
Advanced Studies in Pure Mathematics 72, 2017

Geometry, Dynamics, and Foliations 2013

pp. 269–281

Rigidity of certain solvable actions on the torus

Masayuki Asaoka

Abstract.

An analog of the Baumslag–Solitar group BS (1, k) acts on the
torus naturally. The action is not locally rigid in higher dimension,
but any perturbation of the action should be homogeneous.

§1. Introduction

For integers n ≥ 1 and k ≥ 2, let Γn,k be the finitely presented
group given by

Γn,k = 〈a, b1, . . . , bn | abia−1 = bki , bibj = bjbi for any i, j = 1, . . . , n〉.
The group Γ1,k is just the Baumslag–Solitar group BS (1, k) = 〈a, b |
aba−1 = bk〉. It acts on the projective line RP 1 = R∪{∞} by a ·x = kx
and b · x = x + 1, where we set c · ∞ = ∞ and ∞ + t = ∞ for any
c �= 0 and t ∈ R. This action preserves the standard projective structure
on RP 1. In [2], Burslem and Wilkinson proved a classification theorem
of smooth1 BS (1, k)-action on RP 1. As a corollary, they obtained the
following rigidity result.

Theorem 1.1 (Burslem and Wilkinson [2]). Any real analytic
BS (1, k)-action on RP 1 is locally rigid. In particular, the above
projective action is locally rigid.

Recall the definition of local rigidity of a smooth action of a discrete
group. Let Γ be a discrete group and M a smooth closed manifold. The
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group Diff(M) of smooth diffeomorphisms is endowed with the C∞-
topology. A Γ-action is a homomorphism from Γ to Diff(M). For a
Γ-action ρ and γ ∈ Γ, we write ργ for the diffeomorphism ρ(γ). By
A(Γ,M), we denote the set of smooth Γ-actions on M . This set is
endowed with the topology generated by the open basis

{Oγ,U = {ρ ∈ A(Γ,M) | ργ ∈ U}} ,
where γ and U run over Γ and all open subsets of Diff(M). We say
two Γ-actions ρ1 and ρ2 are smoothly conjugate if there exists a diffeo-
morphism h of M such that ργ2 = h◦ργ1 ◦h−1 for any γ ∈ Γ. An Γ-action
ρ0 is locally rigid if it admits a neighborhood in A(Γ,M) such that any
action in it is smoothly conjugate to ρ0.

The above projective BS (1, k)-action on RP 1 can be generalized to
Γn,k-actions on the sphere Sn. Let B = (v1, . . . , vn) be a basis of Rn.
We define an BS (n, k)-action ρ̄B on Sn = R

n ∪ {∞} by ρ̄aB(x) = k · x
and ρ̄biB(x) = x + vi for x ∈ R

n, where c · ∞ = ∞ and ∞ + v = ∞
for any c �= 0 and v ∈ R

n. The sphere Sn admits a natural conformal
structure and the action ρB preserves it. In [1], the author of this paper
proved that the action ρ̄B is not locally rigid but it exhibits a weak form
of rigidity.

Proposition 1.2 ([1]). ρ̄B and ρ̄B′ are smoothly conjugate if and
only if there exists a conformal linear transformation T of Rn such that
TB = B′. In particular, ρ̄B is not locally rigid if n ≥ 2.

Theorem 1.3 ([1]). There exists a neighborhood of ρ̄B inA(Γn,k, S
n)

such that any action in it is smoothly conjugate to ρ̄B′ with some basis B′.
In particular, any Γn,k-action close to ρ̄B preserves a smooth conformal
structure on Sn.

In this paper, we prove analogous results for another generalization
of the projective BS (1, k)-action on RP 1. Let B = (v1, . . . , vn) be a
basis of R

n with vj = (vij)
n
i=1. We define a Γn,k-action ρB on the

n-dimensional torus Tn = (R ∪ {∞})n by

ρaB(x1, . . . , xn) = (k · x1, . . . , k · xn),

ρ
bj
B (x1, . . . , xn) = (x1 + v1j , . . . , xn + vnj).

Remark that the point x∞ = (∞, . . . ,∞) ∈ T
n is a global fixed point of

the action ρB.
The aim of this paper is to show that the action ρB is not locally

rigid if n ≥ 2, but it exhibits rigidity like the above Γn,k-action on Sn.
Let G be the subgroup of GLnR consisting of linear transformations
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f which have the form f(x1, . . . , xn) = (a1xσ(1), . . . , anxσ(n)) with real
numbers a1, . . . , an �= 0 and a permutation σ on {1, . . . , n}.

Proposition 1.4. Two actions ρB and ρB′ are smoothly conjugate
if and only if B′ = gB for some g ∈ G. In particular, ρB is not locally
rigid if n ≥ 2.

Theorem 1.5. There exists a neighborhood of ρB in A(Γn,k,T
n)

such that any action in it is smoothly conjugate to ρB for some basis
B of R

n.

The theorem is proved by an application of the method used in [1].
Firstly, we show persistence of the global fixed point x∞. Next, we
reduce the theorem to the corresponding theorem for local actions at
the global fixed point. The same argument as in [1], we can see that
the theorem for local actions follows from exactness of a finite dimen-
sional linear complex. The exactness can be checked by an elementary
computation.

The author would like to thank an anonymous referee for many
suggestions to improve the article.

§2. Proof of Theorem 1.5

2.1. Reduction from global to local

Let Γ be a discrete group and M a smooth closed manifold. We
say that a point x∗ ∈ M is a global fixed point of a Γ-action ρ on M if
ργ(x) = x for any γ ∈ Γ. We can apply the following general result on
persistence of a global fixed point of Γn,k-action to the action ρB .

Lemma 2.1 ([1, Lemma 2.10]). Let M be a manifold and ρ∗ be
a Γn,k-action on M . Suppose that ρ∗ has a global fixed point p0 such
that (Dρa∗)p0 = k−1I and (Dρbi∗ )p0 = I for any i = 1, . . . , n. Then,
there exists a neighborhood U ⊂ A(Γn,k,M) of ρ∗ and a continuous map
p̂ : U → M such that p̂(ρ∗) = p0 and that p̂(ρ) is a global fixed point of
ρ for any ρ ∈ U .

The action ρB and its global fixed point x∞ satisfy the assumption
of the lemma. Hence, any action ρ close to ρB admits a global fixed
point xρ close to x∞.

A Γ-action with a global fixed point induces a local Γ-action. We
define the space of local actions on R

n as follows. Let D be the group
of germs of local diffeomorphisms of Rn fixing the origin. For F ∈ D
and r ≥ 1, we denote the r-th derivative of F at the origin by D

(r)
0 F . It

is an element of the vector space Sr,n of symmetric r-multilinear maps
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from (Rn)r to R
n. We define a norm ‖ · ‖(r) on Sr,n by

‖L‖(r) = sup{‖L(ξ1, . . . , ξr)‖ | ξ1, . . . , ξr ∈ R
n, ‖ξi‖ ≤ 1 for any i},

for L ∈ Sr,n, where ‖ · ‖ is the Euclidean norm on R
n. We also define a

pseudo-distance dr on D by

dr(G1, G2) =
r∑

i=1

‖D(i)
0 G1 −D

(i)
0 G2‖(i)

for G1, G2 ∈ D. The pseudo-distance on D induces a non-Hausdorff
topology on D. We call it the Cr

loc-topology. Let Hom(Γ,D) the set of
homomorphisms from Γ to D, which can be regarded as the set of local
Γ-actions on (Rn, 0). The Cr

loc-topology on D induces a topology on
Hom(Γ,D) like A(Γ,M). We also call this topology on Hom(Γ,D) the
Cr

loc-topology. We say that two local Γ-actions P1 and P2 are smoothly
conjugate if there exists H ∈ D such that P γ

2 = H ◦ P γ
1 ◦H−1 for any

γ ∈ Γ.
Let ϕ be the local coordinate of Tn at x∞ given by

ϕ(x1, . . . , xn) =

(
1

x1
, . . . ,

1

xn

)
,

where 1/∞ = 0. For a basis B of Rn, we define a local Γn,k-action PB

by P γ
B = ϕ ◦ ργB ◦ϕ−1. For each Γn,k-action ρ close to ρB, we can take a

local coordinate ϕρ close to ϕ with ϕρ(xρ) = 0 so that a local Γn,k-action
given by P γ

ρ = ϕρ ◦ ργB ◦ ϕ−1
ρ is C3

loc-close to ρB.
The following proposition reduces Theorem 1.5 to the corresponding

result for local actions.

Proposition 2.2. Let ρ be a Γn,k-action on T
n close to ρB. Suppose

that the induced local action Pρ is smoothly conjugate to PB′ for some
basis B′ of R

n. Then, the action ρ is smoothly conjugate to ρB′ .

The rest of this subsection is devoted to the proof of the propos-
ition. Let B′ = (v1, . . . , vn) be a basis of Rn such that Pρ is smoothly
conjugate to PB′ . For each σ = (σ1, . . . , σn) ∈ {±1}n, there exist inte-
gers mσ

1 , . . . ,m
σ
n such that σi ·

∑n
j=1 m

σ
j vij > 0 for any i = 1, . . . , n. Set

bσ = b
mσ

1
1 · · · bmσ

n
n and vσi =

∑n
j=1 m

σ
j vij . Then, we have

(1) ρbσB′(x1, . . . , xn) = (x+ vσ1 , . . . , xn + vσn).

Let m̄ be the maximum of {|mi|σ | σ ∈ {±1n}, i = 1, . . . , n} and put

S = {a±1}∪{bl11 · · · blnn | |li| ≤ m̄}. By the assumption of the proposition,
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there exists a diffeomorphism h from a neighborhood V of x∞ to a
neighborhood V ′ of xρ and a family (Vγ)γ∈Γn,k

of neighborhoods of x∞
such that Vγ ⊂ V ∩ (ργB′)−1(V ) and h ◦ ργB′(x) = ργ ◦ h(x) for any
γ ∈ Γn,k and any x ∈ Vγ . Since S is a finite set, we can take an open
interval I ⊂ RP 1 \ {0} such that ∞ ∈ I and In ⊂ ⋂

γ∈S Vγ . The set In

is a neighborhood of x∞ and h ◦ ργB′(x) = ργ ◦ h(x) for any x ∈ In and
γ ∈ S.

Put I1 = {x ∈ I | x = ∞ or x > 0}, I−1 = {x ∈ I | x = ∞ or x < 0},
and Uσ = Iσ1 × · · · × Iσn for σ = (σ1, . . . , σn) ∈ {±1}n. Equa-

tion (1) implies that ρbσB′(Uσ) ⊂ Uσ,
⋂

n≥0(ρ
bσ
B′)n(Uσ) = {x∞}, and⋃

n≥0(ρ
bσ
B′)−n(Uσ) = T

n for any σ ∈ {±1}n, where Uσ is the closure of

Uσ. For σ ∈ {±1}n, let m(x, σ) be the minimal integer m such that

(ρbσB′)m(x) is contained in Uσ. We define a map hσ : Tn → T
n by

hσ(x) = (ρbσ )−m(x,σ) ◦ h ◦ (ρbσB′)
m(x,σ)(x).

We prove Proposition 2.2 by showing that hσ does not depend on the
choice of σ and it is a smooth conjugacy between ρB′ and ρ.

Lemma 2.3. hσ(x)= (ρbσ )−m ◦h ◦ (ρbσB′)m(x) for any m≥m(x, σ).

Proof. The lemma is shown by induction of m. Suppose that the
equation holds for some m ≥ m(x, σ). Since (ρbσB′)m(Uσ) ⊂ Uσ, we have

(ρbσ )−(m+1) ◦ h ◦ (ρbσB′)
m+1(x) = (ρbσ )−(m+1) ◦ (h ◦ ρbσB′) ◦ (ρbσB′)

m(x)

= (ρbσ )−(m+1) ◦ (ρbσ ◦ h) ◦ (ρbσB′)
m(x)

= (ρbσ )−m ◦ h ◦ (ρbσB′)
m(x).

Hence, the required equation holds for m+ 1. Q.E.D.

Lemma 2.4. The map hσ is injective.

Proof. Take x1, x2 ∈ T
2 and m = max{m(x1, σ),m(x2, σ)}. Then,

we have
hσ(xi) = (ρbσ )−m ◦ h ◦ (ρbσB′)

m(xi).

for i = 1, 2. The map in the right-hand side is injective. Q.E.D.

Lemma 2.5. hσ ◦ ργB′ = ργ ◦ hσ for any γ ∈ Γ.

Proof. Fix x∈T
n and takem≥m(x, σ) such thatm≥m(ργB′(x), σ)

for any γ ∈ S. It is sufficient to show that hσ ◦ ργB′ = ργ ◦ hσ for
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γ ∈ {a, b1, . . . , bn}. For any i = 1, . . . , n, the identity bibj = bjbi im-
plies that

hσ ◦ ρbiB′(x) = (ρbσ )−m ◦ h ◦ (ρbσB′)
m ◦ ρbiB′(x)

= (ρbσ )−m ◦ (h ◦ ρbiB′) ◦ (ρbσB′)
m(x)

= (ρbσ )−m ◦ (ρbi ◦ h) ◦ (ρbσB′)
m(x)

= ρbi ◦ (ρbσ )−m ◦ h ◦ (ρbσB′)
m(x)

= ρbi ◦ hσ(x).

The identity abi = bki a also implies

hσ ◦ ρaB′(x) = (ρbσ )−km ◦ h ◦ (ρbσ )km ◦ ρaB′(x)

= (ρbσ )−km ◦ (h ◦ ρaB′) ◦ (ρbσB′)
m(x)

= (ρbσ )−km ◦ (ρa ◦ h) ◦ (ρbσB′)
m(x)

= ρa ◦ (ρbσ )−m ◦ h ◦ (ρbσB′)
m(x)

= ρa ◦ hσ(x).

Q.E.D.

For a diffeomorphism f on a manifold M and a hyperbolic fixed
point p of f , we denote the unstable manifold of p by Wu(p, f) (see
e.g., [3] for the definitions and basic results on hyperbolic dynamics).
By Fix(f), we also denote the set of fixed points of f . For l ≥ 0, let
Fixl(f) be the set of hyperbolic fixed point of f whose unstable manifold
is l-dimensional.

The diffeomorphisms ρaB and ρaB′ are Morse–Smale diffeomorphisms
with the fixed point set {0,∞}n. For each fixed point p = (p1, . . . , pn) ∈
{0,∞}n, Wu(p, ρaB′) = W1 × · · · × Wn with Wj = R if pj = 0 and
Wj = {∞} if pj = ∞. If ρ is sufficiently close to ρB, then ρa is a
Morse–Smale diffeomorphism and Fixl(ρ

a) has the same cardinality as
Fixl(ρ

a
B), and hence, as Fixl(ρ

a
B′) for any l = 0, . . . , n. By Lemma 2.4

and Lemma 2.5, hσ maps Fix(ρaB′) to Fix(ρa) bijectively.

Lemma 2.6. For any l = 0, . . . , n and p ∈ Fixl(ρ
a
B′), hσ(p) is a

point in Fixl(ρ
a). Moreover, the restriction of hσ to Wu(p, ρaB′) is a

diffeomorphism onto Wu(hσ(p), ρ
a).

Remark thatWu(q, ρa) is an (embedded) submanifold diffeomorphic
to R

l for q ∈ Fixl(ρ
a) since ρa is Morse–Smale.

Proof. Take l = 0, . . . , n and p ∈ Fixl(ρ
a
B′). Notice that

Wu(p, ρaB′)∩Uσ is a non-empty open subset of Wu(p, ρaB′). Thus, there
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exists a neighborhood V u of p inWu(p, ρaB′) such that (ρbσB′)m(p,σ)(V u)⊂
Uσ. We have m(y, σ) ≤ m(p, σ) for any y ∈ V u. This implies that

hσ = (ρbσ )−m(p,σ) ◦ h ◦ (ρbσB′)m(p,σ) on V u. In particular, the restriction
of hσ to V u is a diffeomorphism onto hσ(V

u). Since Wu(p, ρaB′) =⋃
m≥0(ρ

a
B′)m(V u), hσ ◦ ρaB′ = ρa ◦ hσ, and hσ is injective, the restriction

of hσ to Wu(p, ρaB′) is a diffeomorphism onto hσ(W
u(p, ρaB′)).

For x ∈ Wu(p, ρaB′), we have

(ρa)−m(hσ(x)) = hσ ◦ (ρaB′)−m(x)
m→∞−−−−→ hσ(p).

This implies that hσ(W
u(p, ρaB′) is a subset of Wu(hσ(p), ρ

a). In par-
ticular, the dimension of Wu(hσ(p), ρ

a) is at least l. Since hσ maps
the finite set Fix(ρaB′) to Fix(ρa) bijectively and the sets Fixj(ρ

a
B′) and

Fixj(ρ
a) have the same cardinality for each j = 0, . . . , n, the map hσ

is a bijection from Fixl(ρ
a
B′) to Fixl(ρ

a). The set hσ(W
u(p, ρaB′)) is

a ρa-invariant open subset of Wu(hσ(p), ρ
a) which contains hσ(p). It

should coincide with Wu(hσ(p), ρ
a), and hence, the restriction of hσ to

Wu(p, ρaB′) is a diffeomorphism onto Wu(hσ(p), ρ
a). Q.E.D.

Lemma 2.7. hσ(p) does not depend on the choice of σ for any
p ∈ Fix(ρaB′).

Proof. Take l = 0, . . . , n and p = (p1, . . . , pn) ∈ Fixl(ρB′). Put
bp =

∏
pi=∞ bi. Then, p is the unique element in Fixl(ρ

a
B′) which is

fixed by ρ
bp
B′ . By the identity ρbp ◦ hσ = hσ ◦ ρ

bp
B′ , hσ(p) is the unique

element in Fixl(ρ
a) = hσ(Fixl(ρ

a
B′)) which is fixed by ρbp . Q.E.D.

Lemma 2.8. The map hσ does not depend on the choice of σ.

Proof. Take σ, σ′ ∈ {±1}n and put g = h−1
σ′ ◦ hσ. It is sufficient

to show that the restriction gp of g to Wu(p, ρaB′) is the identity map
for each p = (p1, . . . , pj) ∈ Fix(ρaB′) = {0,∞}n. By the above lemmas,
gp(p) = p and the restriction of gp is a diffeomorphism of Wu(p, ρaB′)
which commutes with ρaB′ . Recall that ρaB′(x) = kx and Wu(p, ρaB′) is
naturally identified with a vector space

⊕
pi=0 R. Under the identifica-

tion, we have

(Dgp)0 · x = lim
m→+∞

gp(k
−mx)

k−m
= ρaB′ ◦ gp ◦ (ρaB′)−1(x) = gp(x).

In particular, the map gp is an linear isomorphism. The linear map gp

commutes with ρ
bj
B′ for any j=1, . . . , n. This implies that gp(πp(vj))=

πp(vj), where πp : R
n → ⊕

pi=0 R is the natural projection. Since

(πp(vj))
n
j=1 spans

⊕
pi=0 R, the map gp is the identity map onWu(p, ρaB′)

for each p∈Fix(ρaB′). Q.E.D.
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Since In =
⋃

σ∈{±1}n Uσ and hσ = h on Uσ, the above lemma

implies that hσ = h on In. For any x ∈ T
n and σ ∈ {±1}n, the point

(ρbσB′)m(x,σ)(x) is contained in In. Take a neighborhood Nx of x such

that (ρbσB′)m(x,σ)(Nx) ⊂ In. By Lemma 2.5,

hσ(y) = (ρbσ )−m(x,σ) ◦ hσ ◦ (ρaB′)m(x,σ)(y)

= (ρbσ )−m(x,σ) ◦ h ◦ (ρaB′)m(x,σ)(y)

for any y ∈ Nx. Hence, hσ is a local diffeomorphism. Since hσ is
injective, it is a diffeomorphism of Tn. By Lemma 2.5, it is a smooth
conjugacy between two actions ρB′ and ρ.

2.2. Rigidity of local actions

Fix a basis B = (v1, . . . , vn) of Rn with vj = (vij)
n
i=1. Let PB be

the local Γn,k-action defined in the previous section. In this subsection,
we show the local version of Theorem 1.5.

Theorem 2.9. If a local action P ∈ Hom(Γn,k,D) is sufficiently
close to PB in C3

loc-topology, then it is smoothly conjugate to PB′ for
some basis B′ of R

n.

Combined with Proposition 2.2, the theorem implies Theorem 1.5.
The above theorem follows from the same argument as in [1]. Firstly,

we prove the stability of the linear part of the local action. Secondly, we
show exactness of a linear complex and see that existence of B′ follow
from it.

For w = (wi)
n
i=1 ∈ R

n, we define a map Qw : Rn × R
n → R

n by

Qw(x, y) =
n∑

j=1

(wjxjyj)ej

for x = (xi)
n
i=1 and y = (yi)

n
i=1, where (e1, . . . , en) be the standard basis

of Rn. Then, the local action PB satisfies that

P a
B(x1, . . . , xn) = k−1 · x,

P
bj
B (x1, . . . , xn) = x−Qvj (x, x) +O(‖x‖3).

Let I be the identity map of Rn. We recall a lemma in [1] concerning
stability of the linear part of P bi .

Lemma 2.10 ([1, Lemma 2.2]). Let P∗ be a local action in

Hom(Γn,k,D) such that D
(1)
0 P a

∗ = k−1I and D
(1)
0 P bi∗ = I for any

i = 1, . . . , n. Then, there exists a C1
loc-neighborhood U of P∗ in

Hom(Γn,k,D) such that D
(1)
0 P bi = I for any P ∈ U and i = 1, . . . , n.



Rigidity of certain solvable actions 277

Hence, D
(1)
0 P bj = I for any j = 1, . . . , n if P is sufficiently C1

loc-close
to PB . The following lemma is essentially same as Lemma 2.3 of [1].

Lemma 2.11. Let P∗ be a local action in Hom(Γn,k,D) such that

D
(1)
0 P a

∗ = k−1I and D
(1)
0 P

bj∗ = I for any j = 1, . . . , n. Suppose that
there exists δ > 0 such that

max
j=1,...,n

‖A ◦D(2)
0 P

bj∗ − 2D
(2)
0 P

bj∗ ◦ (A, I)‖(2) ≥ δ‖A‖(1),

for any linear map A : Rn → R
n. Then, P a = k−1I for any P which is

sufficiently C2
loc-close to P∗.

Proof. Let U be a C2
loc-open neighborhood of P∗ consisting of P ∈

Hom(Γn,k,D) such that

3‖D(2)
0 P bj −D

(2)
0 P

bj∗ ‖(2) + ‖D(1)
0 P a − k−1I‖ · ‖D(2)

0 P bj‖(2) < δ/2

for any j = 1, . . . , n. Fix P ∈ U and put

A = D
(1)
0 P a − k−1I,

Bj = D
(2)
0 P bj −D

(2)
0 P

bj∗ ,

Cj = A ◦D(2)
0 P

bj∗ − 2D
(2)
0 P

bj∗ ◦ (A, I).

We will show that A = 0. The identity P a ◦P bj = P bkj ◦P a implies that

(k−1I+A)◦ (D(2)
0 P

bj∗ +Bj) = k · (D(2)
0 P

bj∗ +Bj)◦ (k−1I+A, k−1I+A).

Thus, we have that

‖Cj‖(2) = ‖A ◦Bj − 2Bj ◦ (A, I)− (D
(2)
0 P

bj∗ +Bj) ◦ (A,A)‖(2)

≤ ‖A‖(1) ·
(
3‖Bj‖(2) + ‖A‖(1) · ‖D(2)

0 P bj‖(2)
)

≤ (δ/2)‖A‖(1)

for any j = 1, . . . , n. By assumption, A = 0. Q.E.D.

We apply the lemma for PB .

Lemma 2.12. The local action PB satisfies the assumption of
Lemma 2.11. In particular, P a = k−1I for any P ∈ Hom(Γn,k,D)
which is sufficiently C2

loc-close to PB .
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Proof. Take a square matrix A = (aij) of size n and put

Cj = A ◦D(2)
0 P

bj
B − 2D

(2)
0 P

bj
B ◦ (A, I) = −2{A ◦Qvj − 2Qvj (A, I)}.

Then,
Cj(ei, ei) = −2{A ◦Qvj (ei, ei)− 2Qvj (Aei, ei)}

= −2{A(−vijei)− 2(−vijaiiei)}

= −2vij

{
aiiei −

∑
k �=i

akiek

}
.

This implies that ‖Cj(ei, ei)‖ = 2|vij | · ‖(aki)nk=1‖, and hence,

max
j=1,...,n

‖Cj‖(2) ≥ 2 max
j=1,...,n

|vij | · ‖(aki)nk=1‖

for any i = 1, . . . , n. Since (v1, . . . , vn) is a basis of R
n, there

exists δ > 0 such that maxj=1,...,n|vij | ≥ δ for any i = 1, . . . , n.

We also have ‖A‖(1) ≤ nmaxi=1,...,n‖(aki)nk=1‖. This implies that

maxj=1,...,n‖Cj‖(2) ≥ (2δ/n)‖A‖(1). Q.E.D.

Recall that Sr,n is the vector space of symmetric r-multilinear maps
from (Rn)r to R

n. Elements of S1,n are just linear endomorphisms of
R

n. For Q,Q′ ∈ S2,n, we define [Q,Q′] ∈ S3,n by

[Q,Q′](ξ0, ξ1, ξ2) =
2∑

k=0

Q(ξk, Q
′(ξk+1, ξk+2))−Q′(ξk, Q(ξk+1, ξk+2)),

where we set ξ3 = ξ0 and ξ4 = ξ1. We also define linear maps
L0
B : (S1,n)2 → (S2,n)n and L1

B : (S2,n)n → (S3,n)n(n−1)/2 by

L0
B(A

′, B′) = (A′ ◦Qvi −Qvi ◦ (A′, I)−Qvi ◦ (I,A′) +QB′ei)
n
i=1,

L1
B(q1, . . . , qn) = ([qi, Qvj ]− [qj , Qvi ])1≤i≤j≤n.

By the exactly same argument as in p. 1841–1844 of [1], Theorem 2.9
follows from the following

Proposition 2.13. KerL1
B = ImL0

B.

We show this proposition in the next subsection.

2.3. Proof of Proposition 2.13

It is not hard to check that ImL0
B ⊂ KerL1

B . We will show KerL1
B ⊂

ImL0
B . Recall that I = (e1, . . . , en) is the standard basis of Rn. As

shown in Lemma 2.11 of [1], it is enough to prove Proposition 2.13 for
the case B = I. Set L0 = L0

I and L1 = L1
I .
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For v, w ∈ R
n, let 〈v, w〉 be the standard inner product of v and w,

i.e., 〈v, w〉 = ∑n
i=1 viwi. Let W be the subspace of (S2,n)n consisting of

the elements (qi)
n
i=1 such that qi(ei, ei) = 0 and 〈qi(ej , ej), ej〉 = 0 for

any i, j = 1, . . . , n.
The following formula on Qi is useful for computation;

Qv(ei, ej) = Qei(v, ei) =

{
〈v, ei〉ei (i = j),

0 (i �= j)

for v ∈ R
n and i, j = 1, . . . , n. In particular, Qei(ej , ek) = ei if i = j = k

and Qei(ej , ek) = 0 otherwise.

Lemma 2.14. W + ImL0 = (S2,n)n.

Proof. Take (qi)
n
i=1 ∈ (S2,n)n. We put aii = −〈qi(ei, ei), ei〉, aji =

〈qi(ei, ei), ej〉, and bii = 0, bji = 〈qi(ej , ej), ej〉 for distinct i, j = 1, . . . , n.
Let A and B be square matrices of size n whose (i, j)-entries are aij and

bij , respectively. Then, L
0(A,B) = (qA,B

i )ni=1 satisfies that

qA,B
i (ei, ei) = A ·Qei(ei, ei)− 2Qei(Aei, ei) +QBei(ei, ei)

= Aei − 2aiiei + biiei

= qi(ei, ei),

qA,B
i (ej , ej) = A ·Qei(ej , ej)− 2Qei(Aej , ej) +QBei(ej , ej)

= bjiej

= 〈qi(ej , ek), ej〉ej .

Hence, qi − qA,B
i is an element of W . Q.E.D.

Lemma 2.15. KerL1 ∩W = {0}.
Proof. Take (qi)

n
i=1 ∈ KerL1 ∩ W . Since (qi)

n
i=1 ∈ W , we have

qi(ei, ei) = 0 and 〈qi(ej , ej), ej〉 = 0 for any i, j = 1, . . . , n. If i �= j,

[qi, Qej ](ej , ej , ej) = 3{qi(ej , ej)−Qej (ej , qi(ej , ej))}
= 3{qi(ej , ej)− 〈qi(ej , ej), ej〉ej},
= 3qi(ej , ej),

[qj , Qei ](ej , ej , ej) = 3{qj(ej , ej)−Qei(ej , qj(ej , ej))}
= 0.

Since [qi, Qej ]− [qj , Qei ] = 0, we obtain that qi(ej , ej) = 0.
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If i �= j,

[qi, Qej ](ei, ej , ej) = qi(ei, ej)− 2Qej (ej , qi(ei, ej))

= qi(ei, ej)− 2〈qi(ei, ej), ej〉ej
[qj , Qei ](ei, ej , ej) = −Qei(ei, qj(ej , ej))

= −Qei(ei, 0)

= 0.

Since [qi, Qej ]− [qj , Qei ] = 0, we obtain that qi(ei, ej) = 0.
For distinct i, j, k = 1, . . . , n,

[qi, Qej ](ej , ej , ek) = qi(ek, ej)− 2Qej (ej , qi(ej , ek))

= qi(ej , ek)− 2〈qi(ej , ek), ej〉ej ,
[qj , Qei ](ej , ej , ek) = 0.

Since [qi, Qej ]−[qj , Qei ] = 0, we obtain that qi(ej , ek) = 0. Now, we have

qi(ej , ek) = 0 for any (qi)
n
i=1 ∈ KerL1 ∩ W and any i, j, k = 1, . . . , n.

Q.E.D.

Now, we prove Proposition 2.13. Since ImL0 is a subspace of KerL1,
we have (S2,n)n = W ⊕ ImL0 by the above lemmas. By ImL0 ⊂ KerL1

and KerL1 ∩W = {0} again, we obtain that KerL1 = ImL0.

§3. Proof of Proposition 1.4

It is easy to see that any linear isomorphism g ∈ G of Rn can be
extended uniquely to a diffeomorphism hg of Tn = (R ∪ {∞})n and the
diffeomorphism hg is a conjugacy between ρB and ρgB.

Suppose that ρB and ρB′ are smoothly conjugate by a diffeo-
morphism h. We will show that h = hg for some g ∈ G. The conjugacy
h preserves the unique repelling fixed point (0, . . . , 0) of ρaB and ρaB′

and their unstable manifold R
n ⊂ T

n = (R ∪ {∞})n. The restriction
hR of h to R

n commutes with the linear map x �→ kx. By the same
argument as in the proof of Lemma 2.8, the map hR is linear. Take
(aij)

n
i,j=1 such that hR(ej) =

∑n
i=1 aijei.

We set

Vj = {(x1, . . . , xn) ∈ T
n | xj = ∞, xi �= ∞ if i �= j}

for i = 1, . . . , n. Each Vi is a submanifold of Vj which is diffeomorphic
to R

n−1. Since h is continuous, we have

h(Vj) ⊂
⋂

aij �=0

Vi.
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Since h is a diffeomorphism of Tn, there exists a unique σ(j) ∈ {1, . . . , n}
such that aij �= 0 for each j = 1, . . . n. Since the linear transformation
h|R is invertible, σ is a permutation of {1, . . . , n}. Therefore, hR is an
element of G.
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