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Thurston’s h-principle for 2-dimensional foliations of
codimension greater than one

Yoshihiko Mitsumatsu and Elmar Vogt

Abstract.

We recreate an unpublished proof of William Thurston from the
early 1970’s that any smooth 2-plane field on a manifold of dimension
at least 4 is homotopic to the tangent plane field of a foliation.

§1. Introduction

The main purpose of this article is to write down in reasonable detail
a proof of a theorem of Thurston which many experts know of and of
whose existence many more are aware. The proof is due to Thurston but
was never written up since it was superseded by a to some extent more
elementary proof of a substantially more general theorem. Thus the
theorem below became a mere corollary in Thurston’s published work:
Corollary 3 in [Th2]. Here it becomes the main result we want to prove.

Theorem 1.1 (Thurston). Any C∞ 2-plane field τ on a manifold
M of dimension at least 4 is homotopic to an integrable one. If τ is
already integrable in a neighborhood of a closed set K ⊂ M , then the
homotopy can be chosen to be constant in a neighborhood of K.
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The proof of Theorem 1.1 which we give in this paper we learned
from Takashi Tsuboi who in turn had learned it from André Haefliger,
and Haefliger attributes it to William Thurston. Thurston remarks in
[Th2] that a “proof of Corollary 3 by itself was the starting point leading
to” his main theorem in [Th2].

Remark 1.2. Apart from salvaging some of Thurston’s ideas there
is one further aspect which makes it worthwhile to make this proof
accessible. We are able to work entirely with plane fields on the given
manifold. This is special to 2-plane fields. With today’s knowledge
about Diffc(R

n−k) our proof below shows that for k ≥ 2 any smooth
k-plane field on an n-manifold can be homotoped into one which is
integrable in a neighborhood of the (n − k + 2)-skeleton of some very
fine triangulation. Thurston’s proof in [Th2] deals with plane fields on
the product of the total space of the normal bundle of the original plane
field with the unit interval. This pushes the dimension of the manifold
on which one works up quite a bit, especially for 2-plane fields.

For 2-plane fields on 4- and 5- manifolds, or more generally on
n-manifolds for those n where the identity component of Diffc(R

n−2) is
simply connected, the foliations obtained after deforming the plane field
have a particularly transparent description, as we will see in Section 4.

Theorem 1.1 is an easy consequence of

Proposition 1.3. Let τ be a C∞ 2-plane field of R
n which is in-

tegrable in a neighborhood of a closed subset K of Rn. Then τ is homo-
topic to a C∞ 2-plane field which is integrable in a neighborhood of
K ∪ [−1, 1]n. The homotopy can be chosen to be constant in a neighbor-
hood of K ∪ (Rn \ (−2, 2)n).

Proof of Theorem 1.1. Choose a countable locally finite atlas
{hi : Ui → Rn}i∈N for M such that {h−1

i ((−1, 1)n)}i∈N is a cover-
ing of M . Start with K ′ := h1(U1 ∩K) ⊂ R

n and τ ′ := h1∗(τ|U1
) as

input for Proposition 1.3. The output is a plane field τ ′1 whose pull
back to U1 can be extended by τ to a plane field τ1 which is integrable
in a neighborhood of K ∪h−1

1 [−1, 1]n by a homotopy which is constant
in a neighborhood of K ∪ (M \ h−1

1 ((−2, 2)n)).
Continue by replacing K, τ , and h1 by K1 := K ∪h−1

1 ([−1, 1]n), τ1,

and h2. If x ∈ ⋃N
i=1 h

−1
i ((−1, 1)n) then there is a neighborhood V of x

such that all homotopies after step N are constant on V . If furthermore
x is a point of K then, if V is small enough, also the homotopies of steps
1 to N are constant on V . Thus the sequence of plane fields τ, τ1, τ2, . . .
converges to a plane field having the desired properties. Q.E.D.
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The proof of Proposition 1.3 proceeds in three steps. These steps
also appear in Thurston’s paper [Th2]. They are:

(i) Find a triangulation of Rn which is in general position with
regard to τ in a neighborhood of [−1, 1]n

We recall Thurston’s definition of general position in the following sec-
tion. Step (i) corresponds to the Jiggling Lemma in [Th2].

(ii) Deform the plane field τ into one which is civilized near [−1, 1]n

with respect to the triangulation of step (i).

This will be done in Section 3. Roughly a plane field is civilized near
some compact set C in R

n with respect to a triangulation of some com-
pact neighborhood of C if the plane field is constant along and tangential
to the fibres of tubular neighbourhoods of the simplices satisfying some
compatibility condition (see conditions 3.10, 3.11, and 3.12 in Section 3).

Civilization in Thurston’s paper is important to ensure that homo-
topies of plane fields were performed in the space of plane fields which
are in general position. For us it is important for understanding the
plane field near the (n − 1)-skeleton when we deal with the third and
final step:

(iii) Filling the holes.

A civilized 2-plane field τ is integrable, i.e. a foliation, in a neighborhood
of the (n−1)-skeleton. Filling the holes is the extension of this foliation
to the interiors of the n-simplices, the holes, in such a way, that the
resulting tangent plane field is homotopic to τ , where as always the
homotopy is constant in a neighborhood of K ∪ (Rn \ (−2, 2)n).

This is the most difficult step. The corresponding step in [Th2],
Section 4, is easier since the use of a collapsible triangulation on the
product of the total space E of the normal bundle of τ with the unit
interval [0, 1] allows enough control over the boundary of the hole to
make this step quite simple. The reverse process of a simplicial collapse,
called inflation in [Th2], starts at E×{0} and one needs a foliation there
to start with. This foliation is provided by the hypothesis of the main
theorem in [Th2] that the normal bundle of τ is the normal bundle of
a Haefliger structure, a necessary hypothesis, if one wants to be able to
homotope τ to a foliation. For 2-plane bundles this hypothesis is satisfied
by results of Thurston, Mather, and Epstein [Th1], [Ma1], [Ma2], [Ma3],
[Ma4], [Ep2].

When working directly on the manifold, as we do here, the fact that
our plane field is civilized gives us after moving a little to the inside
of the n-simplices a product structure D2 × Dn−2 for each n-simplex
such that the plane field is transverse to the Dn−2 factor and parallel
to the D2 factor near D2 × ∂Dn−2. Thus the restriction to ∂D2 ×
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Dn−2 is a foliated Dn−2-product over S1 = ∂D2 with support in the
interior of Dn−2. We have to show that we can extend any such foliated
product to a 2-dimensional foliation on all of D2 ×Dn−2. Furthermore
we want the plane field of this foliation to be homotopic to one which
is transverse to the Dn−2-factor by a homotopy which is constant near
the boundary. Since τ is transverse to the Dn−2 factor, the plane field
of the foliation will be homotopic to it by a homotopy which is constant
near the boundary of the simplex.

Foliated Dn−2-products with support in the interior of Dn−2 are the
same as foliated Rn−2-products with compact support. These corres-
pond up to fitting beginnings and ends to smooth paths in Diffc R

n−2

beginning at the identity. Thurston in [Th2], Section 4, provides for
n ≥ 4 an explicit and easy to understand filling for a non-trivial path. It
is fairly easy to see that a path homotopic to one which can be filled can
itself be filled. Also the concatenation of two paths can be filled if the
individual paths could be. Obviously, the conjugate of a fillable path by
an element of Diffc R

n−2 is also fillable. Assume now for simplicity that
the identity path component of Diffc R

n−2 is simply connected. Then
homotopy classes of paths correspond bijectively to their end points.
Since by results of Epstein [Ep1] and of Epstein, Mather and Thurston
cited above the identity path component of Diffc R

n−2 is simple, we are
done. In fact, using Theorem 2.2 and Lemma 3.1 of [Tsu2] we see that
any path is homotopic to the concatenation of 8 conjugates of Thurston’s
path in [Th2], Section 4. Thus one can practically see how each hole
is filled.

The situation where the identity path component of Diffc R
n−2 is

not simply connected is more complicated. It is here where, as far as
we know, a directly applicable theorem with a reasonably detailed pub-
lished proof is unavailable. In a note at the bottom of page 226 in [Th2]
Thurston formulates a theorem of him which would allow us to pro-
ceed along the lines described in the previous paragraph. But we have
not found any place in the literature where this theorem is stated as
a theorem.

Nevertheless, when looking at the experts’ papers one finds enough
results and arguments to piece together a result that satisfies our needs.
In particular, the arguments used in the very last paragraph in [Ep2],
where Epstein shows that the universal covering group of Diff∞

c (M)0 is
perfect, together with a good understanding of what is done before in
[Ep2], and also using Tsuboi’s lemma in [Tsu2], one can achieve our goal.

We will go a slightly different way. Instead of [Ep2] we will use
Proposition 2 in [HaRyTe]. This result is (reasonably) straightforward
to state and makes it easier to describe the necessary estimates for our
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arguments. The only drawback (for some it might be an advantage) is
that the authors of [HaRyTe] use a topology on Diffc R

n−2 developed
in [KriMi] to do analysis on infinite dimensional manifolds modelled
on locally compact vector spaces, which might be unfamiliar to some.
But what we actually need is very little and will be explained in Sub-
section 5.1. We will again make use of Proposition 3.1 of [Tsu2]. In fact
it is important to see its proof which we, in Subsection 5.2, will more or
less verbally copy directly from [Tsu2].

Remark 1.4. Corollary 3 in [Th2] (our Theorem 1.1) follows from
the main result there using the fact that the classifying space BΓ̄k

of codimension k Haefliger structures with trivialized normal bundle
is (k + 1)-connected. This is a consequence of two theorems. The
Thurston–Mather theorem, which establishes an isomorphism between
the homology of the k-fold loop space of BΓ̄k and the homology of the
classifying space of the homotopy fibre Diffc R

k of Diffδ
c R

k → Diffc R
k

where Diffδ
c R

k is Diffc R
k made discrete. The second theorem, for

0 < r < ∞, r 	= k + 1, due to Mather [Ma2], see also Appendix of
[Tsu1] for a somewhat different proof, and for r = ∞ due to Thurston
[Th1], states that the universal cover of the identity path component
of Diffr

c R
k is perfect. Thurston’s proof is outlined in §3 of [Ma4]. A

detailed proof for the case r = ∞ along the lines developed by Mather
for r > k+1 in [Ma2] can be found in the paper [Ep2] by David Epstein
mentioned above.

In the final section we will go the opposite way: following Haefliger’s
proof in [Hae2] (see also [Hae3]) that πk(BΓ̄k) = 0 we will use our main
theorem to show that πk+1(BΓ̄k) = 0 for k ≥ 2. As in [Hae2] this
proof involves the Gromov–Phillips transversality theorem [Gr], [Phil].
But note that our proof of Proposition 1.3 uses the second of the
two theorems mentioned above, the one about the perfectness of the
universal cover of the identity component of Diffr

c R
k, in the version

proved by Haller, Rybicki, and Teichmann in [HaRyTe].

§2. Triangulations in general position with respect to a plane
field

Let 1 ≤ k ≤ n − 1 and let τ be a C1 k-plane field on R
n. The

following terminology is due to Thurston [Th2].

Definition 2.1. An n-simplex σ of R
n is in general position with

respect to τ if for every x ∈ σ the orthogonal projection of Rn onto
the (n − k)-plane orthogonal to τ(x) is injective on every (n − k)-face
of σ. A triangulation of Rn by affine simplices is in general position
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with respect to τ in a neighborhood of a closed subset K ∈ Rn if every
n-simplex intersecting K is in general position with respect to τ .

Definition 2.2. Let T be an affine triangulation of R
n and ε > 0.

An ε-jiggling of T is an affine triangulation T ′ of Rn such that there
is a simplicial isomorphism φ : T → T ′ with ‖φ(v) − v‖ < ε for every
vertex v ∈ T .

In Section 6 of [Th2] the following statement is proved:

Proposition 2.3. Let τ be a C1 k-plane field of R
n, 1 ≤ k ≤ n−1,

let K ⊂ Rn be compact, and let ε > 0. Then there exist an L ∈ N and
for every l ≥ L an ε-jiggling of the standard triangulation associated to
the cubical lattice

(
1
lZ

)n ⊂ Rn which is in general position with regard
to τ in a neighborhood of K.

Recall that the standard triangulation of the unit cube In = [0, 1]n

of Rn has the vertices of In as vertices and for each permutation σ ∈ Sn

an n-simplex 〈v0, . . . , vn〉 with v0 = (0, . . . , 0) and vi being obtained from
vi−1 by replacing the 0 in the σ(i)-th coordinate by a 1. Triangulating
every cube x + In, x ∈ Z

n by translating the triangulation of In by
x gives a triangulation of Rn. The standard triangulation associated
to the lattice

(
1
lZ

)n
is obtained from this by multiplying every vertex

by 1/l.
Thurston proves a more general result, but for us Proposition 2.3

suffices. His proof is concise, clear, and to the point. There are a couple
of misprints, but of the “self correcting” type. So there is no reason to
repeat it here.

We will apply Proposition 2.3 in our proof of Proposition 1.3 for the
given plane field τ and K = [−2, 2]n.

§3. Civilization

Given K ⊂ Rn closed and τ a smooth 2-plane field which is inte-
grable in a neighborhood U of K, let T be an ε-jiggling of the standard
triangulation associated to the lattice

(
1
lZ

)n
which is in general position

with respect to τ in a neighborhood of [−2, 2]n. Choose l large enough
so that the following holds:

(3.1) If x ∈ U ∩ [−2, 2]n is a vertex of T whose closed star st(x, T )
is not contained in U then st(x, T ) ∩K = ∅.

(3.2) If x is a vertex of T with st(x, T )∩[−1, 1]n 	= ∅ then st(x, T ) ⊂
[−3/2, 3/2]n.
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(3.3) If σ is an n-simplex of T which intersects [−2, 2]n then for any
x, y ∈ σ the 2-plane τ(y) is the graph of a linear map Lx,y : τ(x) → τ(x)⊥

of norm less than 1.

We denote by T1 the union of all simplices which are faces of
n-simplices of T which intersect [−1, 1]n.

In this section we deform the plane field τ into a plane field which
is integrable in a neighborhood of the union of K and the (n − 1)-
skeleton of T1. The deformation is done in the space of smooth plane
fields for which T is in general position near [−2, 2]n, and which also
satisfy 3.3. Furthermore, the deformation is constant in a neighborhood
of K ∪ (Rn \ (−2, 2)n).

The idea is to deform τ in a tubular neighborhood of each simplex
of T1, starting with the 0-simplices and extending it dimension by di-
mension up to the (n − 1)-skeleton of T1. To ensure that near K the
deformation is constant only simplices which are faces of an n-simplex
not contained in U trigger a deformation. Notice that a face of a simplex
σ may be the face of an n-simplex not contained in U while σ is not a
face of such an n-simplex. Thus deformations of τ may take place in
tubular neighborhoods of the boundary of a simplex σ, even if σ itself
does not trigger a deformation.

The deformation process is inductive by induction on the dimension
p of the skeleta of T1 up to dimension n − 2. The extension of the de-
formation from a neighborhood of the (n−2)-skeleton to a neighborhood
of the (n − 1)-skeleton differs mildly from the previous induction steps
in as far as the plane field at a point of an (n− 1)-simplex intersects the
tangent plane of the simplex non-trivially.

So let 0 ≤ j ≤ n − 2. We say that a smooth 2-plane field τj is
civilized on the j-skeleton of T1 if it is a 2-plane field with respect to
which T is in general position near [−2, 2]n, and there are real numbers
δ0 > · · · > δj > 0 and η0 > · · · > ηj > 0 having the properties 3.4–
3.8 below.

(3.4) Denote for any point x of an i-simplex σ of T1 with 0 ≤ i ≤ j
the closed δ-neighborhood of x in the affine 2-plane x+ τj(x) by Bx(δ)
and the closed η-neighborhood of x in x+Ex by Ex(η), where Ex is the
orthogonal complement of τj(x) + Tσ with Tσ the tangent plane of σ.
Then, if σ is a face of an n-simplex not contained in U , the (n− i)-disks
Bx(δi) × Ex(ηi), x ∈ σ, are the fibres of a tubular neighborhood N(σ)
of σ in R

n, and any (n − 2)-simplex of T1 having σ as a face intersects

∂(Bx(δi)× Ex(ηi)) in a subset of B̊x(δi)× ∂Ex(ηi).

(3.5) For any 0 ≤ i ≤ j and any point x in an i-simplex of T1 in
the boundary of an n-simplex not contained in U the plane field τj is
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equal to τj(x) on Bx(δi) × Ex(ηi). In particular, the plane field τj is
integrable on N(σ) and tangent to the fibres.

(3.6) For any two simplices σ, σ′ of T1 of dimension at most j
where each, σ and σ′, is in the boundary of an n-simplex not contained
in U we have N(σ) ∩N(σ′) ⊂ N(σ ∩ σ′). Furthermore, if σ′ is a proper
face of σ and the fibre Bx(δi) × Ex(ηi) of N(σ) intersects N(σ′), say
(y1, y2) ∈ Bx(δi) × Ex(ηi) lies in Bv(δi′) × {y′2} with v ∈ σ′ and y′2 ∈
Ev(ηi′), i

′ = dimσ′, then Bx(δi) × {y2} ⊂ B̊v(δi′) × {y′2}. In addition
we demand that N(σ)∩σ′′ = ∅ for any simplex σ′′ of dimension at least
j + 1 of which σ is not a face.

(3.7) If 0 ≤ i ≤ j and the i-simplex σ is contained in U and in the
boundary of an n-simplex not in U , then N(σ) ⊂ U .

(3.8) τj is integrable in an open subset of U containing

K,
⋃

{N(σ) | σ ∈ T1, dimσ ≤ j, σ ⊂ U and σ ≤ ρ with ρ 	⊂ U},

and ⋃
{σ | σ ∈ T1 and σ ⊂ U}.

By abuse of notation, we call any smooth 2-plane field with respect
to which the triangulation T of Section 2 is in general position near
[−2, 2]n civilized on the (−1)-skeleton of T1. Set δ−1 and η−1 to be ∞.

We then make the following

Claim 3.9. Let −1 ≤ p ≤ n−2, and let τp−1 be a 2-plane field which
is civilized on the (p − 1)-skeleton of T1, and let δ0 > · · · > δp−1 > 0
and η0 > · · · > ηp−1 > 0 be the associated real numbers. Then there
exist a smooth 2-plane field τp, 0 < δp < δp−1, and 0 < ηp < ηp−1 such
that properties 3.4–3.8 hold for j = p and δi, ηi, i = 0, . . . , p. Fur-
thermore, τp is homotopic to τp−1 in the space of smooth 2-plane fields
with respect to which T is in general position near [−2, 2]n and which
satisfy 3.3. Furthermore, the homotopy is constant in a neighborhood of
K ∪ (Rn \ (−2, 2)n).

Proof of Claim 3.9. The idea is very simple. Look at all p-simplices
σ of T1 which are a face of an n-simplex not contained in U . For all proper
faces σ′ of such a simplex the plane field τp−1 is constant along the fibres

By(δi)×Ey(ηi), i=dim σ′, and σ intersects these fibres in B̊y(δi)×Ey(ηi)
(see 3.4). Thus, if x is a point of σ lying in the fibre By(δi)×Ey(ηi)
of N(σ′), then τp−1(x) = τp−1(y), and the orthogonal complement Ex

of Txσ+τp−1(x) is a subspace of Ey. Therefore, we find preliminary δp
and ηp not depending on σ such that 3.4, 3.6, and 3.7 hold. The last
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condition in 3.4 will be satisfied if ηp/δp is sufficiently small. Also 3.5
holds for those x∈σ which are for some proper face σ′ of σ in N(σ′), say
x=(u, v)∈By(δi)×Ey(ηi), with Ex(ηp)⊂{u}×Ey(ηi).

We now want to deform τp−1 keeping 3.8 in mind so that 3.5 holds
for every x ∈ σ. The deformation will have support in the complement of
the tubular neighborhoods N(σ′) where the σ′ are the proper faces of σ.

We distinguish two cases:

Case 1. σ 	⊂ U .

By the last condition in 3.6 (which is satisfied including the preliminary
tubular neighborhoods of the p-simplices) and by 3.3, for every x ∈ σ
and z ∈ Bx(δp)×Ex(ηp) the plane τp−1(z) is the graph of a linear map
fzx : τp−1(x) → τp−1(x)

⊥ of norm less than 1. Then τp−1,t(z) is defined

to be the graph of (1− t)fzx. There are δp > δp and ηp > ηp such that

the Bx(δp)×Ex(ηp), x ∈ σ, still are the fibres of a tubular neighborhood

N(σ) of σ. Use these larger fibres to slow down the homotopy of τp−1

when moving “radially” from ∂(Bx(δp)×Ex(ηp)) to ∂(Bx(δp)×Ex(ηp))

so that the homotopy is supported in N(σ).
Note that during the homotopy condition 3.3 is always satisfied: if

y is a point of an n-simplex ρ with z ∈ ρ then also x is in ρ and there
are linear maps fxy, fzy : τp−1(y) → τp−1(y)

⊥ such that τp−1(x) is the
graph of fxy and τp−1(z) is the graph of fzy. Then τp−1,t(z) is the graph
of (1 − t)fzy + tfxy which has norm at most equal to the maximum of
the norms of fxy and fzy. Also the homotopy is constant in every N(σ′)
with σ′ a proper face of σ.

Case 2. σ ⊂ U .

Notice first that applying the same homotopy as above the following
may happen. In the annulus bundle N(σ) \ N̊(σ) over σ, where we slow
down the homotopy, the plane field may become non-integrable although
it was integrable there beforehand. Thus an n-simplex which was in the
open set where τp−1 is integrable may not be in the set where τp is
integrable. But this would force us to reconsider all faces of this simplex
and start the process all over. Eventually we would have to deal with
simplices which intersect K. This is the reason why we treat simplices
contained in U differently.

Since τp−1 is integrable in a neighborhood of N(σ) there is a tubular
neighborhood ϕ : E(σ) × B(δp) ↪→ R

n of E(σ) :=
⋃{{0} × Ex(ηp) |

x ∈ σ} the fibres of which are δp-neighborhoods of z ∈ E(σ) in the
leaf through z of the foliation defined by τp−1 in a neighborhood of
N(σ). By the uniqueness theorem for tubular neighborhoods there is
an ambient isotopy of Rn which maps this tubular neighborhood to the
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tubular neighborhood ψ : E(σ) × B(δp) ↪→ Rn which has {z} × Bx(δp),
z ∈ Ex(ηp), x ∈ σ, as fibres. We need to straighten the foliation only
in a small neighborhood of σ. So it suffices to isotope the image of
E(σ) × B(δ) of ϕ into the image of ψ. The standard way of producing
such an isotopy is by linearization of the fibres of ϕ at points of E(σ) and
then connecting the linear embeddings to the one of ψ by the straight
line segment in the space of linear embeddings (see e.g. [BrJ], end of the
proof of (12.13)). This first gives an isotopy between the (small) tubular
neighborhoods, i.e. a level preserving embedding Φ: [0, 1] × (E(σ) ×
B(δ)) → [0, 1] × R

n. This is extended to an ambient isotopy in the
usual way interpreting the isotopy as a vectorfield on the image of Φ
and extending this vectorfield to all of [0, 1] × Rn by slowing it down
to the zero vector field within a small neighborhood of the image of
Φ. Doing the slowing down process at level t along the fibres of the
tubular neighborhood given by the restriction of Φ to level t will have
the effect that the ambient isotopy will have support in N(σ) and in the
complement of the union of the interiors of the N(σ′) with σ′ a proper
face of σ.

It is then clear that for a small enough δ =: δp conditions 3.3–3.8 will
be satisfied with the possible exception of the last condition of 3.4 which
concerns the intersections of the fibres of N(σ) with (n − 2)-simplices.
But we noticed already that we can achieve this by shrinking ηp. Q.E.D.

As the final step in this section we want to homotope τn−2 to τn−1

which is integrable in a neighborhood of the (n− 1)-skeleton of T1 and
satisfying conditions 3.3–3.8 with 3.4, 3.5, and 3.6 being replaced by
their obvious analogues 3.10, 3.11, and 3.12.

(3.10) Denote for any point x of an (n−1)-simplex σ of T1 the closed
δ-neighborhood of x in the affine line x+ Fx by Fx(δ), where Fx is the
orthogonal complement in τn−1(x) of Tσ ∩ τn−1(x). Then, if σ is a face
of an n-simplex not contained in U , the segments Fx(δn−1), x ∈ σ, are
the fibres of a tubular neighborhood N(σ) of σ in R

n.

(3.11) For any 0 ≤ i ≤ n − 2 and any point x in an i-simplex σ of
T1 in the boundary of an n-simplex not contained in U the plane field
τn−1 is equal to τn−1(x) on Bx(δi) × Ex(ηi). In particular, the plane
field τn−1 is integrable on N(σ) and tangent to the fibres. Furthermore
for any point x in an (n − 1)-simplex σ of T1 in the boundary of an
n-simplex not contained in U the plane field τn−1 is equal to τn−1(x) on
Fx(δn−1). In particular, the plane field τn−1 is integrable on N(σ) and
the fibres are tangent to the leaves, i.e. the plane field in N(σ) is the
pullback of the integrable line field Tσ ∩ τn−1(x), x ∈ σ, by the tubular
neighborhood projection.
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(3.12) 3.6 holds for p = n − 1. Furthermore for any two (n − 1)-
simplices σ, σ′ of T1, each in the boundary of an n-simplex not contained
in U , we have N(σ) ∩ N(σ′) ⊂ N(σ ∩ σ′). We also demand that if σ′

is a proper face of σ and the fibre Fx(δn−1) of N(σ) intersects N(σ′),
say y ∈ Fx(δn−1) lies in Bv(δi′) × {y′2} with v ∈ σ′ and y′ ∈ Ev(ηi′),

i′ = dimσ′, then Fx(δn−1) ⊂ B̊v(δi′) × {y′}. In addition we demand
that N(σ) ∩ σ′′ = ∅ for any n-simplex σ′′ of which σ is not a face.

The proof that such a homotopy exists in the space of plane fields
satisfying all our usual requirements and with support in the complement
of the interiors of all N(σ′) with dimσ′ < n− 1 is entirely analogous to
the proof of Claim 3.9 and is omitted.

Remark 3.13. A plane field satisfying, like our plane field τn−1,
conditions 3.10–3.12 is called civilized in [Th2]. In the next two sections
we will see that a civilized plane field which also satisfies 3.3, 3.7, and
3.8 can be deformed into a plane field which is integrable in a neigh-
borhood of T1 by a homotopy which is constant in a neighborhood of
K ∪ (Rn \ (−2, 2)n), thus completing the proof of our main proposition,
Proposition 1.3.

§4. Filling the hole: Part I

We now may assume that the plane field τ of Proposition 1.3 sat-
isfies conditions 3.10–3.12 and also 3.3, 3.7, and 3.8. In this section we
complete the proof of Proposition 1.3 for the dimensions n (≥ 4) for
which the identity path component of Diffc R

n−2 is simply connected.
This includes n = 4 and 5 (see Remark 4.11 at the end of this section).

By 3.8 we need to homotope τ only in a compact part of the interior
of n-simplices σ which are not contained in U . For these σ we have
from 3.10–3.12 explicit information about what τ looks like near their
boundaries σ̇, namely on N(σ̇) :=

⋃{N(σ′) | σ′ a proper face of σ}.
Any subset of σ diffeomorphic to Bn or to B2 × Bn−2 containing the
complement of N̊(σ̇) in σ we call a hole. Our task is to fill for each σ
some hole by deforming τ in σ relative with respect to the complement
of the hole to an integrable field. Then by 3.1 and 3.2 we are done.

4.1. A product structure for the holes adapted to τ

In this subsection we show that for each n-simplex σ of T1 not
contained in U there is a smooth embedding ϕ : D2 × Dn−2 → σ̊ such
that the pullback τ ′ := ϕ∗τ of τ has the properties 4.1, 4.2, and 4.3
below. Here Dk is the closed unit disk in Rk.
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(4.1) Near D2×∂Dn−2 the plane field τ ′ is the kernel of derivative
of the projection to the Dn−2-factor.

(4.2) τ ′ is transverse to ∂D2 × Dn−2 and is in a neighborhood of
∂D2 × Dn−2 the pullback of the line field τ ′ ∩ T (∂D2 × Dn−2) by the
projection (D2 \{0})×Dn−2 → ∂D2×Dn−2. Furthermore the line field
τ ′ ∩ T (∂D2 ×Dn−2) is transverse to {x} ×Dn−2 for all x ∈ ∂D2.

(4.3) τ ′ is homotopic to a plane field which is transverse to {x} ×
Dn−2 for all x ∈ D2.

Proof. Consider for some x ∈ σ the orthogonal projection
px : R

n → Ax := τ(x)⊥. The image px(σ) is a convex polytope
Pn−2 ⊂ Ax

∼= R
n−2. Because of general position px restricted to

every (n − 2)-face of σ is an affine homeomorphism onto its image.
Therefore there is an (n− 3)-dimensional subcomplex Σ of σ such that
px|Σ : Σ → ∂Pn−2 is a simplicial isomorphism. The subcomplex Σ is
independent of the choice of x ∈ σ. In particular, τ is transverse to
the boundary σ̇ of σ in the complement of Σ.

px : σ̊ → P̊n−2 is a trivial fibre bundle with fibre an open 2-disk.
This provides us with a diffeomorphism ϕ1 : R

2 × P̊n−2 → σ̊. We may
choose ϕ1 so that ϕ1(S

1×P̊n−2) is close enough to σ̇ to be in the civilized

neighborhood of σ̇ and such that τ is transverse to ϕ1(S
1 × P̊n−2) and

the line field ϕ∗
1τ ∩ T (S1 × P̊n−2) is transverse to every {x} × P̊n−2,

x ∈ S1. Here S1 is the unit circle in R2.
We identify P̊n−2 with R

n−2 in such a way that the inverse image
of the complement of Dn−2 under px is contained in the civilized neigh-
borhood of Σ. Furthermore we can arrange for the zero section of the
bundle, i.e. ϕ1({0}× P̊n−2), to be transverse to τ in the complement of
an (n− 2)-disk contained in the interior of Dn−2.

To achieve 4.1 we change ϕ1 by a diffeotopy of σ̊ with support in a
neighborhood of the image of D2 × Sn−3. The diffeotopy is an ambient
isotopy which moves the tubular neighborhood D2 × U of {0} × U to
the tubular neighborhood of {0}×U the fibres of which are disks in the
leaves of τ with center the corresponding point of U . Here U is a small
annular neighborhood of Sn−3.

A second diffeotopy will give us 4.2. From the fact that the image
of S1×R

n−2 is inside the civilized neighborhood of σ̇ gives us a tubular
neighborhood of S1×Dn−2 such that the plane field in this neighborhood
is the pullback under the tubular neighborhood map of the line field in-
duced on S1×Dn−2. If we are in N(ρ) with dim ρ = n−1 and not in an
N(ρ′) with ρ′ a proper face of ρ this is part of the civilization structure.
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In neighborhoods of lower dimensional simplices this line field can be ob-
tained by interpolation proceeding inductively by decreasing dimension.
The ambient isotopy then moves the standard tubular neighborhood of
S1 ×Dn−2 in R

2 ×Dn−2 into this tubular neighborhood.
Denote by ϕ2 the diffeomorphism ϕ1 after having subjected it to the

two diffeotopies above. Then ϕ is the restriction of ϕ2 to D2 ×Dn−2.
Notice that 4.3 is clear since by 3.3 the field τ is homotopic to the

constant plane field ker dpx given by the kernel of the differential of
px. Thus ϕ∗(τ) is homotopic to ϕ∗(ker dpx), which is transverse to the
factors {x} ×Dn−2, x ∈ D2. Q.E.D.

4.2. Foliated R
n−2-products

Recall that for a k-manifold M a foliated M -product over the mani-
fold X is a codimension k foliation on X ×M which is transverse to the
second factor. The foliated M -product is said to have compact support
if there is a compact subset C ofM such that onX×(M\C) the foliation
is given by projection onto M \C, i.e. for any y ∈ M \C the connected
components of X × {y} are leaves of the foliation. The last sentence
of Property 4.2 says that τ ′ is a foliated Dn−2-product over S1 = ∂D2,
while Property 4.1 says that the restriction of τ ′ to S1×D̊n−2 is a foliated
D̊n−2-product over S1 with compact support. The first part of Prop-
erty 4.2 states that for for some ε > 0 for all 1−ε < r ≤ 1 the restriction
of τ ′ to rS1×Dn−2 is a foliated Dn−2-product which is independent of r
in the sense that the obvious diffeomorphism rS1 ×Dn−2 → S1 ×Dn−2

is foliation preserving. Since any foliated D̊n−2-product over S1 with
compact support extends uniquely to a foliated Dn−2-product over S1

which is given by projection to the second factor near S1×Sn−3 we focus
our attention only on these, i.e. we are looking at foliated Rn−2-bundles
over S1 with compact upport.

Thus, what remains to be done is to find for any foliated Rn−2-
product over S1 with compact support a 2-dimensional foliation on D2×
Rn−2 which satisfies:

(4.4) Outside some compact D2 × C it is given by projection
onto R

n−2.

(4.5) It is transverse to rS1 × Rn−2 for r close enough to 1, and
induces there the given foliated R

n−2-bundle.

(4.6) The tangent plane field to the foliation is homotopic to one
which is transverse to the Rn−2-factor by a homotopy which is constant
near S1 × R

n−2.

To do this, we change our perspective. Notice that any foliated
R

n−2-product ξ over S1 with compact support defines a path wξ : R →
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Diffc R
n−2 starting at the identity which describes the leaf of ξ through

the point (1, y) ∈ {1} ×R
n−2 as the set {(exp(2πit), wξ(t)(y)) | t ∈ R}.

The path wξ is periodic in the sense that for each integer m we have
wξ(m + t) = wξ(t) ◦ wξ(m) so that wξ is determined by its restriction
to [0, 1]. Furthermore there is a compact subset C of Rn−2 such that
for all t ∈ R the diffeomorphism wξ(t) restricted to the complement of
C is the identity.

Conversely, we would like to associate to periodic curves w : R →
Diffc R

n−2 a foliated R
n−2-product over S1 with compact support.

At this point a few remarks about the topology and smoothness
structure of Diffc R

n−2 are called for. For compact K ⊂ R
n−2 denote

by DiffK Rn−2 the space of diffeomorphisms of Rn−2 with support in K
with its usual compact open C∞-topology. Then Diffc R

n−2 as a set is
the inductive limit of the DiffK Rn−2 where K ranges over the compact
subsets of Rn−2. Then any compact subset of Diffc R

n−2 is contained in
some DiffK Rn−2. In particular the image of any continuous map from
R into Diffc R

n−2 restricted to a bounded subset is contained in some
DiffK Rn−2.

A smooth curve of Diffc R
n−2 is a map w : R → Diffc R

n−2 having
the following two properties:

(4.7) The adjoint map w∨ : R×R
n−2 → R

n−2 given by w∨(t, x) =
w(t)(x) is smooth.

(4.8) For each bounded subset J of R there is a compact K ⊂ R
n−2

such that for every x /∈ K the path t �→ w(t)(x) is constant on J .
(Compare 30.9 and 42.5 in [KriMi]; be not deterred by the use of the
c∞-topology in their definition of infinite dimensional manifolds since
this does not change the set of smooth curves.)

Thus periodic smooth curves of Diffc R
n−2 correspond bijectively to

smooth foliated R
n−2-products over S1 with compact support. A map

w : [0, 1] → Diffc R
n−2 is called a smooth periodic curve if w(0) = id and

its extension w : R → Diffc R
n−2 given by w(t + m) := w(t) ◦ w(1)m,

t ∈ [0, 1], m ∈ Z, is smooth. The extension is then obviously periodic.
We will call a smooth periodic curve w : [0, 1] → Diffc R

n−2 fillable if
the associated foliated Rn−2-product over S1 with compact support can
be extended to a 2-dimensional foliation on D2 × R

n−2 satisfying 4.4
and 4.5.

A smooth periodic homotopy between smooth periodic curves
w0, w1 : [0, 1]→Diffc R

n−2 is a smooth map h : [0, 1]×[0, 1]→Diffc R
n−2

which is constant on {0} × [0, 1] and {1} × [0, 1], restricts to wi

on [0, 1] × {i}, and for which the extension to R × [0, 1] given by
(t+m, s) �→h(t, s) ◦w0(1)

m, t∈ [0, 1], m∈Z, is smooth. If two periodic
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curves are smoothly homotopic then we can find smooth homotopies
which are constant near 0 and 1 in the sense that the induced curves
for small s are equal to the restriction to [0, 1]× {0} and for s close to
1 equal to the restriction to [0, 1]× {1}.

Remark 4.9. Notice that a smooth periodic homotopy corresponds
to a foliated Rn−2-product with compact support over S1 × [0, 1]. But
be aware that a smooth map h : R× [0, 1] → Diffc R

n−2 which is periodic
in the sense that each restriction to R × {s}, s ∈ [0, 1], is periodic will
in general not correspond to a foliated product over S1 × [0, 1].

Therefore, if w and w′ are smoothly periodic homotopic and w is
fillable, then so is w′. This allows us to look only at curves w : [0, 1] →
Diffc R

n−2 starting at id which are constant near 0 and 1. These are
always periodic, and concatenating two of these will give us a new peri-
odic curve. An interval J ⊂ [0, 1] where a path w is constant we call
a horizontal interval (for w), since the foliation on S1 × Rn−2 over the
part of S1 corresponding to this interval is horizontal. A smooth path
starting at id which is horizontal near its beginning and end we call an
adjusted smooth path.

Lemma 4.10. The concatenation of two fillable adjusted smooth
paths is fillable.

Proof. The concatenation of w1 and w2 is the smooth path w1 ∗w2

defined by

w1 ∗ w2(t) :=

{
w1(2t), if 0 ≤ t ≤ 1/2,

w2(2t− 1) ◦ w1(1), if 1/2 ≤ t ≤ 1.

Since w1 and w2 are horizontal near 0 and 1 there is an ε > 0 such
that the foliation associated to w1 ∗w2 is horizontal on the two intervals
of S1 of points having distance at most 2ε from the real axis. Thus
starting with

√
1− ε2 + i · ε as basepoint and running w1 from there to

−√
1− ε2 + i · ε at double speed we obtain a smooth path from id to

w1(1). Similarly, starting at −√
1− ε2 − i · ε and running w2 ◦w1(1) till√

1− ε2 − i · ε at double speed we get a smooth path starting at w1(1)
and ending at w2(1) ◦w1(1). We extend the first path by concatenating
it with the constant path with value w1(1) on the straight segment from

−√
1− ε2 + i · ε to

√
1− ε2 + i · ε and the second one by concatenating

the constant path with value w1(1) on the segment from
√
1− ε2 − i · ε

to −√
1− ε2− i · ε with it. Up to reparametrization, the first path is w1

while the second one is w2◦w1(1). By hypothesis both are fillable so that
we obtain a 2-dimensional foliation on (D2\{z ∈ C | |�(z)| < ε})×R

n−2
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which is horizontal near the two straight segments with imaginary part
equal to ±ε. We can extend this foliation to all of D2×R

n−2 by adding
the horizontal foliation over {z ∈ C | |�(z)| ≤ ε}. Q.E.D.

4.3. A fillable foliated R
n−2-product

In this short subsection we present the example of Thurston [Th2]
of a filling for a particular non-trivial smooth periodic curve. On the
2-torus S1×S1 consider the foliation by lines of constant slope a, i.e. the
foliation defined by the closed 1-form dθ − a dϕ where (ϕ, θ) are the
coordinates of S1×S1. This foliation corresponds to the smooth periodic
curve t �→ Rat where Rs ⊂ Diff S1 is rotation by 2πs. All these foliations
allow a filling to a 2-dimensional foliation of the solid torus D2 × S1 by
first pushing the 1-dimensional foliation constantly a little to the inside,
then turbulizing it in the θ-direction to a foliation which has the torus
1
2S

1 × S1 as the limit set of all its leaves, and fill in the remaining solid
torus by a Reeb component.

Thurston proceeds then by looking at the standard tubular neigh-
bourhood S1×Dn−3 of the standard S1 in R

n−2. Please notice that this
is where we have to assume that n ≥ 4. Then S1×S1×Dn−3 is a Dn−3-
family of 2-tori. Define a smooth periodic curve [0, 1] → Diffc R

n−2

which is constant outside of S1 × Dn−3 and restricts for each circle
S1 × {x}, x ∈ Dn−3, to a periodic curve corresponding to a foliation by
lines of constant slope f(x) where f : Dn−3 → [0, 1] is a non-vanishing
smooth function which is 0 in a neighbourhood of the boundary. Then
fill for each x ∈ Dn−3 the resulting foliation of S1 × S1 × {x} to obtain
a 2-dimensional foliation of D2 × S1 × {x}, and do this in such a way
that the foliations fit smoothly together.

There is one further step to take. Outside D2 ×C the filling has to
be induced by projection to the second factor, for some compact C ⊂
Rn−2. But the filling for the slope 0 foliations coming from the insertion
of Reeb components are not of this type. So one has to interpolate
between these two foliations close to the boundary of S1 ×Dn−3. This
interpolation is achieved by the introduction of the function g : Dn−3 →
[0, 1] in the formula below, where g is supposed to be smooth, to be 0 in
a neighbourhood of the boundary, and equal to 1 in the support of f .

Again, this interpolation is easy to understand, as will be ex-
plained below.

The filling of the constant slope f(x) foliation on S1 × S1 is given
by the following 1-form on D2 × S1. Give D2 polar coordinates (r, ϕ),
and let {λ0, λ1/2, λ1} be a smooth partition of unity for [0, 1] such that
λi is equal to 1 in a neighbourhood of i, and such that λ0 and λ1 have
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disjoint support. Then the 1-form

λ1(r)(dθ − f(x) dϕ) + λ1/2(r) dr + λ0(r) dθ

is completely integrable, equal to (dθ− f(x) dϕ) near the boundary and
thus defines a filling which, in fact, is as described above, at least quali-
tatively. To also take care of the interpolation mentioned above take for
each x ∈ R

n−2 the 1-form

(1− g(x)) dθ + g(x)(λ1(r)(dθ − f(x) dϕ) + λ1/2(r) dr + λ0(r) dθ).

Again one checks that the form is nowhere zero and integrable. For those
x, where g(x) = 0, the form is equal to dθ on D2 × S1 × {x} and thus
the sets D2 ×{(θ, x)}, θ ∈ S1, are leaves of the foliation. Therefore, if x
is near the boundary of Dn−3 the foliation is induced by projection onto
R

n−2, i.e. it is horizontal there. This allows us to extend this foliation
to all of D2 × Rn−2 by making it horizontal outside D2 × S1 ×Dn−3.

To understand the interpolation mentioned above geometrically look
at points x ∈ Dn−3 where f(x) = 0. The form there is equal to

(1− g(x)λ1/2(r)) dθ + g(x)λ1/2(r) dr.

Thus the foliation is horizontal outside the support of g and λ1/2. Inside
the support of λ1/2 the slope in the θ-direction will increase when moving
from small g-values to larger ones. In particular, inside the solid torus{
r ≤ 1

2

}× S1 you will see a bubble occuring for each leaf when leaving
the set {g = 0} which grows larger and larger with growing values of g.
The slopes at the 2-torus

{
r = 1

2

}× S1 are getting steeper and steeper
approaching tangentially more and more this torus, and, finally, being
this 2-torus when g = 1 is reached.

As the last requirement for an appropriate filling we have to check
(see 4.6) that the plane field of this foliation is homotopic to a plane
field transverse to the R

n−2-factor by a homotopy which is constant
near S1 × R

n−2. To do this homotope the defining 1-form by replacing
for s ∈ [0, 1] the function λ1/2 by (1 − s)λ1/2 and λ0 by λ0 + sλ1/2.
The resulting 1-forms are all nowhere vanishing and the final form is
dθ − λ1(r)f(x) dϕ, which is transverse to the Rn−2-factor.

4.4. Filling the hole when Diffc R
n−2
0 is simply connected

We denote the path component of id in Diffc R
n−2 by Diffc R

n−2
0 .

From Subsection 4.3 we have a fillable periodic path α from id to an
f 	= id in Diffc R

n−2
0 . If w is a fillable periodic path then for any g ∈

Diffc R
n−2
0 the path g ◦w ◦ g−1 is also fillable. The manifold Diffc R

n−2

is modelled on the space C∞
c (Rn−2,Rn−2) of smooth maps from R

n−2
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to itself with compact support given the inductive limit topology of
C∞

K (Rn−2,Rn−2), where C∞
K (Rn−2,Rn−2) is the space of smooth maps

from Rn−2 to itself with support in the compact set K ⊂ Rn−2 with its
usual C∞-topology. Thus continuous paths w : [0, 1] → Diffc R

n−2 are
homotopic to a finite product of paths, each of which is a straight path
in a coordinate chart. These paths can be made smooth by parameter
changes. Also by the usual smooth approximation methods any continu-
ous homotopy between smooth paths gives rise to a smooth homotopy
between these paths.

Therefore, if Diffc R
n−2
0 is simply connected and simple, then any

smooth periodic path can be filled. In fact, for every g ∈ Diffc R
n−2
0

there are g1, . . . , gr with g =
∏k

i=1 gifg
−1
i and so any smooth periodic

curve from id to g is the concatenation of paths from id to gifg
−1
i ,

i = 1, . . . , k, where every one of these paths are fillable by the Reeb type
construction of Subsection 4.3.

In fact, we can reduce the number of these Reeb fillings to 8 due to
results of Takashi Tsuboi in [Tsu2]. Theorem 2.1 of this paper says that
any element of Diffc R

n−2
0 is the product of two commutators. Using this

and Lemma 3.1 of [Tsu2] every element of Diffc R
n−2
0 can be expressed

as a product of eight conjugates of f and f−1.
Since the Reeb fillings of the periodic curve to f of Subsection 4.3

is very explicit, this gives us an explicit description of how the holes
are filled.

Recall from the introduction that by results of Epstein, Mather, and
Thurston (Diffc R

k)0 is simple for all k. See also 5.1-2 below for the case
k > 1.

Remark 4.11. For n = 4 and n = 5 the spaces Diffc R
n−2
0 are

simply connected so that the above simple filling of the holes can be done.
In fact, Smale [Sm] (see also Section 5 of Appendix of [Ce]) for k = 2
and Hatcher [Ha] for k = 3 show that all homotopy groups of the group
Diff(Dk, Sk−1) of diffeomorphisms of Dk which are the identity on Sk−1

are trivial. As a consequence, for n equal to 4 or 5 all homotopy groups
of Diffc R

n−2
0 are trivial. To see this note that πi Diffc R

k
0
∼= πi Diffc D̊

k
0 is

the inductive limit of πi DiffDj D̊
k where Dj is the disk of radius 1−1/j

in D̊k. But πi DiffDj
D̊k = πi Diff(Dj , J

∞∂Dj). Here Diff(Dj , J
∞∂Dj)

is the group of diffeomorphisms of Dj which are the identity on ∂Dj and
are infinitely tangent to the identity of Dj there. By the special case
of Proposition 1 in Appendix of [Ce] the inclusion Diff(Dk, Jr∂Dk) →
Diff(Dk, ∂Dk) induces for all 0 ≤ r ≤ ∞ isomorphisms for all homotopy
groups, and we are done.
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§5. Filling the hole: Part II

In this section we show how the holes can be filled without assum-
ing that Diffc R

n−2
0 is simply connected. The idea is fairly simple. We

break the periodic path in Diffc R
n−2 at the boundary of the hole into

short pieces of the form wi ◦ gi where each wi is a path inside a pre-
described contractible neighborhood of the identity and gi some element
of Diffc R

n−2
0 . Then we show using results from [HaRyTe] that each

wi(1) is the product of 6 commutators of elements in Diffc R
n−2 still

lying in some prescribed contractible neighbourhood of the identity and
then, using not only Lemma 3.1 of [Tsu2] but also its proof, we show
that each wi is homotopic to the product of at most 24 conjugates of
the Thurston example from Subsection 4.3. Then by Lemma 4.10 we
are done.

There is one issue that will attribute a little to the length of this
section. The authors of [HaRyTe] use for the spaces of smooth mappings
between smooth manifolds the topology introduced in Chapter 42 of
[KriMi] which differs for the case of non-compact domain manifolds from
the one that most people are used to. Chapter 42 of [KriMi] uses quite
a few notions and results from earlier Chapters which would take some
effort to absorb. But in fact we will need very little from [KriMi] to
understand the arguments of this section. Naturally, one has to invest
more if one wants to understand the proof of Proposition 2 in [HaRyTe],
the result from [HaRyTe] which we need in our proof.

5.1. Smooth perfectness of Diffc R
k
0 (following Haller,

Rybicki and Teichmann)

The notion of a differentiable map f from R into a locally convex
vector space E is the obvious one: difference quotients at each point x ∈
R converge in E to a point called f ′(x). Iterating this gives the notion of
a smooth curve. Similarly one can define smooth maps from open subsets
of Rm into E by requesting that all partial derivatives exist and are
locally bounded. The locally compact vector space of interest to us is the
space C∞

c (Rk,Rk) of smooth maps from Rk to Rk with compact support.
It is given the inductive limit topology of the subspaces C∞

K (Rk,Rk)
of smooth maps with support in the compact set K ⊂ R

k with the
usual C∞-topology. Any compact subset of C∞

c (Rk,Rk) is contained in
some C∞

K (Rk,Rk). Therefore, for any continuous, and in particular, any
smooth map f : R → C∞

c (Rk,Rk) and any bounded J ⊂ R there is a
compact K ⊂ R

k such that f(J) ⊂ C∞
K (Rk,Rk).

The space Diffc R
k is a manifold modelled on C∞

c (Rk,Rk). As
an atlas take {hg : g + Ug → Ug|g ∈ Diffc R

k}. Here Ug is an open
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neighbourhood of 0 in C∞
c (Rk,Rk) such that g + Ug ⊂ Diffc R

k and
hg(g + f) = f for f ∈ Ug. Coordinate changes are then simply restric-
tions of translations in C∞

c (Rk,Rk) to open sets. Clearly, a map w from
an open subset of Rm into C∞

c (Rk,Rk) is smooth if and only if w + g
is smooth for any g ∈ C∞

c (Rk,Rk). Thus it makes sense to call a map
from a finite dimensional smooth manifold into Diffc R

k smooth if its
restriction to inverse images of the above charts are smooth as maps
into C∞

c (Rk,Rk).
If we want to consider smoothness of maps from Diffc R

k into some
other possibly infinite dimensional manifold modelled on a locally convex
vector space we need to decide which maps from an open subset of a
locally convex vector space into another are considered to be smooth.
The concept should be so that on finite dimensional ones exactly the
usual smooth maps are smooth.

In [KriMi] a map between locally convex vector spaces is called
smooth if it maps smooth curves to smooth curves. By Bomann’s the-
orem [Bo] (see also Corollary 3.14 in [KriMi]) a map from an open subset
of Rm into any locally convex space is smooth in this sense if and only
if it is smooth in the usual sense.

We want to point out that it is essential here that we are in the
smooth category. In the Cr-category with r finite the corresponding
concept will not be sufficient to assure that a map on an open subset of
Rm into R is smooth in the usual sense (see e.g. [KriMi], Example 3.3;
see also the subsection “Smoothness of foliated products” in Section 4
of [Tsu1]).

The infinite dimensional manifolds for which smoothness structures
are developed in [KriMi] are modelled on so called convenient vector
spaces. These are locally convex vector spaces E for which a map
w : R → E is smooth if and only if for all continuous linear l : E → R

the map l ◦ w : R → R is smooth. The space C∞
c (Rk,Rk) is convenient.

This follows for example from Theorem 2.15 in [KriMi] using the fact
that any Banach space is convenient. The authors of [KriMi] then go
one step further by using the c∞-topology on convenient vector spaces.
This, by definition ([KriMi], Definition 2.12) is the final topology with
respect to all smooth curves. For Fréchet spaces the c∞-topology agrees
with the original topology, in particular this holds for C∞

K (Rk,Rk). But
in general, the c∞-topology is strictly finer. By Proposition 4.26 (ii) of
[KriMi] the space C∞

c (Rk,Rk) with the c∞-topology is not a topological
vector space. Thus the c∞-topology differs from the original topology.

The c∞-topology is used in the results of [HaRyTe] which we use.
But this will not cause any additional difficulty for us. We define a
map f defined on a c∞-open subset U of a locally convex topological
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vector space into a locally convex vector space F to be smooth if it maps
smooth curves in U to smooth curves in F .

It is worthwhile to point out the obvious fact that a smooth map
from a c∞-open subset U of a locally convex topological vector space
into a locally convex vector space F is continuous with respect to the
c∞-topology used for both, U and F . In particular, inverse images of
open sets of F in its usual topology are open in U with the c∞-topology.

In [KriMi] charts of manifolds modelled on convenient vector spaces
are bijections onto c∞-open subsets. So g ∈ Diffc R

k may now have
smaller neighbourhoods. In our atlas above we may replace Ug by c∞-
open neighbourhoods of 0 in C∞

c (Rk,Rk).
We can now state the result of [HaRyTe] that we are going to use.

Proposition 5.1 (Proposition 2 of [HaRyTe]). Suppose k ≥ 2, and
let B ⊂ R

k be open and bounded. Then there exist compactly supported
smooth vector fields X1, . . . ,X6 on Rk, a c∞-open neighborhood W of the
identity in Diff∞

c (B), and smooth mappings σ1, . . . , σ6 : W → Diffc R
k

so that σi(id) = id and for all g ∈ W,

g = [σ1(g), exp(X1)] ◦ · · · ◦ [σ6(g), exp(X6)].

Moreover the vector fields Xi may be chosen arbitrarily close to 0 with
regard to the strong Whitney C∞-topology.

As usual [a, b] = a ◦ b ◦ a−1 ◦ b−1, and exp(X) is the time 1 map of
the flow associated to the complete vector field X.

5.2. From uniform perfectness to uniform simplicity (fol-
lowing Tsuboi)

In this subsection we copy the proof of Lemma 3.1 in [Tsu2] prac-
tically verbatim for later reference.

Remark. Takashi Tsuboi pointed out that Lemma 3.1 in [Tsu2]
can easily be derived from a paper of R. D. Anderson (see the proof of
Lemma 1 in [An]). But what we need we find word for word in [Tsu2]:
Tsuboi has already distilled exactly what we need from the paper of
Anderson.

Lemma 5.2. Let U be an open subset of the manifold M and let h
be a diffeomorphism of M such that U ∩ h(U) = ∅. Let a, b ∈ Diff∞(M)
have support in U . Then [a, b] is a product of four conjugates of h
and h−1.
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Proof. Consider c = h−1ah. Then the support of c and b are
disjoint, and consequently they commute. Therefore

aba−1b−1 = h(h−1ah)h−1(ba−1b−1)

= h(ch−1c−1)(cbhc−1b−1)(bh−1b−1)

= h(ch−1c−1)(bchc−1b−1)(bh−1b−1).

Q.E.D.

Corollary 5.3. Let Mk be a smooth connected manifold and let
h ∈ Diff∞(Mk) be any element different from the identity. Let ai, bi,
i = 1, . . . , r, be elements of Diff∞(Mk) such that for each i the diffeo-

morphisms ai and bi have support in Ůi where Ui is a closed k-ball
in Mk.

Then f :=
∏r

i=1[ai, bi] is a product of 4r conjugates of h and h−1.

Proof. Since h 	= id there exists a closed k-ball U in M with h(U)∩
U = ∅. Since M is connected there is for each i a diffeomorphism gi
of M smoothly isotopic to id by a compactly supported isotopy, such
that gi(Ui) ⊂ U . Then by Lemma 5.2 gi[ai, bi]g

−1
i is a product of four

conjugates of h and h−1, and thus [ai, bi] is a product of four conjugates
of h and h−1. Q.E.D.

5.3. Putting it all together

We finally show that every smooth periodic curve w : [0, 1] →
Diffc R

n−2 can be filled.
As explained in the introduction of this section, the idea is to write

w as the product of periodic paths wi where each wi is contained in a
contractible neighbourhood of id in Diffc R

n−2. We then proceed as in
Subsection 4.4 by working entirely with paths which are homotopic to
paths contained in this contractible neighbourhood. That this can be
done is a consequence of the results 5.1, Lemma 5.2, and Corollary 5.3
of the previous two subsections.

To shorten notation a little let k := n− 2. Thus k ≥ 2.

(1) Let V := {id+e | e ∈ C∞
c (Rk,Rk) with maxx‖dex‖ < 1}. This

is an open contractible neighbourhood of id in Diffc R
k. An

easy estimate shows that the composition of r elements of {id+
e | e ∈ C∞

c (Rk,Rk) with maxx‖dex‖ < ε} is of the form id + f
with ‖dfx‖ < (1 + ε)r − 1 for all x. Therefore there is ε > 0
such that any composition of 72 elements of V0 := {id + e |
e ∈ C∞

c (Rk,Rk) with maxx‖dex‖ < ε} is contained in V .
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(2) Recall from Subsection 4.3 that the periodic curves which get
filled are of the form

hf (t)(z) =

{
z, z /∈ S1 ×Dk−1,

(θ + t · f(x), x), z = (θ, x) ∈ S1 ×Dk−1

where f : Dk−1 → [0, 1] is smooth and vanishing near the
boundary. We have hf (t)

−1 = h−f (t) for all t ∈ [0, 1]. Thus by
choosing f small enough, we may assume that hf (t), hf (t)

−1 ∈
V0 for all t ∈ [0, 1]. With this choice of f we denote hf (1) by h.

(3) Let U ⊂ S1 ×Dk−1 be an open ball such that U ∩ h(U) = ∅.
Let B ⊂ R

k be an open ball containing S1 ×Dk−1 and A an
open ball in Rk containing B̄.

(4) Let gt be a compactly supported isotopy of Rk with g0 = id
and g1(Ā) ⊂ U . Denote g1 by g.

(5) Finally let W ⊂ V be a c∞-open neighbourhood of id in
Diff∞

c (B) and σ1, . . . , σ6 : W → Diffc R
n−2 and X1, . . . ,X6 the

smooth maps and compactly supported vectorfields of Propos-
ition 5.1. Since A is diffeomorphic to Rk we may assume that
the σi factor through Diff∞

c (A) and that the Xi have support
in A. Furthermore, by making W small enough, we may as-
sume that for a ∈ W the elements h−1 ◦ g ◦ σi(a) ◦ g−1 ◦ h and
their inverses are all in V0. Also, by having Xi close enough to
0 in the strong Whitney C∞-topology, we may assume that all
g ◦ exp(Xi) ◦ g−1 and their inverses are in V0.

Now let w : [0, 1] → Diffc R
k be a smooth periodic curve. The curve w

is fillable if (and only if) the curve g ◦ w ◦ g−1 is fillable. Here g is the
diffeomorphism from item (4) above.

By the very definition of the c∞-topology g ◦ w ◦ g−1 is continuous
with respect to this topology on Diffc R

k. Therefore, we find a q ∈ N such
that for i = 0, . . . , q − 1 the curves gwig

−1 : [0, 1] → Diffc R
k defined by

wi(t) := w
(
i+t
q

)◦w( i
q

)−1
have their images inW. Up to parametrization

gwg−1 is the concatenation of the gwig
−1. By making w horizontal near

the points i/q the gwig
−1 are periodic.

By the proof of Corollary 5.3 each commutator of two diffeo-
morphisms gαg−1 and gβg−1 is a product of four conjugates of h and
h−1, if the support of α and β is in A, and by the proof of Lemma 5.2
we have an explicit description of these factors.
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For the case of interest to us it works out as follows. Let a ∈ W and
i = 1, . . . , 6. Then g[σi(a), exp(Xi)]g

−1 equals

h ◦ ((h−1gσi(a)g
−1h) ◦ h−1 ◦ (h−1gσi(a)

−1g−1h))

◦ ((g exp(Xi)g
−1) ◦ (h−1gσi(a)g

−1h) ◦ h
◦ (h−1gσi(a)

−1g−1h) ◦ (g exp(X−1
i )g−1))

◦ ((g exp(Xi)g
−1) ◦ h−1 ◦ (g exp(X−1

i )g−1)).

This is the composition of 12 diffeomorphisms with each one lying in V0

by item (5) above if a ∈ W. Since there are six of these commutators to
express a we look at a composition of 72 diffeomorphisms of V0. By item
(1) this composition is contained in V . The same holds if we replace the
first h and the occurrences of the h or h−1 in the center of the outer
parantheses of the other three factors by hf (t) respectively hf (t)

−1. This
follows from item (2) above.

Having done this, we obtain a smooth periodic curve u in V running
from id to gwi(1)g

−1. Thus u and gwig
−1 are homotopic.

The curve u is the product of 24 fillable curves with the product
being composition in Diffc R

k instead of concatenation. But up to homo-
topy there is no difference. In fact, if each of these curves is horizontal
near 0 and 1 the standard homotopy between them is smoothly periodic.

We are done.

§6. Application: πk+1BΓ̄k = 0

As mentioned in the introduction the proof that any 2-plane field
is homotopic to a foliation follows immediately from the main result,
Theorem 1 in [Th2] once you know that the homotopy fibre BΓ̄k of
the normal bundle map ν : BΓk → BGLk, which assigns to a smooth
Γk-structure its normal bundle, is (k + 1)-connected. Mildly reworded
Theorem 1 of [Th2] can be formulated as:

Theorem 6.1 (Thurston). Let M be a smooth manifold and TM =
τ ⊕ ρ a splitting of its tangent bundle such that ρ is the normal bundle
of a Haefliger structure H of codimension k ≥ 2 on M . Then there
exists a smooth foliation F of codimension k on M which is homotopic
to H as a Haefliger structure and whose tangent bundle is homotopic
to τ as a subbundle of TM . Furthermore, if H is already the Haefliger
structure of a foliation in a neighbourhood of a compact K ⊂ M then
the homotopies between F and H and between the tangent field of F and
τ can be chosen to be constant in a neighbourhood of K.
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This theorem is sometimes called Thurston’s h-principle for foli-
ations of codimension greater than 1.

Thus, a given p-plane field on the n-manifold M is homotopic to a
foliation if its normal bundle ρ comes from a Γn−p-structure, i.e. if the
classifying map fρ : M → BGLn−p of ρ can be liftet to BΓn−p. This
can always be done if BΓ̄n−p is (n− 1)-connected.

Thus any 2-plane field on any manifold can be homotoped into a
foliation if BΓ̄k is (k+1)-connected, and any p-plane field on any mani-
fold is homotopic to a foliation if BΓ̄k is (k + p − 1)-connected. It is
known that π2k+1(BΓ̄k) is highly non trivial, and it is a long standing
open question whether BΓ̄k is 2k-connected.

Haefliger in [Hae2] used the Gromov–Phillips transversality theorem
(see below and [Gr], [Phil]) to show that BΓ̄k is k-connected. The proof
that πk+1BΓ̄k = 0 is more involved. It uses the Thurston–Mather the-
orem which states that the adjoint BDiffc(R

n) → ΩkBΓ̄k of the natu-
ral map Σk BDiffc(R

k) → BΓ̄k is a homology equivalence, and it uses
Thurston’s theorem [Th1] that the universal covering group of Diffc R

k
0

is perfect. The last theorem is also used by us to prove our main result
(see Subsection 5.1).

We close this article by showing that the vanishing of πk+1BΓ̄k for
k ≥ 2 is a direct consequence of the Gromov–Phillips transversality the-
orem and our main theorem (Theorem 1.1). Our proof follows closely
Haefliger’s proof in [Hae2] that πkBΓ̄k = 0. In fact our argument gen-
eralizes immediately to prove the following:

Theorem 6.2. Let p ≥ 0 and assume that any p-plane field on any
smooth manifold M , which in a neighbourhood of the compact subset K
of M is the tangent plane field of a smooth foliation, is homotopic to the
plane field of a smooth foliation by a homotopy which is constant in a
neighbourhood of K.

Then πk+p−1BΓ̄k = 0.

Here, as before, Γk is the space of germs of local C∞-diffeomorphisms
of Rk with the germ topology.

The Gromov–Phillips transversality theorem as stated in [Phil], a
special case of the main result in [Gr], suffices for our needs. It says
the following:

Theorem 6.3 (Gromov, Phillips). Let M and N be smooth mani-
folds and G a foliation of N . Let Trans(M ; (N,G)) be the space of smooth
maps from M to N which are transverse to G with the C1 compact open
topology, and let Epi(TM, νG) be the space of continuous bundle epi-
morphisms from the tangent bundle TM of M to the normal bundle νG
of G with the compact open topology.



206 Y. Mitsumatsu and E. Vogt

Then the natural map which maps g ∈ Trans(M ; (N,G)) to pr ◦dg ∈
Epi(TM, νG) is a weak homotopy equivalence if M is open (i.e. if M\∂M
has no compact component).

Here pr : TN → νG is the obvious projection.

Proof of Theorem 6.2. A map g : Sk+p−1 → BΓ̄k corresponds to
a Haefliger structure H of codimension k on Sk+p−1 together with a
homotopy class of trivializations of its normal bundle. Actually when
using the Milnor model for classifying spaces of topological groupoids
(see Section I.5 of [Hae3]) we have a definite trivialization (see e.g. [Hu],
Chapter 4, Section 9). Changing the Haefliger structure in its homotopy
class induces homotopies of the normal bundle and thus a homotopy of g.

We are only interested in homotopy information. Thus, see for ex-
ample Section 1.9 of [Hae2], we may think of H as the restriction to the
zero section of a foliation G on the total space E of a smooth rank k
vectorbundle p : E → Sk+p−1 with G transverse to the fibres of p. Fur-
thermore, the normal bundle of H is the restriction of the normal bundle
of the foliation G to the zero section. The normal bundle νG of G is the
tangent field to the fibres of p, so that the normal bundle of H is p. Any
trivialization of p will extend to a trivialization of νG .

Let M := Sk+p−1 × (0, 2) be the subset of Rk+p which is the union
of (k+p−1) spheres of radius r ∈ (0, 2) with center the origin. Then M
is an open manifold, (E,G) is a foliated manifold so that the Gromov–
Phillips transversality theorem applies.

Let f0 : M → E be given by f0(x, t) = x, x ∈ Sk+p−1, t ∈ (0, 2),
where we identify Sk+p−1 with the zero section of p, and let ϕ : E →
Sk+p−1×Rk be the trivialization of the normal bundle given by our map
g into BΓ̄k.

Let TM = M × Rk+p be the standard framing of the open subset
M of Rk+p, and consider the bundle epimorphism f̃0 : TM → νG , which
maps (x, v) ∈ M × Rk+p to ϕ−1(f0(x), pk(v)), where pk : R

k+p → Rk is
the projection onto the first k coordinates.

The Gromov–Phillips transversality theorem then supplies us with
a homotopy f̃t : TM → νG of bundle epimorphisms over a homotopy
ft : M → E starting with f̃0 over f0 and ending with f̃1 = pr ◦ df1
where f1 is a smooth map transverse to G and pr : TE → νG is the
projection map.

Restricting the homotopy ft to Sk+p−1 gives us a homotopy of
Haefliger structures on Sk+p−1 from H = f∗

0G to f∗
1G restricted to

Sk+p−1. The normal bundles of these Haefliger structures are the pull
backs of νG via ft. Together with the trivialization of νG we see that
up to homotopy we can assume that the initial Haefliger structure is
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the one induced from G by f1 restricted to Sk+p−1. But this Haefliger
structure is the restriction of an honest foliation F of M to the unit
sphere. So restricting F to Sk+p−1×{1/2} gives us a Haefliger structure
over Sk+p−1 (identified with Sk+p−1×{1/2}) with a trivialization homo-

topic as a pair to the original pair. We now restrict the homotopy f̃t to
Sk+p−1×{1/2} going backwards from t = 1 to t = 0. The kernel of each

of these restrictions of bundle maps f̃t gives us a continuous family τt
of continuous fields of p-planes of Rk+p, starting with the restriction τ1
of the tangent bundle of F to Sk+p−1 × {1/2} and ending with the con-
stant field τ0 of planes orthogonal to Rk = pk(R

k+p). Spreading these
fields out over Sk+p−1× [1/4, 1/2] by putting τt on Sk+p−1×{(1+ t)/4}
gives us a p-plane field that can be extended to all of Dk+p by using
the tangent field of F for points with distance at least 1/2 from the ori-
gin and by the constant field orthogonal to Rk for points in the disk
of radius 1/4. This field can be approximated in its homotopy class by
a smooth field τ which is tangent to F outside a small neighbourhood
of the disk of radius 1/2, and the constant field orthogonal to R

k in a
neighbourhood of the origin. Notice that the trivialization of the normal
bundle of this plane field is on each sphere Sk+p−1 × {a} with a close
to 0, up to rescaling the radius of the sphere, equal to ϕ ◦ ϕ−1, i.e. the
identity of Sk+p−1 × R

k, which extends trivially to the normal bundle
of τ over Dk+p.

The hypothesis of Theorem 6.2 then gives us a homotopy of τ to a
smooth foliation by a homotopy which is constant in a neighbourhood
of the boundary Sk+p−1 and in a neighbourhood of the origin. Since
a foliation is a Haefliger structure and homotopies of plane fields give
homotopies of their normal fields, we are done. Q.E.D.

Essentially the same proof gives the following

Theorem 6.4 (Haefliger [Hae3]). BΓ̄k is (k − 1)-connected.

Proof. Here we start with a Haefliger structure on Si−1 with i ≤ k.
Take now for M the open subset (Si−1 × (0, 2)) × R

k−i in R
k. Then

the initial bundle epimorphism TM → νG is given by ((x, t, y), v) �→
ϕ−1(x, v), x ∈ Si−1, t ∈ (0, 2), y ∈ R

k−i, v ∈ R
k. Then everything pro-

ceeds as before and with p = 0. For p = 0 the hypothesis of Theorem 6.2
is trivially satisfied. Q.E.D.

Remark 6.5. Theorem 1.1 is not used in the proof of Theorem 6.4
and in the verification of the hypothesis of Theorem 6.2 for p equal to
0 and 1. Thus BΓ̄k is k-connected for any k. Theorem 1.1 shows that
for p = 2 the hypothesis of Theorem 6.2 holds if k ≥ 2. In fact, for
k = 1, even in the very special situation that we would encounter in a
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proof along the lines described above the hypothesis is not satisfied: not
every smooth 2-plane field on the open disk of radius 2 in R

3 which is
a foliation in a neighbourhood of S2 is homotopic to a smooth foliation
by a homotopy which is constant in a neighbourhood of S2. The proof
that π2BΓ̄1 = 0 is in [Ma1] based on the Thurston–Mather theorem for
codimension 1 foliations, the proof of which is the main result of [Ma1].
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