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A few open problems on
characteristic classes of foliations

Shigeyuki Morita

Abstract.

In this paper, we consider a few major open problems in the theory
of characteristic classes of foliations. After recalling some history and
background of each of these problems, we propose possible approaches
to challenge them and present several “sub-problems”.

§1. Introduction

The theory of characteristic classes of foliations was initiated by the
discovery, in the beginning of the 1970’s, of the Godbillon–Vey class of
codimension 1 foliations [14] and a ground-breaking work of Thurston
[42] proving that it can vary continuously. Soon after this, Bott and
Haefliger [5], and also Bernstein and Rozenfeld [3] presented a general
framework for this theory and during the 1970’s, it has been devel-
oped extensively by many people including Heitsch [20] and Hurder [22].
There also appeared the closely related theory of Gelfand and Fuks de-
veloped in their paper [11] on the cohomology of the Lie algebra of vector
fields on manifolds and that of Chern and Simons [8] on the secondary
characteristic classes of principal bundles. The notions of Γ-structures
and their classifying spaces due to Haefliger [17] played a crucial role in
this theory and Mather [30] and Thurston [43] obtained many funda-
mental results by using them.

However there remain numbers of important problems to be solved
in future. In this paper, we focus on the following two major problems
both of which turn out to be extremely difficult. One is the determina-
tion of the homotopy type of the classifying space BΓ1 of Γ1-structures
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in the C∞ category as well as the real analytic category. The other is de-
velopment of characteristic classes of transversely symplectic foliations.
As the most typical examples of these two problems, we discuss the cases
of foliated S1-bundles as well as foliated surface bundles in details.

§2. Homotopy type of BΓ1

We denote by BΓ∞
n the Haefliger classifying space of Γn-structures

in the C∞ category. Let BΓ
∞
n denote the homotopy fiber of the nat-

ural map BΓ∞
n → BGL(n,R). In this paper, we mainly consider the

case n = 1. In this case, BΓ
∞
1 is the homotopy fiber of the map

w1 : BΓ
∞
1 → BGL(1,R) = K(Z/2, 1), corresponding to the first Stiefel–

Whitney class. In other words, it is the classifying space of transversely
oriented Γ1-structures in the C∞ category. Haefliger [16] proved that

BΓ
∞
n is n-connected for any n and Mather proved that BΓ

∞
1 is 2-

connected. The Godbillon–Vey class can be considered as an element in
H3(BΓ∞

1 ;R) and Thurston [42] proved that it induces a surjection

π3(BΓ
∞
1 ) ∼= H3(BΓ

∞
1 ;Z) � R.

Although Tsuboi [46] obtained an interesting result about the kernel
of the homomorphism π3(BΓ

∞
1 ) � R, it remains unsettled whether

π3(BΓ
∞
1 ) ∼= R or not. This is already a very difficult open problem.

However, it is only a tiny part of the following major open problem in
the theory of foliations.

Problem 2.1. Determine the homotopy type of BΓ∞
1 . More pre-

cisely, determine whether the classifying map

GV: BΓ
∞
1 → K(R, 3),

induced by the Godbillon–Vey class, is a homotopy equivalence or not.

In [33], we introduced the concept of discontinuous invariants of
foliations. One possible approach to attack the above problem would be
to apply this general theory to the above particular case. In this case, it
is based on the fact that the homology group H∗(K(R, 3);Z) is a huge
group. More precisely, it can be described as

H∗(K(R, 3);Z) ∼=

⎧⎪⎨
⎪⎩
Z ∗ = 0,∧k

Z
R ∗ = 3k,

0 otherwise.
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Problem 2.2. Determine whether the homomorphism

GVk : H3k(BΓ
∞
1 ,Z) →

k∧
Z

R (∼= H3k(K(R, 3);Z)),

which is the homomorphism induced by the map GV on H3k, is non-
trivial or not.

In the case of piecewise linear (PL for short) category, Greenberg
[15] showed that there is a weak homotopy equivalence

BΓ
PL

1 ∼ BRδ ∗ BRδ

where the right hand side represents the join of two copies of BRδ, Rδ

being the abelian group R equipped with the discrete topology. It follows

that BΓ
PL

1 is 2-connected and he described the integral homology group

of BΓ
PL

1 completely. It also follows that the higher homotopy groups of
this space is highly non-trivial. In particular

π3(BΓ
PL

1 ) ∼= R⊗Z R.

On the other hand, Ghys and Sergiescu [13] defined a cohomology class

GVdis ∈ H3(BΓ
PL

1 ;R)

which is called the discrete Godbillon–Vey class. By making use of the
above result of Greenberg, Tsuboi [45] showed that the homomorphism

GVdis
k : H3k(BΓ

PL

1 ,Z) →
k∧
Z

R

associated with the discrete Godbillon–Vey class GVdis is trivial for all
k ≥ 2.

Going back to the case of C∞ category, nothing is known about the
non-triviality of the homomorphim

(1) GV2 : H6(BΓ
∞
1 ,Z) →

2∧
Z

R.

In the above cited paper [33], we related this problem with a certain prop-

erty about the homology of the group Diffδ
K R of C∞ diffeomorphisms



224 S. Morita

of R with compact supports equipped with the discrete topology. Here
we briefly recall this. Let us define an injective homomorphism

μ : Diffδ
K R×Diffδ

K R → Diffδ
K R

as follows. Choose orientation preserving diffeomorphisms ι− : R ∼=
(−∞, 0) and ι+ : R ∼= (0,∞) and set

μ(f, g)(t) =

⎧⎪⎨
⎪⎩
ι− ◦ f ◦ ι−1

− (t) t < 0,

0 t = 0,

ι+ ◦ g ◦ ι−1
+ (t) t > 0.

This homomorphism μ induces a certain product on the homology group
H∗(BDiffδ

K R;Q) which we call the ∗-product. By making a crucial use
of Mather’s result [30] together with a classical theorem of Samelson in
[40], we obtained the following result.

Proposition 2.3 (see [33], somewhat rearranged). (i) The follow-
ing two statements are equivalent.

(a) All the Whitehead products on π∗(BΓ
∞
1 ) have finite orders.

(b) The ∗-product on H∗(BDiffδ
K R;Q) is graded commutative,

namely the equality

u ∗ v = (−1)pqv ∗ u

holds for any u ∈ Hp(BDiffδ
K R;Q) and v ∈ Hq(BDiffδ

K R;Q).

(ii) Assume that the statement (i)-(b) above concerning the ∗-product
holds for p = q = 2. Then the homomorphism (1) is almost surjective
in the sense that its cokernel is a torsion group.

Observe here that if BΓ
∞
1 is a K(R, 3), then all the Whitehead

products on π∗(BΓ
∞
1 ) clearly vanish.

Problem 2.4. Prove (or disprove) that the ∗-product on the

homology group H∗(BDiffδ
K R;Q) is graded commutative. In par-

ticular, prove (or disprove) that the ∗-product on H2(BDiffδ
K R;Q) is

commutative.

In a certain case of low differentiability (Lipschitz with bounded vari-
ation of derivatives), Tsuboi [47] settled the above problem for this group
affirmatively, thereby proved that the second discontinuous invariant

GVLip,bdd
2 : H6(BΓ

Lip,bdd

1 ,Z) →
2∧
Z

R
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is almost surjective where GVLip,bdd is the one he extended to this case.
The Godbillon–Vey class can be defined for transversely holomorphic

foliations with trivialized normal bundles as well. More precisely, it is
defined as an element

GVC ∈ H3(BΓ
C

1 ;C)

where BΓ
C

1 denotes the Haefliger classifying space of transversely holo-
morphic Γ1-structures with trivialized normal bundles. Bott [4] proved
that the associated homomorphism

GVC : π3(BΓ
C

1 ) → C

is surjective. Also it is known that BΓ
C

1 is 2-conneced (see Haefliger and
Sithanantham [18]).

Problem 2.5. Determine the homotopy type of BΓC
1 . More pre-

cisely, determine whether the classifying map

GVC : BΓ
C

1 → K(C, 3)

induced by the complex Godbillon–Vey class, is a homotopy equivalence
or not.

We refer to a book [1] by Asuke for a recent study of GVC.
Finally we recall a closely related problem. Let Mh(3) denote the

set of orientation preserving diffeomorphism classes of closed oriented
hyperbolic 3-manifolds. For any such manifold M , we have its volume
vol(M) and the η-invariant η(M) of Atiyah–Patodi–Singer [2]. The com-
bination η + i vol gives rise to a mapping

η + i vol : Mh(3) → C.

Problem 2.6 (Thurston ([44], Questions 22, 23). Study the above
map. In particular, determine whether the dimension over Q of the
Q-subspace of iR generated by the second component of the image of
the above map is infinite or not.

Recall that any such M defines a homology class

[M ] ∈ H3(PSL(2,C)
δ;Z)

and we have the following closely related problems.
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Problem 2.7. Determine the image of the map

Mh(3) → H3(PSL(2,C)
δ;Z)

(CS,i vol)−−−−−−→ C/Z

where CS denotes the Chern Simons invariant. Recall that CS is an
invariant defined modulo integers and η is an integral lift of it.

Problem 2.8. Study the discontinuous invariants of the group
PSL(2,C)δ associated with the above classes. In particular, determine
the value of the total Chern Simons invariant introduced in Dupont [9].

§3. Real analytic foliations of codimension 1

Let BΓ
ω

1 denote the classifying space of transversely oriented real
analytic Γ1-structures. Haefliger proved the following theorem.

Theorem 3.1 (Haefliger [17]). BΓ
ω

1 is a K(π, 1) space for certain
group ΓH which has the following three properties.

(i) All the non-trivial elements of ΓH are of infinite order,
(ii) ΓH is perfect, namely it is equal to its commutator subgroup,
(iii) ΓH is uncountable.

We may call ΓH the Haefliger group. It may be said that almost
nothing is known about this group beyond the above properties proved
by Haefliger. There exists a natural forgetful map

(2) BΓ
ω

1 → BΓ
∞
1

which is of course far from being a homotopy equivalence. However, since
ΓH is a perfect group, we can apply the Quillen’s plus construction (see

[39]) on BΓ
ω

1 to obtain a map

(3) BΓ
ω

1 = K(ΓH , 1) → (BΓ
ω

1 )
+

which induces isomorphism on homology. Furthermore, it is known that
the above map (2) factors through (3) so that there exists an induced
mapping

(BΓ
ω

1 )
+ → BΓ

∞
1 .

Problem 3.2. Determine whether the natural map

(BΓ
ω

1 )
+ → BΓ

∞
1

is a homotopy equivalence or not.
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Both of (BΓ
ω

1 )
+ and BΓ

∞
1 are simply connected and the latter space

is known to be 2-connected as mentioned in the previous section. Thus
the first problem is to decide whether π2(BΓ

ω

1 )
+ ∼= H2(ΓH ;Z) is trivial

or not. This is already a very difficult problem.
As for the 3 dimensional homology group of BΓ

ω

1 , let us recall here
the following result of Thurston. He constructed a family of real ana-
lytic codimension 1 foliations on a certain 3-manifold by making use of
the group

SL(2,R) ∗SO(2) S̃L(2,R)n ⊂ Diffω
+ S1

thereby proving that the homomorphism

GV: H3(BΓ
ω

1 ;Z)
∼= H3(ΓH ;Z) → R

is surjective. Here S̃L(2,R)n denotes the n-fold covering group of
SL(2,R) and Diffω

+ S1 the group of orientation preserving real analytic
diffeomorphisms of S1.

The following problem is the real analytic version of Problem 2.2 and
it should be a very deep and challenging problem to determine whether
these two problems have the same answer or not.

Problem 3.3. Determine whether the homomorphism

GVk : H3k(BΓ
ω

1 ;Z)
∼= H3k(ΓH ;Z) →

k∧
Z

R

induced by the discontinuous invariants associated with the Godbillon–
Vey class is non-trivial or not.

Next let Diffω
+ R denote the group consisting of all the orientation

preserving real analytic diffeomorphisms of R and let Diffω,δ
+ R denote

the same group with the discrete topology. Then, there exists a natural
mapping

BDiffω,δ
+ R → BΓ

ω

1

which classifies the universal foliated R-bundle over the classifying space

BDiffω,δ
+ R. This induces a homomorhism

(4) ρ : Diffω
+ R → ΓH .

Problem 3.4. (i) Determine the kernel of the above homo-
morphism ρ : Diffω

+ R → ΓH .
(ii) Study general property of elements of ΓH which are outside of

the image of the above homomorphism.
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Here we would like to make a few remarks for the former part of the
above problem. Let T ∈ Diffω

+ R be the element defined by T (x) = x+1
(x ∈ R). Then it is easy to see that the element ρ(T ) ∈ ΓH classifies the

Γ
ω

1 structure on S1 induced by its natural structure of a real analytic 1
dimensional manifold.

On the other hand, the universal covering group, denoted by

D̃iff
ω

+S
1, of Diffω

+ S1 can be described by the central extension

0 → Z → D̃iff
ω

+S
1 → Diffω

+ S1 → 1.

It follows that there exists a natural isomorphism

D̃iff
ω

+S
1 ∼= {ϕ ∈ Diffω

+ R; f ◦ T = T ◦ f}

where 1 ∈ Z corresponds to T . In other words, the group D̃iff
ω

+S
1

can be identified with the centralizer of T in Diffω
+ R. Now Herman [21]

proved that Diffω
+ S1 is a simple group. Therefore the non trivial normal

subgroups of the group D̃iff
ω

+S
1 are the center Z and its subgroups. We

know already that ρ(T ) �= 1 ∈ ΓH which has an infinite order. We can
now conclude that the homomorphism ρ (see (4)) is injective on the

subgroup D̃iff
ω

+S
1 ⊂ Diffω

+ R. Summarizing, we can say that

The Haefliger group ΓH contains a subgroup isomorphic to D̃iff
ω

+S
1.

It seems to be unkown whether the group Diffω
+ R is simple or not. We

put this as a problem.

Problem 3.5. Determine whether the group Diffω
+ R is simple

or not.

§4. Characteristic classes of transversely symplectic foliations

One surprising feature of the Gelfand–Fuks cohomology theory (see
[11]) was that

dimH∗
c (an) < ∞

where an denotes the Lie algebra consisting of all the formal vector fields
on Rn. The associated characteristic homomorphism

Φ: H∗
c (an) → H∗(BΓ

∞
n ;R)

is now relatively well understood, although there still remain unsolved
problems related to rigid classes. In contrast with this, the case of all
the volume preserving formal vector fields vn ⊂ an and that of all the
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Hamiltonian formal vector fields ham2n ⊂ a2n are both far from being
understood.

Problem 4.1. Compute

H∗
c (vn), H∗

c (vn,O(n)), H∗
c (ham2n), H∗

c (ham2n,U(n)),

where we may replace the last one by H∗
c (ham2n,Sp(2n,R)) which is a

little bit easier to compute. In particular, prove (or disprove) that

dimH∗
c (vn) = ∞, dimH∗

c (ham2n) = ∞.

Recall here that there are very few known results concerning this
problem. First, Gelfand, Kalinin and Fuks [12] found an exotic class

GKF class ∈ H7
c (ham2,Sp(2,R))8

and later Metoki [31] found another exotic class

Metoki class ∈ H9
c (ham2,Sp(2,R))14.

On the other hand, Perchik [38] obtained a formula for the Euler charac-
teristic and computed it up to certain degree. It suggests strongly that
the cohomology would be infinite dimensional.

Let BΓsymp
2n denote the Haefliger classifying space of transversely

symplectic foliations of codimension 2n. Then there exists a homo-
morphism

Φ: H∗
c (ham2n,Sp(2n,R)) → H∗(BΓsymp

2n ;R).

Problem 4.2. Prove that, under the homomorphism

Φ: H∗
c (ham2,Sp(2,R)) → H∗(BΓsymp

2 ;R),

the GKF class and the Metoki class survive as non-trivial characteris-
tic classes.

Recall here that the geometric non-triviality of the Godbillon–Vey
class was proved almost immediately after its definition appeared while
that of the GKF class remain unanswered for more than 40 years after
its discovery to the present.

Meanwhile Kontsevich [26] introduced a new viewpoint in this
situation. He considered two Lie subalgebras

ham1
2g ⊂ ham0

2g ⊂ ham2g
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consisting of Hamiltonian formal vector fields without constant terms
and without constant as well as linear terms, respectively. Then he
constructed a homomorphism

Ψ: H∗
c (ham

0
2g,Sp(2g,R)) ∼= H∗

c (ham
1
2g)

Sp → H∗
F (M)

for any transversely symplectic foliation F on a smooth manifold M of
codimension 2n, where H∗

F (M) denotes the foliated cohomology group.
By using this viewpoint, in a joint work with Kotschick [28] we proved
that the Gelfand-Kalinin-Fuks class can be expressed, cohomologically
uniquely, as a product

GKF class = η ∧ ω

where η ∈ H5
c (ham

0
2,Sp(2,R))10 is a certain leaf cohomology class and

ω denotes the transverse symplectic form. In that paper, we made a
conjecture that the Metoki class has a similar decomposition. Recently,
Mikami [32] solved it affirmatively. Namely he proved that the Metoki
class can also be expressed, cohomologically uniquely, as a product

Metoki class = η′ ∧ ω

for some η′ ∈ H7
c (ham

0
2,Sp(2,R))16.

Let Sympδ(R2, o) denote the group of area-preserving diffeo-
morphisms of the plane R2 which fix the origin o, equipped with
the discrete topology. Then we have a natural homomorphism

Ψ: H∗
c (ham

0
2,Sp(2,R)) → H∗(BSympδ(R2, o);R).

The following problem would be easier than Problem 4.2.

Problem 4.3. Prove that, under the homomorphism

Ψ: H∗
c (ham

0
2,Sp(2,R)) → H∗(BSympδ(R2, o);R),

the leaf cohomology classes η, η′ ∈ H∗
c (ham

0
2,Sp(2,R)) survive as non-

trivial cohomology classes in the target.

If we replace Sympδ(R2, o) with the group of germs, at the origin,
of its elements, then we obtain slightly easier problem. Here the work
of Ishida in [23] would be suggestive in challenging the above problem.

On the other hand, ham0
2g, ham

1
2g can be described as

ham0
2n = ĉn ⊗ R, ham1

2n = ĉ+n ⊗ R
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where cn denotes one of the three Lie algebras (commutative one) in
Kontsevich’s theory [24], [25] of graph homology and ĉn denotes its com-
pletion. Thus the above homomorphim Ψ can be written as

Ψ: H∗
c (̂c

+
n )Sp ⊗ R ∼= H∗

c (ham
1
2n)

Sp → H∗
F (M).

Besides the theory of transversely symplectic foliations as above, the
graph homology of cn has another deep connection with the theory of
finite type invariants for homology 3-spheres initiated by Ohtsuki [37]
which we briefly recall. Let A(φ) denote the commutative algebra gen-
erated by vertex oriented connected trivalent graphs modulo the (AS)
relation together with the (IHX) relation. This algebra plays a funda-

mental role in this theory. In fact, the completion Â(φ) of A(φ) with
respect to its gradings is the target of the LMO invariant [29].

By using a result of Garoufalidis and Nakamura [10], in a joint work
with Sakasai and Suzuki [35] we constructed an injection

A(φ) → H∗(c+∞)Sp

and defined the “complementary” algebra E so as to obtain an iso-
morphism

H∗(c+∞)Sp ∼= A(φ)⊗ E
of bigraded algebras. E can be interpreted as the dual of the space of
all the exotic stable leaf cohomology classes for transversely symplectic
foliations.

Problem 4.4 (cf. Sakasai–Suzuki–Morita. [35]). Study the struc-
ture of E .

§5. Homology of Diffδ M and Sympδ(M,ω)

In general, homology group of the diffeomorphism group Diffδ M of
a closed C∞ manifold M , considered as a discrete group, or that of the
symplectomorphism group Sympδ(M,ω) of a closed symplectic manifold
(M,ω), again with the discrete topology, is a widely open research area.
One can also consider the real analytic case. Here we present a few
problems in the cases of the circle S1 and closed surfaces.

It was proved in our paper [34] that the natural homomorphism

Φ: H∗
c (X (S1),SO(2))) ∼= R[α, χ]/(αχ) → H∗(BDiffδ

+ S1;R)

from the Gelfand–Fuks cohomology of S1, relative to SO(2) ⊂ Diff+ S1,

to the cohomology of Diffδ
+ S1, is injective. There were also given certain
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non-triviality results for the associated discontinuous invariants. We
mention that Ghys and Sergiescu [13] gives a different proof of the non-
triviality of the powers of the Euler class.

In particular, our proof of non-triviality of any power χn �= 0 ∈
H2n(BDiffδ

+ S1;R) crucially depends on the following result of Thurston
which is a special case of a general theorem (Theorem 5) given in [43].

Theorem 5.1 (Thurston). Let

BD̃iff
δ

+S
1 × S1 → BΓ

∞
1

be the classifying map for the universal foliated S1-bundle over BD̃iff
δ

+S
1

and let

(5) H : BD̃iff
δ

+S
1 → ΛBΓ

∞
1

be its adjoint map where ΛBΓ
∞
1 denotes the free loop space of BΓ

∞
1 .

Then H induces an isomorphism on homology.

Now for each k = 1, 2, . . ., we define

ϕk : D̃iff+S
1 → D̃iff+S

1

to be the homomorphism given by

ϕk(f)(x) =
1

k
f(kx).

Then we proved in [34] that the induced homomorphism

(ϕk)∗ : Hm(BD̃iff
δ

+S
1;Q) → Hm(D̃iff

δ

+S
1;Q)

is diagonalizable in the sense that for any homology class

u ∈ Hm(BD̃iff
δ

+S
1;Q),

there exists a finite dimensional linear subspace V ⊂ Hm(BD̃iff
δ

+S
1;Q)

which contains u such that V is (ϕk)∗-invariant and the homomorphism
(ϕk)∗ : V → V is diagonalizable with eigenvalues of the forms ke (e =
0, 1, 2, . . .). Our proof uses the following two facts. One is that under
the homology equivalence (5), the operation Bϕk on the left hand side
corresponds to the operation

ψk : ΛBΓ
∞
1 → ΛBΓ

∞
1
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on the right hand side which is given by ψk(l)(t) = l(tk) (t ∈ S1) for each

l : S1 → Γ
∞
1 . The other is a general method of describing the homology

of free loop spaces due to Sullivan [41].

In these arguments, if we replace D̃iff
δ

+S
1 and BΓ

∞
1 with D̃iff

ω,δ

+ S1

and BΓ
ω

1 , respectively, we still have the mapping

Hω : BD̃iff
ω,δ

+ S1 → ΛBΓ
ω

1 = ΛK(ΓH , 1).

However, the space ΛK(ΓH , 1) is not connected and the above theorem
of Thurston does not apply to this case. It follows that our proof does
not work either and we have the following very important and difficult
problem.

Problem 5.2. Prove (or disprove) that the homomorphism

Φ: H∗
c (X (S1),SO(2)) ∼= R[α, χ]/(αχ) → H∗(BDiffω,δ

+ S1;R)

is injective, where Diffω,δ
+ S1 denotes the real analytic diffeomorphism

group of S1 equipped with the discrete topology. In particular, deter-

mine the maximum power χn0 ∈ H2n0(BDiffω,δ
+ S1;R) of the Euler class

which is non-trivial. Is n0 finite or infinity?

As for the last part of the above problem, we propose the following.

Problem 5.3. Prove that the homomorphism

(ϕk)∗ : Hm(BD̃iff
ω,δ

+ S1;Q) → Hm(D̃iff
ω,δ

+ S1;Q)

is diagonalizable.

We mention that an affirmative answer to the above problem for the
case m = 2n − 1 (with any k ≥ 2) implies the non-triviality χn �= 0 ∈
H2n(BD̃iff

ω,δ

+ S1;Q).
The following is a closely related general problem.

Problem 5.4. Determine whether the natural inclusion

Diffω,δ
+ S1 → Diffδ

+ S1

induces an isomorphism on homology or not.

Of course one can consider the above problem for any closed mani-
fold M .

Let Σg denote a closed oriented surface of genus g. Harer stability
theorem [19] states that the homology group Hk(BDiff+ Σg) is inde-
pendent of g in a certain stable range k  g (see a survey paper [48] by
Wahl for more details).
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By applying a general method, we can define certain characteristic
classes for foliated Σg-bundles, namely elements of H∗(BDiffδ

+ Σg;R).
Also, in [27] certain characteristic classes for foliated Σg-bundles with

area-preserving holonomy, namely elements of H∗(BSympδ+ Σg;R), were
defined by making use of the notion of the flux homomorphism. These
classes are all stable with respect to the genus g and it seems reasonable
to propose the following.

Problem 5.5. Determine whether certain analogue of Harer stabil-
ity theorem holds for the group Diffδ Σg and/or Sympδ Σg.

We mention that Bowden [6], [7] obtained some interesting results
related to this problem. See also Nariman [36] where the author gives an
affirmative solution to a similar problem for the cases of certain higher
dimensional manifolds.

Added in proof. Recently Nariman solved the above problem for the
case Diffδ(Σg, D

2) affirmatively in his thesis, Stanford University, 2015.

References

[ 1 ] T. Asuke, Godbillon–Vey class of transversely holomorphic foliations, MSJ
Memoirs 24, Math. Soc. Japan, Tokyo, 2010.

[ 2 ] M. F. Atiyah, V. K. Patodi and I. M. Singer: Spectral asymmetry and
Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975),
43–69.
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