∗). This defines three
maps ping, pong, pang which are the translation in K between the �i’s
of the maps Ping , Pong , Pang of Section 2.3:

pang = π�2�1 , pong = π�3�2 and ping = π�1�3 .

Starting from δ1 ∈ �1, like in Section 2.3 we define:

δ∗2 = pang(δ1), δ3 = pong(δ∗2),

δ∗1 = ping(δ3), δ2 = pang(δ∗1) and δ∗3 = pong(δ2),

(see Figure 4, (a)).

�1 �1 �1�2 �2 �2

�3 �3
�3

δ1
δ1 δ1

δ∗2

δ∗2

δ∗2

δ3 δ3 δ3

δ∗1 δ∗1

δ2 δ2δ∗3 δ∗3

ping pong

pang

P

P ∗

(a) (b) (c)

Fig. 4. ν = ping ◦ pong ◦ pang map.

As in Section 2.3, when the triplet of contacts is taken on a ruled
quadric Q and if we start from a point δ1 ∈ �1 corresponding to a line
of the first ruling of Q at m1, then all the points δi ∈ �i are on the conic
C associated to Q, the points δ∗j ∈ �j are on the sister conic C∗ and (see
Figure 4 (c)):

ping(δ∗3) = ping ◦ pong ◦ pang(δ∗1)
= ping ◦ pong ◦ pang ◦ ping ◦ pong ◦ pang(d1) = d1.

Proposition 2.6. For a generic triplet (mi, Pi)i=1,2,3, the homo-
graphy ν = ping ◦ pong ◦ pang : �1 → �1 has two fixed points and is not
the identity. See Figure 4.
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Proof. A first fixed point of ν corresponds to the line joining m1

to ω = P1∩P2∩P3 since Ping , Pong and Pang permute the lines (miω)
(vertical lines through mi in Figure 3).

In the same way, a second fixed point of ν corresponds to the line
P1 ∩ Ω since Ping , Pong and Pang permute the lines Pi ∩ Ω.

There is no other fixed point since if δ1 is a fixed point of ν corres-
ponding to a line d1 not containing ω, then d1 and its image by Ping ,
Pang and Pong are contained in a projective plane which contains also
the points mi, and is identical to Ω. Then d1 = P1 ∩ Ω, which has
already been counted above. Q.E.D.

Theorem 2.7. Let (mi, Pi)i=1,2,3 be a generic triplet of contacts.
A necessary and sufficient condition for the existence of a regular ruled
quadric Q satisfying these contacts is that the map ν = ping ◦ pong ◦
pang : �1 → �1 is an involution.

Moreover, in this case, there is a one parameter family of quadrics
solutions. All of them are constructed by the ping-pong-pang construction
from a point δ1 on �1.

Proof. We have already seen if a regular quadric Q satisfies the
three contact condition �1, �2, �3, then the point δ1 = C ∩ �1, where C
is one of the curves associated to one ruling of Q (see Section 2.5), is a
fixed point of ν2. As the quadric is regular, δ1 is not a fixed point of ν.
Then ν2 has three fixed points and therefore is the identity.

Reciprocally, suppose that ν is involutive. For any point δ1 of �1
other than one of the two fixed points of ν, the six points δ1, δ∗2 =
pang(δ1), δ3 = pong(δ∗2), δ

∗
1 = ping(δ3) = ν(δ1), δ2 = pang(δ∗1), δ

∗
3 =

pong(δ2) are distinct, since δ∗1 �= δ1 and ν(δ∗1) = δ1. As the lines �i are
projectively independent, the planes P generated by δ1, δ2, δ3 and P ∗

generated by δ∗1 , δ
∗
2 and δ∗3 are projectively independent. From the ping-

pong-pang construction, P and P ∗ are conjugate, i.e. the underlying
vector spaces are orthogonal for the Plücker quadratic form, whose re-
striction to each of them is thus non degenerate. The above subsections
show that the curves C = P ∩ K and C∗ = P ∗ ∩ K correspond to the
same regular ruled quadric satisfying the three contacts. We find in this
way a quadric for each point δ1 on �1 other than the two fixed points
of ν. Q.E.D.

The involutivity condition of Theorem 2.7 is the dynamic equivalent
to Brianchon’s spatial condition of Definition 2.3.

Remark 2.8. As the homography ν is one-dimensional and admits
two distinct fixed points (Proposition 2.6), it is an involution if and
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only if the trace of any its matrix representation is zero. This is a one-
dimensional constraint as it occurred looking for Dupin cyclides satisfy-
ing three contact conditions (see [14] and [16]).

2.7. The common tangency curve

Theorem 2.9. Let (mi, Pi)i=1,2,3 be a generic triplet of contacts on
the ruled quadric Q, associated to the conics C and C∗, and let �i = (δiδ

∗
i )

be the corresponding light rays. Let f be the unique homography C → C∗

sending δi onto δ∗i . Then all the light rays joining a point δ ∈ C to its
image f(δ) ∈ C∗ are common contacts to all the quadrics Q′ associated
to the conics C′ constructed by ping-pong-pang from any δ′1 ∈ �1.

Moreover, the common contacts are along a conic common to all the
quadrics Q′.

Proof. We denote by δ′∗1, δ′2, δ′∗2, δ′3, δ′∗3 the points constructed
by ping-pang-pong from δ′1. We shall see that it is sufficient to prove
that from any other light ray � = (δ f(δ)), the point δ′′ = π��1(δ

′
1) is

conjugate to δ′3, which is the:

Lemma 2.10 (The ping-pong lemma). With the above notations,
the image π�3�(δ

′′) is equal to δ′′3 and is independent on the choice of δ
(and thus on �).

�1

�3

�
�2

δ′1

δ′′
δ′∗2

δ′3

Fig. 5. The ping-pong lemma.

The name ping-pong is suggested by δ′3 = π�3�2 ◦ π�2�1(δ
′
1).

Proof of Lemma 2.10. To that aim, we shall characterise the rela-
tions between δ′1, δ

′′ and δ′3 in a way where δ′∗2 will not appear.
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If P and P ∗ are the underlying vector spaces of C and C∗, let F be a
linear mapping P → P ∗ representing f . There exists a constant α such
that, for all Z and Z ′ ∈ P , LP (F (Z), F (Z ′)) = αLP (Z,Z ′).

For any � = (δf(δ)), δ = [X] ∈ C, and any point δ′ = [λX+μF (X)],
the point [λ, μ] ∈ P1 is uniquely determined (whatever may be the choice
of the vector X). It defines a homography δ′ 
→ [λ, μ] from � to P

1.
Putting together all the lines � = (δf(δ)), δ ∈ C this gives a submersion
(in fact a fibration) θ from the ruled surface S =

⋃{(δf(δ)), δ ∈ C}
to P

1.
This allows us to read the ping , pong , pang maps directly in P1 as

follows. For the distinct light rays �′ and �′′ on S and δ′ in �′,

θ ◦ π�′′�′(δ
′) = I ◦ θ(δ′),

where I is the involution of P1 : [λ, μ] 
→ [−αμ, λ].
Indeed, if δ′ = λ′X+μ′F (X), δ′′ = λ′′Y +μ′′F (Y ) (with [X] ∈ �′∩C

and [Y ] ∈ �′′ ∩ C),
δ′′ = π�′′�′(δ

′) ⇔ L(λ′X + μ′F (X), λ′′Y + μ′′F (Y )) = 0

⇔ λ′λ′′ + αμ′μ′′ = 0

⇔ [λ′′, μ′′] = I([λ′, μ′]) ⇔ θ(δ′′) = I(θ(δ′)).

For δ′1 ∈ �1, let us write [λ, μ] = θ(δ′1). Then θ(δ′∗2) = [−αμ, λ], and

θ(δ′3) = θ(π�3�2(δ
′∗
2)) = I([−αμ, λ]) = [λ, μ] = θ(δ′1).

Getting back to δ′′ = π��1(δ
′
1), we see that θ(δ

′′) is also equal to [−αμ, λ],
and the above equivalences imply that δ′′ is conjugate to all the fibre of
θ which contains δ′1, in particular to δ′3. Q.E.D.

For the same reason, δ′′ is also conjugate to δ′2. It implies that δ′′

is conjugate to all C′, and thus is on C′∗, and by symmetry, the light
ray � will cut C′ and C′∗. Then the light rays � = (δf(δ)) are common
contacts to the quadrics Q′.

Let us show now that the common curve is a conic. The involution
ν = ping ◦ pong ◦ pang has two fixed points, as θ(ν(δ′)) = I3(θ(δ′)) =
I(θ(δ′)), and I has two fixed points since α < 0. But we already know
these fixed points. The first one corresponds to the tangent to Q∩Ω at
m1, where Ω is the plane (m1m2m3) ⊂ P3, and the second corresponds
to the line (m1ω), where ω = P1 ∩ P2 ∩ P3.

If we choose for δ′1 the first, then δ′1 = δ′∗1, δ
′
2 = δ′∗2 and δ′3 = δ′∗3. For

any light ray � = (δf(δ)), we have seen that δ′′ = π��1(δ
′
1) is conjugate

to the points δ′i, i = 1, 2, 3, which implies that the corresponding line d′′
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in P3 cuts the corresponding lines d′i, that is d′′ is in Ω. The common
curve is then included in Ω, and is in fact Q ∩ Ω. Q.E.D.

Remark 2.11. We notice that θ gives a trivialisation of the pro-
jective line bundle S � C : δ′ ∈ (δf(δ)) 
→ δ, so that S is topologically
the product of two circles.

§3. D’Alembert cyclides

Definition 3.1. A cyclide is a compact surface of S3 spanned by at
least two one parameter families C1 and C2 of circles. Moreover exactly
one circle of each family goes through each point of the surface, except
maybe a finite number of points.

A one parameter family of circles which spans a compact surface and
such that one circle of the family go through each point of the surface,
except maybe a finite number of points, will be called a hooping of the
surface, by analogy with the ruling of a ruled surface.

We will often explicit our examples of surfaces of S3 describing them
in R

3. The true S
3 example is obtained composing with the inverse of a

stereographic projection.

Definition 3.2. Two hoopings of a cyclide satisfy the d’Alembert
condition if any pair of circles, c1 ∈ C1 and c2 ∈ C2 is contained in a
sphere Σ(c1, c2). Such a pair of hoopings is called a pair of d’Alembert
hoopings. We will call a cyclide admitting a pair of d’Alembert hoopings
a d’Alembert cyclide.

In Figure 6, the d’Alembert sphere Σ(c1, c2) has been represented
only on the left case, since the circles c1 and c2 do not intersect. On the
right, the sphere Σ(c1, c2) is evident and need not be drawn. Historically,
perhaps the first example of d’Alembert cyclide is a slanted cone. It was
known to Apollonius, see Figure 7 (a). Probably the next example of
d’Alembert cyclide is an ellipsoid with three principal axes of different
lengths, observed by d’Alembert in [1], see Figure 7 (b).

In fact, this property is quite general among quadrics:

Proposition 3.3. All quadrics admitting an elliptic section are
d’Alembert cyclides.

Proof. We shall give the proof in R3, and suppose that the plane
containing the given elliptic section is (xOy). We begin by observing that
if a plane section of a quadric is a circle, all non-empty plane sections
parallel to it are points or circle (see [18]).
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Fig. 6. Pair of circles (c1, c2) on d’Alembert cyclides.

(a) (b)

Fig. 7. Classical examples of d’Alembert cyclides.

Any quadric admitting an elliptic section admits two orthogonal
symmetry planes P1 and P2. Monge ([18] p. 38) explained that it admits
also two families of circles, sections of the quadric by two families of
parallel planes orthogonal to, say, P1. Clearly the directions of these
parallel planes are symmetric with respect to P2. We have to show that
two circles, one of each family, are cospherical. This is a consequence of
a geometric characterization of four cocyclic points of a conic (as studied
by Joachimsthal). We will apply the following lemma to the four points
(c ∩ P1) ∪ (c′ ∩ P1).
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Lemma 3.4. Let D and D′ be two lines crossing an axis of a conic
with opposite angles. Then the four intersection points of the lines with
the conic are cocyclic.

Proof. Suppose that the symmetry axis is (Ox). The equation of
the conic is then

Q(x, y) = ax2 + by2 + cx+ d = 0,

The equations of the two lines write y = αx+ β and y = −αx+ γ. The
pencil of conics

λQ(x, y) + μ(y − αx− β)(y + αx− γ) = 0

contains a circle. Q.E.D.

By applying the lemma to the intersection of Q with P1 and to the
two lines intersections with P1 of the planes intersecting the quadric in
our two circles, we get our proposition. Q.E.D.

Smooth Dupin cyclides are also d’Alembert cyclides. In that case,
the two d’Alembert hoopings are the two families of Villarceau circles,
see Figure 8 where are represented circles of one of the two hoopings.
The characteristic circles of a Dupin cyclide do not form d’Alembert
hoopings.

Fig. 8. Foliation of a torus of revolution by Villarceau circles.

§4. The spaces of spheres, and circles

4.1. The space of spheres

It will be convenient for us to realize both our ambient space S3 ⊂ R4

and the set of oriented 2-spheres by using the Lorentz space R
5
1, that is
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R5 endowed with the Lorentz quadratic form

L(x) = L(x0, x1, x2, x3, x4) = −x2
0 +

4∑
i=1

x2
i .

The light-cone Li is the set L(x) = 0. Its generatrices are called
light-rays. We also call affine lines parallel to a generatrix of the light-
cone light-rays.

The light-cone separates vectors of R5
1 \ Li in two types: space-like

vectors, such that L(v) > 0 and time-like vectors, such that L(v) < 0.
A plane will be called space-like if it contains only space-like (non-zero)
vectors. It is called time-like if it contains non zero time-like vectors
(then it contains vectors of the three types). It is called light-like is it
contains non-zero light-like vectors but no time-like vector.

The space of oriented 2-dimensional spheres in S
3 may be param-

eterized by the de Sitter quadric Λ4 ⊂ R5
1 defined as the set of points

σ = (x0, x1, x2, x3, x4) such that L(σ) = 1, in the following way. The
hyperplane σ⊥ orthogonal to σ (for the Lorentz quadratic form L) cuts
the affine hyperplane H0 = {x0 = 1} along a 3-dimensional oriented
affine hyperplane, which cuts the unit sphere S

3
0 = Li ∩H0 ⊂ H0 along

a 2-dimensional sphere Σ. Let us orient the sphere Σ as boundary of the
ball Bσ = S

3
0 ∩ {L(x, σ) ≥ 0}.

This correspondence between points σ of Λ4 and oriented spheres
Σ ⊂ S

3
0 ⊂ H0 (or Σ ⊂ S

3 ⊂ P(R5
1)) is bijective.

The sphere S3 may also be identified with the sphere at the infinity of
Li, which is the set S3 ⊂ P(R5

1) of generatrices of the cone Li. This is the
model of sphere we shall denote by S3 from now on, since it will appear
very useful to see the sphere embedded in P(R5

1). The map sending
x ∈ S30 ⊂ H0 to the line Rx ∈ S3 is bijective. The quotient P(Λ4) =
Λ4/(σ ∼ −σ) may be used to parametrize the set of non oriented spheres
in S3. In the same way as above, the bijective correspondence between
them associates to the class [σ] of σ the sphere Σ ⊂ S

3 of lines of the
cone Rσ⊥ ∩ Li.

4.2. The space of circles

A circle c ⊂ S
3 is the axis of a pencil of 2-spheres in S

3. These
spheres may be oriented or not, since if an oriented sphere is in the
pencil, the sphere with opposite orientation is in the same pencil.

This pencil corresponds to the points of intersection of the quadric
Λ4 ⊂ R

5
1 and a space-like vector plane pc ⊂ R

5
1. This vector plane pc

itself defines a projective line dc ⊂ P(R5
1).
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S
3

Σ
(Rσ)⊥

σ
Rσ

Λ4

Li

Fig. 9. S
3 and the correspondence between points of Λ4 and

spheres.

A projective subspace R for P(R5
1) will be called space-like (resp

time-like and light-like) if the underlying vector subspace R ⊂ R
5
1 has the

corresponding property. Then the correspondence c 
→ dc is a bijection
between the set of circles of S3 and the set of space-like lines of P(R5

1).
The inverse associates to a space-like line d ⊂ P(R5

1) the circle c of

intersection of S3 with P(d⊥). If E is a vector space and E is a union of
vector lines of E, we shall denote by P(E) ⊂ P(E) the set of vector lines
whose E is the union.

Therefore the space of circles of S3 can be seen as a subset of the set
P(P�) of lines of the cone P� ⊂ ∧2

(R5
1) given by the Plücker relations

defining pure 2-vectors.
The wedge product defines a bilinear mapping

∧
:
∧2(

R
5
1

) ×∧2
(R5

1) →
∧4

(R5
1). The condition U

∧
U = 0 gives 5 quadratic equa-

tions. They are not independent. One can prove that the equality
U
∧
U = 0 defines a 7-dimensional cone P� ⊂ ∧2

(R5
1).

The grassmannian G of projective lines of P(R5
1) is isomorphic to

the smooth projective variety P(P�). In G, the set of space-like lines is
open, then the subset CP� of classes of bivectors representing circles of
S
3 is also an open set in P(P�).
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Let now Uc1 and Uc2 be two pure vectors corresponding to the two
circles c1 and c2. The condition 0 = Uc1 ∧Uc2 is equivalent to dim(pc1 +
pc2) ≤ 3, that is to say: ∃σ ∈ pc1∩pc2∩Λ4. In other terms, the two circles
c1 and c2 belong to the same sphere Σ if and only if the corresponding
2-vector Uc1 and Uc2 satisfy Uc1 ∧ Uc2 = 0.

The condition is satisfied in particular when the two circles intersect
at two distinct points or are tangent.

§5. Families of d’Alembert cyclides

5.1. The d’Alembert property viewed in Λ4 and in the
space of circles

A cyclide, in general, defines two surfaces of the space of oriented
spheres Λ4: the spheres tangent to the cyclide and containing a circle of
the first hooping, and the spheres tangent to the cyclide and containing
a circle of the second hooping.

Notice that, as the circles in each hooping are not oriented, the two
(points in Λ4 corresponding to) spheres with opposite orientations are
on the same surface in Λ4.

Then the two surfaces in Λ4 are ruled by geodesics of Λ4: arcs of the
“circles” (for the Lorentz quadratic form) corresponding to the pencils
of spheres defined by the circles of one of the hoopings.

In the case of a d’Alembert cyclide, the two surfaces of spheres
corresponding to the two d’Alembert hoopings coincide. Therefore the
set of d’Alembert spheres is twice ruled by geodesics of Λ4. Slightly
extending results of Florit (see [9]), we see that the surface of d’Alembert
spheres is the intersection of Λ4 with a quadratic cone contained in a
4-dimensional space. We will provide a more elementary proof of the
fact that this surface is contained in a 4-dimensional space.

Proposition 5.1. The points of Λ4 corresponding to spheres which
contain a pair of circles of a d’Alembert cyclide, one in each family, are
contained in a 4-dimensional subspace H of R5

1.

Proof. Let us choose two circles ca1 , c
b
1 of the first family, they are

the axis of two pencils of spheres [ca1 ] and [cb1]. The points corresponding
to the spheres of these pencils are intersection of Λ4 with the planes
pa1 and pb1. A circle τ2 of the second family is the axis of the pencil
[τ2] = p2 ∩ Λ4. The definition of a d’Alembert cyclide implies that a
sphere Σ1 of [c

a
1 ]∩[τ2] contains ca1 and τ2 and that a sphere Σ2 of [c

b
1]∩[τ2]

contains cb1 and τ2. Then, if the spheres Σ1 and Σ2 are not equal, the
plane p2 is contained in the sum pa1 + pb1. In the same way, a plane p1
corresponding to a circle τ1 of the first family is contained in the sum
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pa2+pb2 of two planes corresponding to two circles of the second family. As
the planes pa2 and pb2 are contained in the sum pa1 + pb1, we conclude that
all the planes involved are contained in a 4-dimensional space. Q.E.D.

This proposition proves that the projective lines dc ∈ P(R5
1) associ-

ated to the circles of the two hoopings on a d’Alembert cyclide are in
the projective subspace P(H) of dimension 3 of P(R5

1). When c varies in
the hooping C1, the union of these lines dc is a surface in P(H) to which
we shall apply the methods of Section 2.5.

Then we call LP the restriction to
∧2

(H) of Plücker’s quadratic
form

∧
: LP(U,U) = U ∧ U . It is of index (3, 3). The totally isotropic

subspaces of
∧2

(H) will be called light-like subspaces. It is convenient,
instead of dealing with planes, 3-dimensional subspaces and the Plücker
cone of

∧2
(H) � R6 to work in the projective space P(

∧2
(H)) � P(R6).

The Klein quadric K is the image of the Plücker cone of equation (only

one in
∧2

(H)): LP(U,U) = 0. A projective light-ray is the image of
a totally isotropic plane and two orthogonal 3-dimensional subspaces
provide two conjugate projective planes.

Theorem 5.2. The sets of points in Klein’s quadric K corresponding
to the two families of circles of a d’Alembert cyclide form two open arcs
on conics C and C∗, the intersections of Klein’s quadric K ⊂ P

(∧2
(H)

)
with two (disjoint) conjugate projective planes.

Only the points of C such that the corresponding plane inH is space-
like can correspond to real circles in S

3, which explains the restriction
to two arcs of this statement.

One proof of this fact is quite similar to the analogous result obtained
in [16] for Dupin cyclides. There is a difference since we are not sure in
general to have all the conic C.

Proof. Let us choose three distinct points U1, U2, U3 on the Plücker
cone corresponding to circles of the first family. If the corresponding
planes in H are linearly independent, U1, U2, U3 generate a projective
plane P1 in P(

∧2
(H)). Any point U∗ corresponding to a circle of the

second family is conjugate (for the quadratic form LP ) to U1, U2 and
U3. Then U∗ is in the projective plane P ∗ conjugate to P . Then P ∗

contains all the points of P
(∧2

(H)
)
corresponding to the spheres of the

second family. By symmetry, P contains all the points of P
(∧2

(H)
)

corresponding to the spheres of the first family. Q.E.D.

Notice that the circles of a pencil containing one circle in each hoop-
ing come from a plane of

∧2 H � R6 totally degenerated for LP and



Foliations of S3 by cyclides 415

give rise to a projective light-ray joining a pair of points one in each of
the two conics.

Conversely we have the

Theorem 5.3. Let C and C∗ be two conics, intersections of Klein’s
quadric K ⊂ P

(∧2
(H)

)
with two (disjoint) conjugate projective planes.

Let C+ be the set of points δ of C such that the corresponding line d in
P(H) is space-like, and C∗

+ the same on C∗. Then the set of circles c on S
3

corresponding to the points δc ∈ C+ form a hooping of a d’Alembert cyc-
lide, the points C∗

+ providing the second hooping of the same d’Alembert
cyclide.

In the proof and the sequel, we shall make use of the line η orthog-
onal to the hyperplane H for Lorentz’s quadratic form. In P(R5

1), η is
the conjugate point (also named the pole) of P(H) with respect to the
hyperquadric S

3 = P(Li) ⊂ P(R5
1). We denote by Pη the projective

space of dimension 3 of lines of P(R5
1) containing the point η.

We recall that the conjugate R⊥ of the projective subspace R of
P(R5

1) has underlying vector subspace R⊥, orthogonal of R for Lorentz’s
quadratic form. Then R⊥ is the polar subspace of R relative to S3.

For each (projective) line d of P(H), the conjugate plane d⊥ ⊂ P(R5
1)

contains η, since d ⊂ P(H). Then d⊥ defines a line in the projective
space Pη.

Definition 5.4. If Q is a twice ruled quadric in P(H), the two
rulings D1 and D2 of Q give the two rulings of a quadric denoted by Q⊥

of Pη, and called the conjugate of Q in Pη.

Proof of Theorem 5.3. We must prove that whatever may be the
pair {C, C∗}, the surface covered by the (disjoint) circles coming from
C+ is the same as the surface covered by those coming from C∗

+. After
that, the fact that the cyclide which is twice hooped and d’Alembert is
evident as the construction has been made via H.

The conics C and C∗ parametrize the two rulings of a ruled quadric
Q in the projective space P(H). Let D1 and D2 be the two rulings of
Q⊥ given by Definition 5.4. Then the desired cyclide is (in S

3 ⊂ P(R5
1))

the union of the circles d⊥ ∩ S3, d ∈ D1. Then it is also the union of the
circles d′⊥ ∩ S

3, d′ ∈ D2.
Now we have just to observe that d⊥ ∩ S3 is a circle if and only if d

is space-like. Q.E.D.

The quadricQwill be called the quadric associated to the d’Alembert
cyclide defined by {C, C∗}. This quadric will help us to classify topologic-
ally d’Alembert cyclides.
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5.2. Characterisations of d’Alembert families

Proposition 5.5. To each 4-dimensional subspace H ⊂ R
5
1 corres-

ponds a 9-dimensional family of d’Alembert cyclides AH; we will call
such a 9-dimensional family of d’Alembert cyclides a d’Alembert family.
The space of d’Alembert families is therefore 4-dimensional.

1) If H is space-like, there exists a metric of S3 of constant curva-
ture 1 such that all the circles of the two families are geodesics.

2) If H is light-like, that is tangent to the light-cone along a light-
ray R ·m, then, choosing m as the point at infinity, the cyclide
becomes a ruled quadric of R3 � S3 \m.

3) If H is time-like, then all the circles of the cyclide are orthogonal
to the sphere S corresponding to the two points of H⊥ ∩ Λ4.

Proof. Theorem 5.2 and its converse Theorem 5.3 imply the di-
mensional assertions.

While proving the assertions 1), 2) and 3), we shall describe al-
together the cyclides in a d’Alembert family and their topology. The
description depends on the position of H with respect to Li, or, which
is equivalent, the position of P(H) with respect to S

3 ⊂ P(R5
1).

First case: H is space-like. Then, all the generatrices of Q are space-
like, and all the points of C and C∗ correspond actually to circles of the
cyclide. We can be more precise.

The point η is inside the ball of P(R5
1) bounded by S

3. We can
choose an affine chart R4 ↪→ P(R5

1) whose origin is precisely η, and
whose unit sphere in R

4 is S3. In this chart, the lines passing through η
become vector lines, and Pη become the projective space P3. The unit
sphere S

3 is therefore a two-sheeted covering of Pη. This implies the
existence of a metric of constant curvature of S3 for which all the circles
of the hoopings are geodesics, since they are intersections of planes in
R4 passing trough the chosen origin η with S3.

The cyclide defined by Q in the d’Alembert family is just the lifting
of the quadric Q⊥ of Definition 5.4 over this covering, and it is known to
be a topological torus (in particular it is connected). It is not in general
a Dupin cyclide, see Figure 6.

Second case: H is light-like. Then, P(H) is tangent to S
3 in P(R5

1).
One again, C and C∗ are C+ and C∗

+. For each line d ∈ P(H), d⊥

contains η. Moreover, in P(R5
1), S

3 is a sphere passing by the vertex η
of the cone. The map Pη → S3 which sends a line of P(R5

1) through
η to its other intersection with S

3 is the blowing up of the point η of
S3. If W is any projective hyperplane of P(R5

1) not containing η, the
mapping associating to m ∈ W the line (mη) is an isomorphism of
projective spaces, and, composed with the blowing up Pη → S3, is a
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stereographic projection. The quadrics Q⊥ are images of quadrics in W ,
and stereographic projections of quadrics in S

3. It means that the study
of quadrics in P3 is a particular case of the study of d’Alembert cyclides
in a family AH.

Third case: H is time-like. Then P(H) cuts transversally S3. In this
case, P(H)∩S

3 is a sphere S. This sphere may be interpreted in relation
with Λ4. Indeed, η = H⊥ is a space-like line of R5

1, and η ∩ Λ4 in R5
1

is a pair {σ,−σ} of points of Λ4. Then S is the sphere in S
3 associated

to σ or −σ, that is the set of lines of the cone Rσ⊥ ∩ Li, see end of
Section 4.1.

Now, we return to the projective viewpoint. In P(R5
1), the point η is

exterior to the ball bounded by S3 and P(H) is the hyperplane polar of η
with respect to S

3, with S as the set of points of contact of the lines (or
hyperplanes) tangent to S3 passing by η. In P(H), the quadric Q admits
a polar reciprocal quadric Q0 with respect to S. Then Q⊥ is the set of
lines joining a point of Q0 to η. If B is the ball bounded by S3 in P(R5

1),
B′ = B ∩ P(H) is a ball bounded by S. The map πη sending a point m
of S3 to the intersection (mη) ∩ P(H) is topologically equivalent to the
orthogonal projection of a 3-dimensional sphere onto an equatorial disk.
Then the inverse image by πη of each line of Q0 which cuts B′ along a
segment is a circle c.

As c is contained in a plane passing by η, it is orthogonal to the
sphere S intersection of S

3 with the hyperplane H polar of η, which
proves the assertion 3). This gives the topology of the d’Alembert cyc-
lides in the three possible cases, see Figure 10, where are shown segments
of Q0 ∩B′ whose fibre must be thought as a circle.

(a) (b) (c)

Fig. 10. The three types of pairs (Q0,S) in P(H).
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If Q0 is completely outside B′, the d’Alembert cyclide is empty. If
Q0 intersects S like in Figure 10 (a), the d’Alembert cyclide will be a
topological torus. If Q0 intersects S like in Figure 10 (b), the cyclide
will be the disjoint union of two topological spheres.

If the ball has just entered gently into the hyperboloid (like a punch
in the belly, see Figure 10 (c)), the d’Alembert cyclide will be a topo-
logical sphere.

We retrieve geometrically the topological classification of [20] in the
generic cases. Q.E.D.

Remark 5.6. The three transformations between Pη and S3 used
to construct d’Alembert cyclides from quadrics in Pη are very different.
The first is the two-sheeted covering of P3 by S3. The second is, in the
opposite direction, the blowing down from P

3 to S
3 (continuous map

which is the rational inverse of stereographic projection). The third is
the projection of S3 onto an equatorial ball. Then S

3 is the source in
the first and the third case, not the second one.

A consequence of the proof of Proposition 5.5 is that by any point
of a d’Alembert cyclide C, passes a circle of each of the two families.

§6. Cyclides, contact conditions and foliations

6.1. The three contacts problem in a d’Alembert family

In [15] and [16] the authors studied the existence of Dupin cyclides
satisfying three contact conditions, that is tangent to three planes at
three points. The solutions, when they exist, form a foliation of S3 with
a singular locus which is a curve where all the solutions are tangent
(see [14]).

Propositions 5.1 and 5.5 let us hope for a similar result for each
d’Alembert family of d’Alembert cyclides.

Now, we turn to the three contacts problem in a d’Alembert family
AH attached to the chosen hyperplaneH. In fact, all the results obtained
are more or less direct consequence of the results obtained for quadrics.

A contact on a d’Alembert cyclide inAH gives two cospherical circles
c1 and c2 (the containing sphere Σ is called d’Alembert sphere at this
point), and two lines dc1 and dc2 in P(H) whose intersection is the line
in R5

1 containing σ, one of the two points of Λ4 corresponding to Σ.
The pencil of circles c on Σ generated by c1 and c2 defines a pencil

of lines �c in P(H) which generates a plane in P(H) (whose support, a
3-plane in H, is space-like) containing the projective point Rσ. This
defines a contact in P(H) at the (projective) intersection point of dc1
and dc2 . If we are given three contacts on a D’Alembert cyclide in AH,
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this gives three contacts in P(H). These three contacts are obviously
space-like.

Theorem 6.1. Let us choose an hyperplane H ⊂ R
5
1. Given three

generic contacts in S3, there is a one parameter family of d’Alembert
cyclides in the chosen family AH which satisfy these contact conditions
if and only if the corresponding three contacts in P(H) verify Brianchon’s
condition. A sphere Σ counted twice belong to this family. All the cyc-
lides of the family are tangent along a biquadratic curve drawn on Σ.

The family does not cover S
3. Nevertheless, there exists a one par-

ameter family of d’Alembert cyclides containing the previously obtained
family, which all satisfy the three contact conditions, providing a foli-
ation of S3 singular along a curve (all leaves tangent along this curve).

These extra d’Alembert cyclides belong to different d’Alembert fam-
ilies AHt , t ∈ [0, 1], with AH0 = AH.

The rest of this section is devoted to a (commented) proof of this
theorem.

6.2. The solution of the three contacts problem in a given
d’Alembert family

Given three contact conditions in P(H), we ask whether they come
in this way from contacts on a d’Alembert cyclide in AH (since H is
imposed), and we want to construct all these cyclides.

As seen above (just before the statement of Theorem 6.1) the three
contacts in P(H) come from contacts on S3 if and only if they are space-
like, which we shall suppose now.

We shall suppose that this triplet of contacts in P(H) is generic
(like in the three contacts problem for quadrics). Theorem 2.4 gives us
the pencil P of all the quadrics in P(H) which satisfy the three con-
tacts, if the three contacts satisfy the spatial Brianchon condition of
Definition 2.3.

The ruled quadrics in P give d’Alembert cyclides, as in the proof
of Proposition 5.5. The obtained d’Alembert cyclide will satisfy the
imposed three contact conditions.

The d’Alembert cyclides C(Q) in S
3 constructed in the proof of

Proposition 5.5 from the ruled quadrics Q ∈ P never cover the whole
sphere S

3, and leave always an open hole in S
3. This is not due to the

topologies described in Figure 10, since in the first case of Proposition 5.5
the whole quadric Q⊥ (see Definition 5.4) is lifted to a toric surface in
S3. The cause of this hole is the presence in P of non-ruled quadric,
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necessary to cover P(H) with quadrics of P. Then we need the non-
ruled quadrics of P to fill in this hole with other d’Alembert cyclides,
which cannot be in AH.

6.3. Completion of a family of cyclides contained in a given
AH into a foliation of S3

We shall now extend the construction of Q⊥ (see Definition 5.4)
to the non ruled quadrics Q of P(H). As degenerate quadrics in P(H)
are ruled, we extend the construction of Q⊥ only for non degenerate
quadrics.

Let Q be a non degenerate quadric in P(H). We associate to Q the
set of (projective) tangent planes to Q in P(H). This defines a regular
quadric Q∗ of the dual projective space P(H∗).

The projective space Pη of projective lines of P(R5
1) containing η

may be identified with the set of (vector) planes of R5
1 containing the

line η, and thus with the set of lines of the quotient vector space R
5
1/η.

The bilinear pairing R5
1×H → R defined by restriction of L passes to

the quotient R5
1/η. If we suppose, as we shall do, that H is not tangent

to the light cone Li of L, this pairing R
5
1/η ×H is non degenerate and

defines a linear bijection Ψ: R5
1/η → H∗ such that, for [v] the class

modulo η of v and h ∈ H, Ψ([v])(h) = L(v, h).
The inverse image in Pη by (the homography associated to) Ψ of Q∗

is the desired Q⊥. This is a non degenerate quadric of Pη such that [v]
is in Q⊥ if and only if the linear form L(v, ·) on H is the equation of
some projective tangent plane of Q. When Q is ruled, this leads to the
same Q⊥ ⊂ Pη as in the preceding subsection.

If we consider now the non degenerate quadrics Q (ruled or not)
in a pencil P as above, the quadrics Q⊥ will cover the whole Pη, and

denoting by Q⊥ the underlying (degenerate) hyperquadric in P(R5
1) of

Q⊥, these hyperquadrics will cover P(R5
1), and their intersections with

S3 = P(Li) will cover S3.
For that, it is necessary that at least the quadrics Q⊥ form a (even-

tually) singular foliation of Pη.

Remark 6.2. If P were any pencil of quadrics in P(H), the quadrics
Q⊥, Q ∈ P would not in general fit into a linear pencil of quadrics. The
reason will appear in the proof of the following proposition.

Proposition 6.3. If P is the linear pencil generated by a cone
(quadric of rank 2) and a plane counted twice (quadric of rank 1) not
tangent to this cone, then the quadrics Q⊥, Q non degenerate in P, are
the non degenerate quadrics of a pencil P⊥ of quadrics in Pη.
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Proof. We choose a basis B of R5
1/η. There are coordinates (x, y, z)

in H for which the equation of the generic quadric Q of P is

λq(x, y) + μz2 = 0.

In these coordinates, the matrix of Q is

M(λ, μ) =

(
λM0 0
0 μ

)
.

If A is the matrix of the pairing L : R5
1/η × H → R in theses bases, a

matrix of Q⊥ is

M ′ = AM−1 tA = A

(
μM−1

0 0
0 λ

)
tA.

This proves our result. Q.E.D.

The tangential pencil P⊥ of quadrics of Pη gives in P(R5
1) a pencil

of quadratic cones (of dimension 4) of vertex η, which gives a singular
foliation of P(R5

1). We know the singularities of this foliation. Indeed,
the tangential pencil P⊥ has a singular plane counted twice and a vertex
in Pη, which give an hyperplane and a line of singularities in P(R5

1).
This singular foliation of P(R5

1) gives, by intersection with S
3 a fo-

liation whose singularities are of two types:

1) the singularities of the foliation of P(R5
1) by quadratic cones;

2) the points where a leaf in P(R5
1) is tangent to S3.

The second case does not happen in the “first case” of Propos-
ition 5.5 (when S

3 is a covering of Pη) since in that case the leaves
of the foliation of P(R5

1) cut transversally S
3.

The topology of the leaves may be described with the methods of
Proposition 5.5.

The intersections of quadric hypersurfaces in P(R5
1) with S3 are

known under the name of Darboux cyclides. They have been classified
by Takeuchi [20]. It may easily be deduced from [20] that Darboux cyc-
lides are d’Alembert cyclides, since the formulas given in [20] (pp. 125–
129) for her classification give explicit equations for the two d’Alembert
hoopings. There is an exception (the case a2 = a3 in [20] p. 126), which
corresponds to cyclides conformally equivalent to revolution surfaces in
R

3: they are canal surfaces and may be considered as a limit case of
d’Alembert cyclides, when the two hoopings coincide.

The role played here by the quadric Q⊥ (see Definition 5.4) shows
that d’Alembert cyclides are Darboux cyclides, and the topological clas-
sification deduced from Section 5.2 indicates in which Takeuchi’s class
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is a given d’Alembert cyclide. Then Darboux cyclides are essentially
the same as d’Alembert cyclides. Notice that in the definition of a
d’Alembert cyclide, we choose a pair of hoopings.

The Figure 11 shows two cyclides tangent along a curve in a
d’Alembert family.

Fig. 11. Darboux cyclides tangent along a curve.

Remark 6.4. In the generic case, it was observed numerically that
the poles η of “the other d’Alembert families” move continuously. Then,
if we want to complete a one parameter family of d’Alembert cyclides
in a given AH in a foliation of all S3 by d’Alembert cyclides, we need an
infinity of families AHt .

6.4. Comparison with Dupin cyclide foliations

In [14], the authors studied foliations of S3 by Dupin cyclides. One
sees easily that, for the two hoopings by Villarceau circles, a Dupin cyc-
lide is a d’Alembert cyclide, since each Villarceau circle of one hooping
intersects at two points any Villarceau circle of the second.

A foliation of S3 by Dupin cyclides tangent along a common Vil-
larceau circle studied in [14] (called here a Hopf–Villarceau foliation) is
in a d’Alembert family. Indeed, up to a conformal mapping, the cyclides
of the foliation are the pre-images of tangent circles by the Hopf fibra-
tion S3 → S2. Each circle in S3 that is the pre-image of a point by the
Hopf fibration is a geodesic circle of S3, and we are precisely in the first
case considered in Proposition 5.5, where η is the centre of the sphere
S
3 in C

2 � R
4.

In that case, all the quadrics Q⊥ ⊂ Pη = P3 may be easily deter-
mined. Consider S

2 as P
1(C), singularly foliated by the tangent circles

completing the lines �(z) = 1/a, a ∈ R∗. The inverse images of these
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circles of S2 by the Hopf fibration are, in S3 identified with the unit
sphere in C

2, the tori of equations:

|z1|2 + |z2|2 = 1, �(z2/z1) = 1/a.

Thus, the quadrics Q⊥ ⊂ P
3 have, for the homogeneous coordinates

(x1, x2, x3, x4) the equation:

x2
1 + x2

2 − a(x1x3 + x2x4) = 0.

Figure 12 shows two of them (for a = ±2) in an affine chart of P3, and
a stereographic projection of the corresponding cyclides. Two of the
quadrics of the pencil in Pη are represented in Figure 12 (a). All of them
are tangent along a common generatrice, which does not correspond to
the generic case studied in this paper (where the points of contact in Pη

are not aligned). In fact the linear system of all the quadrics tangent to
a given ruled quadric along a generatrice is of projective dimension 3,
and is not a pencil of quadrics.

(a) (b)

Fig. 12. Tangent quadrics and the corresponding cyclides for
a Hopf–Villarceau foliation.

Some leaves of a Hopf–Villarceau foliation are represented in [14].
Notice that the solution of the three contact problem in the realm

of d’Alembert cyclides does not coincide (except in the above case of
Hopf–Villarceau foliations, see also [14]) with its solution in the realm of
Dupin cyclides since the common curve of the Dupin cyclides in a family
is in general not contained in any sphere, see Figure 13. In all cases, the
tangency curve(s) of the leaves of one of our foliations by d’Alembert
cyclides are contained in a sphere.
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Fig. 13. Singular Dupin cyclides tangent along a curve.

§7. The four contacts problem for Darboux cyclides

A simple way to construct foliations of S3 by Darboux cyclides con-
sists in accepting all these cyclides and imposing more contact condi-
tions. The linear system of Darboux cyclides is of projective dimension
13. Imposing four contacts leaves (for a generic quadruplet of contacts)
one degree of freedom in the linear system, and gives a pencil of Darboux
cyclides.

This pencil leads to a foliation of the complement of a strict algebraic
submanifold, since, according to Bertini’s theorem, only the base curve
of the pencil and a finite number of cyclides of the pencil may contain a
singularities of the foliation.

Generically, the cyclides of the pencil will be tangent along a curve
as, among the cyclides of the pencil, we always find the sphere Σ con-
taining the four points of contact (counted twice in the linear system).
This implies that if Γ is the intersection of Σ with some cyclide in the
pencil, then Γ is a curve of contact of all the cyclides of the pencil (see
Figure 14).
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Fig. 14. A quadruplet of contacts leading to a pencil of
cyclides.
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de géométrie, de méchanique, d’optique, d’astronomie, VII, 1761, 163.

[ 2 ] D. Asimov, Average Gaussian curvature of leaves of foliations, Bull. Amer.
Math. Soc. 84 (1978), 131–133.

[ 3 ] W. Boehm, On cyclides in geometric modeling, Comput. Aided Geom. De-
sign 7 (1990), 243–255.

[ 4 ] F. Brito, R. Langevin and H. Rosenberg, Intégrales de courbure sur des
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de l’École Polytechnique 8, (1806), 297–311.
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