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Quantum Lakshmibai-Seshadri paths
and root operators
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Anne Schilling and Mark Shimozono

Abstract.

We give an explicit description of the image of a quantum LS
path, regarded as a rational path, under the action of root operators,
and show that the set of quantum LS paths is stable under the action
of the root operators. As a by-product, we obtain a new proof of the
fact that a projected level-zero LS path is just a quantum LS path.

§1. Introduction.

In our previous papers [NS1], [NS3], [NS2], we gave a combina-
torial realization of the crystal bases of level-zero fundamental repre-
sentations W (�i), i ∈ I0, and their tensor products

⊗
i∈I0

W (�i)
⊗mi ,

mi ∈ Z≥0, over a quantum affine algebra U ′
q(g), by using projected level-

zero Lakshmibai-Seshadri (LS for short) paths. Here, for a level-zero
dominant integral weight λ =

∑
i∈I0

mi�i, with �i the i-th level-zero
fundamental weight, the set of projected level-zero LS paths of shape
λ, which is a “simple” crystal denoted by B(λ)cl, is obtained from the
set B(λ) of LS paths of shape λ (in the sense of [L2]) by factoring out
the null root δ of an affine Lie algebra g. However, from the nature of
the above definition of projected level-zero LS paths, our description of
these objects in [NS1], [NS3], [NS2] was not as explicit as the one (given
in [L1]) of usual LS paths, the shape of which is a dominant integral
weight.

Recently, in [LNSSS1], [LNSSS2], we proved that a projected level-
zero LS path is identical to a certain “rational path”, which we call a
quantum LS path. A quantum LS path is described in terms of the (par-
abolic) quantum Bruhat graph (QBG for short), which was introduced
by [BFP] (and by [LS] in the parabolic case) in the study of the quantum
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cohomology ring of the (partial) flag variety; see §3.1 for the definition
of the (parabolic) QBG. It is noteworthy that the description of a quan-
tum LS path as a rational path is very similar to the one of a usual LS
path given in [L1], in which we replace the Hasse diagram of the (par-
abolic) Bruhat graph by the (parabolic) QBG. Also, remark that the
vertices of the (parabolic) QBG are the minimal-length representatives
for the cosets of a parabolic subgroup WJ of the finite Weyl group W0,
though we consider finite-dimensional representations W (�i), i ∈ I0, of
the quantum affine algebra U ′

q(g).
The purpose of this paper is to give an explicit description, in terms

of rational paths, of the image of a quantum LS path (= projected level-
zero LS path) under root operators in a way similar to the one given in
[L1]; see Theorem 4.1.1 for details. This explicit description, together
with the Diamond Lemmas [LNSSS1, Lemma 5.14], for the parabolic
QBG, provides us with a proof of the fact that the set of quantum LS
paths (the shape of which is a level-zero dominant integral weight λ) is
stable under the action of the root operators.

As a by-product of the stability property above, we obtain another
(but somewhat roundabout) proof of the fact that a projected level-
zero LS path is just a quantum LS path; see [LNSSS1], [LNSSS2] for
a more direct proof. This new proof is accomplished by making use of
a characterization (Theorem 2.4.1) of the set B(λ)cl of projected level-
zero LS paths of shape λ in terms of root operators, which is based
upon the connectedness of the (crystal graph for the) tensor product
crystal

⊗
i∈I0

B(�i)
⊗mi

cl � B(λ)cl; recall from [NS1], [NS3], [NS2] that
for a level-zero dominant integral weight λ =

∑
i∈I0

mi�i, the crystal

B(λ)cl decomposes into the tensor product
⊗

i∈I0
B(�i)

⊗mi

cl of crystals,

and that B(�i)cl for each i ∈ I0 is isomorphic to the crystal basis of the
level-zero fundamental representation W (�i).

This paper is organized as follows. In §2, we fix our basic notation,
and recall some fundamental facts about (level-zero) LS path crystals.
Also, we give a characterization (Theorem 2.4.1) of projected level-zero
LS paths, which is needed to obtain our main result (Theorem 4.1.1).
In §3, we recall the notion of the (parabolic) quantum Bruhat graph,
and then give the definition of quantum LS paths. In §4, we first state
our main result. Then, after preparing several technical lemmas, we
finally obtain an explicit description (Proposition 4.2.1) of the image of
a quantum LS path as a rational path under the action of root operators.
Our main result follows immediately from this description, together with
the characterization above of projected level-zero LS paths.



Quantum LS paths and root operators 269

Acknowledgments. C.L. was partially supported by the NSF grant
DMS–1101264. S.N. was supported by Grant-in-Aid for Scientific Re-
search (C), No. 24540010, Japan. D.S. was supported by Grant-in-Aid
for Young Scientists (B) No. 23740003, Japan. A.S. was partially sup-
ported by the NSF grants DMS–1001256, OCI–1147247, and a grant
from the Simons Foundation (#226108 to Anne Schilling). M.S. was
partially supported by the NSF grant DMS–1200804.

§2. Lakshmibai-Seshadri paths.

2.1. Basic notation.

Let g be an untwisted affine Lie algebra over C with Cartan matrix
A = (aij)i, j∈I ; throughout this paper, the elements of the index set I
are numbered as in [Kac, §4.8, Table Aff 1]. Take a distinguished vertex
0 ∈ I as in [Kac], and set I0 := I \{0}. Let h =

(⊕
j∈I Cα

∨
j

)⊕Cd denote

the Cartan subalgebra of g, where Π∨ :=
{
α∨
j

}
j∈I

⊂ h is the set of simple

coroots, and d ∈ h is the scaling element (or degree operator). Also, we
denote by Π :=

{
αj

}
j∈I

⊂ h∗ := HomC(h,C) the set of simple roots, and

by Λj ∈ h∗, j ∈ I, the fundamental weights; note that αj(d) = δj,0 and
Λj(d) = 0 for j ∈ I. Let δ =

∑
j∈I ajαj ∈ h∗ and c =

∑
j∈I a

∨
j α

∨
j ∈ h

denote the null root and the canonical central element of g, respectively.
The Weyl group W of g is defined by W := 〈rj | j ∈ I〉 ⊂ GL(h∗), where
rj ∈ GL(h∗) denotes the simple reflection associated to αj for j ∈ I,
with � : W → Z≥0 the length function on W . Denote by Δre the set of
real roots, i.e., Δre := WΠ, and by Δ+

re ⊂ Δre the set of positive real
roots; for β ∈ Δre, we denote by β∨ the dual root of β, and by rβ ∈ W
the reflection with respect to β. We take a dual weight lattice P∨ and
a weight lattice P as follows:
(2.1.1)

P∨ =

⎛⎝⊕
j∈I

Zα∨
j

⎞⎠⊕ Zd ⊂ h and P =

⎛⎝⊕
j∈I

ZΛj

⎞⎠⊕ Zδ ⊂ h∗.

It is clear that P contains Q :=
⊕

j∈I Zαj , and that P ∼= HomZ(P
∨,Z).

Let W0 be the subgroup of W generated by rj , j ∈ I0, and set
Δ0 := Δre ∩

⊕
j∈I0

Zαj , Δ
+
0 := Δre ∩

⊕
j∈I0

Z≥0αj , and Δ−
0 := −Δ+

0 .

Note that W0 (resp., Δ0, Δ
+
0 , Δ

−
0 ) can be thought of as the (finite) Weyl

group (resp., the set of roots, the set of positive roots, the set of negative
roots) of the finite-dimensional simple Lie subalgebra corresponding to
I0. Denote by θ ∈ Δ+

0 the highest root for the (finite) root system Δ0;
note that α0 = −θ + δ and α∨

0 = −θ∨ + c.
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Definition 2.1.1.

(1) An integral weight λ ∈ P is said to be of level zero if 〈λ, c〉 = 0.
(2) An integral weight λ ∈ P is said to be level-zero dominant if

〈λ, c〉 = 0, and 〈λ, α∨
j 〉 ≥ 0 for all j ∈ I0 = I \ {0}.

Remark 2.1.2. If λ ∈ P is of level zero, then 〈λ, α∨
0 〉 = −〈λ, θ∨〉.

For each i ∈ I0, we define a level-zero fundamental weight �i ∈ P
by

(2.1.2) �i := Λi − a∨i Λ0.

The �i for i ∈ I0 is actually a level-zero dominant integral weight;
indeed, 〈�i, c〉 = 0 and 〈�i, α

∨
j 〉 = δi,j for j ∈ I0.

Let cl : h∗ � h∗/Cδ be the canonical projection from h∗ onto h∗/Cδ,
and define Pcl and P∨

cl by

(2.1.3) Pcl := cl(P ) =
⊕
j∈I

Z cl(Λj) and P∨
cl :=

⊕
j∈I

Zα∨
j ⊂ P∨.

We see that Pcl
∼= P/Zδ, and that Pcl can be identified with HomZ(P

∨
cl ,Z)

as a Z-module by

(2.1.4) 〈cl(λ), h〉 = 〈λ, h〉 for λ ∈ P and h ∈ P∨
cl .

Also, there exists a natural action of the Weyl group W on h∗/Cδ in-
duced by the one on h∗, since Wδ = δ; it is obvious that w ◦ cl = cl ◦w
for all w ∈ W .

Remark 2.1.3. Let λ ∈ P be a level-zero integral weight. It is easy
to check that cl(Wλ) = W0 cl(λ) (see the proof of [NS4, Lemma 2.3.3]).
In particular, we have cl(r0λ) = rθ cl(λ) since α0 = −θ + δ and α∨

0 =
−θ∨ + c.

For simplicity of notation, we often write β instead of cl(β) ∈ Pcl

for β ∈ Q =
⊕

j∈I Zαj ; note that α0 = −θ in Pcl since α0 = −θ + δ in
P .

2.2. Paths and root operators.

A path with weight in Pcl = cl(P ) is, by definition, a piecewise-
linear, continuous map π : [0, 1] → R ⊗Z Pcl such that π(0) = 0 and
π(1) ∈ Pcl. We denote by Pcl the set of all paths with weight in Pcl, and
define wt : Pcl → Pcl by

(2.2.1) wt(η) := η(1) for η ∈ Pcl.
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For η ∈ Pcl and j ∈ I, we set

(2.2.2)
Hη

j (t) := 〈η(t), α∨
j 〉 for t ∈ [0, 1],

mη
j := min

{
Hη

j (t) | t ∈ [0, 1]
}
.

For each j ∈ I, let P
(j)
cl, int denote the subset of Pcl consisting of all paths

η for which all local minima of the function Hη
j (t) are integers; note that

if η ∈ P
(j)
cl, int, then mη

j ∈ Z≤0 and Hη
j (1)−mη

j ∈ Z≥0. We set

Pcl, int :=
⋂
j∈I

P
(j)
cl, int;

see also [NS2, §2.3]. Here we should warn the reader that the set Pcl, int

itself is not necessarily stable under the action of the root operators ej
and fj for j ∈ I, defined below.

Now, for j ∈ I and η ∈ P
(j)
cl, int, we define ejη as follows. If mη

j = 0,
then ejη := 0, where 0 is an additional element not contained in Pcl. If
mη

j ≤ −1, then we define ejη ∈ Pcl by

(2.2.3) (ejη)(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(t) if 0 ≤ t ≤ t0,

η(t0) + rj(η(t)− η(t0)) if t0 ≤ t ≤ t1,

η(t) + αj if t1 ≤ t ≤ 1,

where we set

(2.2.4)
t1 := min

{
t ∈ [0, 1] | Hη

j (t) = mη
j

}
,

t0 := max
{
t ∈ [0, t1] | Hη

j (t) = mη
j + 1

}
;

note that the function Hη
j (t) is strictly decreasing on [t0, t1] since η ∈

P
(j)
cl, int. Because

H
ejη
j (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hη

j (t) if 0 ≤ t ≤ t0,

2(mη
j + 1)−Hη

j (t) if t0 ≤ t ≤ t1,

Hη
j (t) + 2 if t1 ≤ t ≤ 1,

it is easily seen that ejη ∈ P
(j)
cl, int, and m

ejη
j = mη

j + 1. Therefore, if we
set

(2.2.5) εj(η) := max
{
n ≥ 0 | enj η �= 0

}
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for j ∈ I and η ∈ P
(j)
cl, int, then εj(η) = −mη

j (see also [L2, Lemma 2.1 c)]).
By convention, we set ej0 := 0 for all j ∈ I.

Remark 2.2.1. Assume that η ∈ P
(0)
cl, int satisfies the condition that

mη
0 ≤ −1 and 〈η(t), c〉 = 0 for all t ∈ [0, 1]. Then we have

(2.2.6) (e0η)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(t) if 0 ≤ t ≤ t0,

η(t0) + rθ(η(t)− η(t0)) if t0 ≤ t ≤ t1,

η(t)− θ if t1 ≤ t ≤ 1,

where t0 and t1 are defined by (2.2.4) for j = 0.

Similarly, for j ∈ I and η ∈ P
(j)
cl, int, we define fjη as follows. If

Hη
j (1) − mη

j = 0, then fjη := 0. If Hη
j (1) − mη

j ≥ 1, then we define
fjη ∈ Pcl by

(2.2.7) (fjη)(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(t) if 0 ≤ t ≤ t0,

η(t0) + rj(η(t)− η(t0)) if t0 ≤ t ≤ t1,

η(t)− αj if t1 ≤ t ≤ 1,

where we set

(2.2.8)
t0 := max

{
t ∈ [0, 1] | Hη

j (t) = mη
j

}
,

t1 := min
{
t ∈ [t0, 1] | Hη

j (t) = mη
j + 1

}
;

note that the function Hη
j (t) is strictly increasing on [t0, t1] since η ∈

P
(j)
cl, int. Because

H
fjη
j (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hη

j (t) if 0 ≤ t ≤ t0,

2mη
j −Hη

j (t) if t0 ≤ t ≤ t1,

Hη
j (t)− 2 if t1 ≤ t ≤ 1,

it is easily seen that fjη ∈ P
(j)
cl, int, and m

fjη
j = mη

j − 1. Therefore, if we
set

(2.2.9) ϕj(η) := max
{
n ≥ 0 | fn

j η �= 0
}

for j ∈ I and η ∈ P
(j)
cl, int, then ϕj(η) = Hη

j (1)−mη
j (see also [L2, Lemma

2.1 c)]). By convention, we set fj0 := 0 for all j ∈ I.
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Remark 2.2.2. Assume that η ∈ P
(0)
cl, int satisfies the condition that

Hη
0 (1)−mη

0 ≥ 1 and 〈η(t), c〉 = 0 for all t ∈ [0, 1]. Then we have

(2.2.10) (f0η)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(t) if 0 ≤ t ≤ t0,

η(t0) + rθ(η(t)− η(t0)) if t0 ≤ t ≤ t1,

η(t) + θ if t1 ≤ t ≤ 1,

where t0 and t1 are defined by (2.2.8) for j = 0.

We know the following theorem from [L2, §2] (see also [NS2, Theo-
rem 2.4]); for the definition of crystals, see [Kas1, §7.2] or [HK, §4.5] for
example.

Theorem 2.2.3.

(1) Let j ∈ I, and η ∈ P
(j)
cl, int. If ejη �= 0, then fjejη = η. Also, if

fjη �= 0, then ejfjη = η.
(2) Let B be a subset of Pcl, int such that the set B ∪ {0} is stable

under the action of the root operators ej and fj for all j ∈ I.
The set B, equipped with the root operators ej, fj for j ∈ I and
the maps (2.2.1), (2.2.5), (2.2.9), is a crystal with weights in
Pcl.

Remark 2.2.4. In §2.3, we will give a typical example of a subset B of
Pcl, int such that B∪{0} is stable under the action of the root operators.

For each path η ∈ Pcl and N ∈ Z≥1, we define a path Nη ∈ Pcl by:
(Nη)(t) = Nη(t) for t ∈ [0, 1]; by convention, we set N0 := 0 for all

N ∈ Z≥1. It is easily verified that if η ∈ P
(j)
cl, int for some j ∈ I, then

Nη ∈ P
(j)
cl, int for all N ∈ Z≥1.

Lemma 2.2.5 (see [L2, Lemma 2.4] and also [NS2, Lemma 2.5]).

Let j ∈ I. For every η ∈ P
(j)
cl, int and N ∈ Z≥1, we have

εj(Nη) = Nεj(η) and ϕj(Nη) = Nϕj(η),

N(ejη) = eNj (Nη) and N(fjη) = fN
j (Nη).

For j ∈ I and η ∈ P
(j)
cl, int, we define emax

j η := e
εj(η)
j η ∈ P

(j)
cl, int and

fmax
j η := f

ϕj(η)
j η ∈ P

(j)
cl, int. The next lemma follows immediately from

Lemma 2.2.5.

Lemma 2.2.6. Let j ∈ I. For every η ∈ P
(j)
cl, int and N ∈ Z≥1, we

have emax
j (Nη) = N(emax

j η) and fmax
j (Nη) = N(fmax

j η).
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Now, for η1, η2, . . . , ηn ∈ Pcl, define the concatenation η1 ∗ η2 ∗ · · · ∗
ηn ∈ Pcl by

(2.2.11)
(η1 ∗ η2 ∗ · · · ∗ ηn)(t) :=

k−1∑
l=1

ηl(1) + ηk(nt− k + 1)

for
k − 1

n
≤ t ≤ k

n
and 1 ≤ k ≤ n.

For a subset B of Pcl and n ∈ Z≥1, we set B∗n :=
{
η1 ∗ η2 ∗ · · · ∗ ηn |

ηk ∈ B for 1 ≤ k ≤ n
}
.

Proposition 2.2.7 (see [L2, Lemma 2.7], [NS2, Proposition 1.3.3]).
Let B be a subset of Pcl, int such that the set B ∪ {0} is stable under the
action of the root operators ej and fj for all j ∈ I; note that B is a
crystal with weights in Pcl by Theorem 2.2.3.

(1) For every n ∈ Z≥1, the set B∗n ∪ {0} is stable under the root
operators ej and fj for all j ∈ I. Therefore, B∗n is a crystal
with weights in Pcl by Theorem 2.2.3.

(2) For every n ∈ Z≥1, the crystal B∗n is isomorphic as a crystal
to the tensor product B⊗n := B⊗ · · · ⊗ B (n times), where the
isomorphism is given by : η1 ∗ η2 ∗ · · · ∗ ηn �→ η1 ⊗ η2 ⊗ · · · ⊗ ηn
for η1 ∗ η2 ∗ · · · ∗ ηn ∈ B∗n.

2.3. Lakshmibai-Seshadri paths.

Let us recall the definition of Lakshmibai-Seshadri (LS for short)
paths from [L2, §4]. In this subsection, we fix an integral weight λ ∈ P ,
which is not necessarily dominant.

Definition 2.3.1. For μ, ν ∈ Wλ, let us write μ ≥ ν if there exists
a sequence μ = μ0, μ1, . . . , μn = ν of elements in Wλ and a sequence
β1, . . . , βn ∈ Δ+

re of positive real roots such that μk = rβk
μk−1 and

〈μk−1, β
∨
k 〉 < 0 for k = 1, 2, . . . , n. If μ ≥ ν, then we define dist(μ, ν)

to be the maximal length n of all possible such sequences μ0, μ1, . . . , μn

for (μ, ν).

Definition 2.3.2. For μ, ν ∈ Wλ with μ > ν and a rational number
0 < σ < 1, a σ-chain for (μ, ν) is, by definition, a sequence μ = μ0 >
μ1 > · · · > μn = ν of elements in Wλ such that dist(μk−1, μk) = 1 and
σ〈μk−1, β

∨
k 〉 ∈ Z<0 for all k = 1, 2, . . . , n, where βk is the positive real

root such that rβk
μk−1 = μk.

Definition 2.3.3. An LS path of shape λ ∈ P is, by definition, a
pair (ν ; σ) of a sequence ν : ν1 > ν2 > · · · > νs of elements in Wλ
and a sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers
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satisfying the condition that there exists a σk-chain for (νk, νk+1) for
each k = 1, 2, . . . , s − 1. We denote by B(λ) the set of all LS paths of
shape λ.

Let π = (ν1, ν2, . . . , νs ; σ0, σ1, . . . , σs) be a pair of a sequence
ν1, ν2, . . . , νs of integral weights with νk �= νk+1 for 1 ≤ k ≤ s−1 and a
sequence 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers. We identify π
with the following piecewise-linear, continuous map π : [0, 1] → R⊗Z P :
(2.3.1)

π(t) =
k−1∑
l=1

(σl − σl−1)νl + (t− σk−1)νk for σk−1 ≤ t ≤ σk, 1 ≤ k ≤ s.

Remark 2.3.4. It is obvious from the definition that for each ν ∈ Wλ,
πν := (ν ; 0, 1) is an LS path of shape λ, which corresponds (under
(2.3.1)) to the straight line πν(t) = tν, t ∈ [0, 1], connecting 0 to ν.

For each π ∈ B(λ), we define cl(π) : [0, 1] → R⊗ZPcl by: (cl(π))(t) =
cl(π(t)) for t ∈ [0, 1]. We set

B(λ)cl :=
{
cl(π) | π ∈ B(λ)

}
.

We know from [NS2, §3.1] that B(λ)cl is a subset of Pcl, int such that
B(λ)cl ∪ {0} is stable under the action of the root operators ej and fj
for all j ∈ I. In particular, B(λ)cl is a crystal with weights in Pcl by
Theorem 2.2.3.

Here we recall the notion of simple crystals. A crystalB with weights
in Pcl is said to be regular if for every proper subset J � I, B is isomor-
phic, as a crystal for Uq(gJ ), to the crystal basis of a finite-dimensional
Uq(gJ )-module, where gJ is the (finite-dimensional) Levi subalgebra of g
corresponding to J (see [Kas2, §2.2]). A regular crystal B with weights
in Pcl is said to be simple if the set of extremal elements in B coincides
with a W -orbit in B through an (extremal) element in B (cf. [Kas2,
Definition 4.9]).

Remark 2.3.5.

(1) The crystal graph of a simple crystal is connected (see [Kas2,
Lemma 4.10]).

(2) A tensor product of simple crystals is also a simple crystal (see
[Kas2, Lemma 4.11]).

We know the following theorem from [NS1, Proposition 5.8], [NS3,
Theorem 2.1.1 and Proposition 3.4.2], and [NS2, Theorem 3.2].
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Theorem 2.3.6.

(1) For each i ∈ I0, the crystal B(�i)cl is isomorphic, as a crys-
tal with weights in Pcl, to the crystal basis of the level-zero
fundamental representation W (�i), introduced in [Kas2, The-
orem 5.17], of the quantum affine algebra U ′

q(g). In particular,
B(�i)cl is a simple crystal.

(2) Let i1, i2, . . . , ip be an arbitrary sequence of elements of I0
(with repetitions allowed), and set λ := �i1 +�i2 + · · ·+�ip .
The crystal B(λ)cl is isomorphic, as a crystal with weights in
Pcl, to the tensor product B(�i1)cl⊗B(�i2)cl⊗· · ·⊗B(�ip)cl. In
particular, B(λ)cl is also a simple crystal by Remark 2.3.5 (2).

Remark 2.3.7. Let λ ∈ ∑
i∈I0

Z≥0�i be a level-zero dominant inte-
gral weight.

(1) It is easily seen from Remark 2.3.4 that ημ(t) := tμ is contained
in B(λ)cl for all μ ∈ cl(Wλ) = W0 cl(λ).

(2) We know from [NS2, Lemma 3.19] that ηcl(λ) ∈ B(λ)cl is an
extremal element in the sense of [Kas2, §3.1]. Therefore, it fol-
lows from [AK, Lemma 1.5] and the definition of simple crystals
that for each η ∈ B(λ)cl, there exist j1, j2, . . . , jp ∈ I such that

emax
jp · · · emax

j2 emax
j1 η = ηcl(λ).

Also, by the same argument as for [AK, Lemma 1.5], we can
show that for each η ∈ B(λ)cl, there exist k1, k2, . . . , kq ∈ I
such that

fmax
kq

· · · fmax
k2

fmax
k1

η = ηcl(λ).

Lemma 2.3.8. Let λ ∈ ∑
i∈I0

Z≥0�i be a level-zero dominant in-

tegral weight, and let n ∈ Z≥1. Then, the set B(λ)∗ncl is identical to
B(nλ)cl.

Proof. First, let us show the inclusion B(λ)∗ncl ⊃ B(nλ)cl. It is
easily seen that the element ηcl(λ) ∗ · · · ∗ ηcl(λ) ∈ B(λ)∗ncl is identical to
ηcl(nλ). Hence it follows that the crystal B(λ)∗ncl contains the connected
component containing ηcl(nλ) ∈ B(nλ)cl. Here we recall that the crystal
B(nλ)cl is simple (see Theorem 2.3.6), and hence connected (see Re-
mark 2.3.5 (1)). Therefore, the connected component above is identical
to B(nλ)cl. Thus, we have shown the inclusion B(λ)∗ncl ⊃ B(nλ)cl.

Now, it follows from Proposition 2.2.7 that B(λ)∗ncl is isomorphic as
a crystal to the tensor product B(λ)⊗n

cl . Therefore, B(λ)∗ncl ∼= B(λ)⊗n
cl is

a simple crystal by Theorem 2.3.6 (2) and Remark 2.3.5 (2), and hence



Quantum LS paths and root operators 277

connected by Remark 2.3.5 (1). From this, we conclude that B(λ)∗ncl =
B(nλ)cl, as desired. Q.E.D.

2.4. Characterization of the set B(λ)cl of paths.

Theorem 2.4.1. Let λ ∈ ∑
i∈I0

Z≥0�i be a level-zero dominant
integral weight. If a subset B of Pcl, int satisfies the following two condi-
tions, then the set B is identical to B(λ)cl.

(a) The set B∪{0} is stable under the action of the root operators
fj for all j ∈ I.

(b) For each η ∈ B, there exist a sequence μ1, μ2, . . . , μs of ele-
ments in cl(Wλ) = W0 cl(λ) and a sequence 0 = σ0 < σ1 <
· · · < σs = 1 of rational numbers such that

(2.4.1)

η(t) =
k−1∑
l=1

(σl − σl−1)μl + (t− σk−1)μk for σk−1 ≤ t ≤ σk, 1 ≤ k ≤ s.

Remark 2.4.2. The equality B = B(λ)cl also holds when we replace
the root operators fj for j ∈ I by ej for j ∈ I in the theorem above; for
its proof, simply replace fj ’s by ej ’s in the proof below.

Proof of Theorem 2.4.1. First, let us show the inclusion B ⊂ B(λ)cl.
Fix an element η ∈ B arbitrarily, and assume that η is of the form (2.4.1).
Take N ∈ Z≥1 such that Nσu ∈ Z for all 0 ≤ u ≤ s. Then, the element
Nη ∈ Pcl, int is of the form:

Nη = ημ1 ∗ · · · ∗ ημ1︸ ︷︷ ︸
N(σ1 − σ0)-times

∗ ημ2 ∗ · · · ∗ ημ2︸ ︷︷ ︸
N(σ2 − σ1)-times

∗ · · · ∗ ημs ∗ · · · ∗ ημs︸ ︷︷ ︸
N(σs − σs−1)-times

.

Since ημ ∈ B(λ)cl for every μ ∈ cl(Wλ) (see Remark 2.3.7 (1)), we have
Nη ∈ B(λ)∗Ncl , and hence Nη ∈ B(Nλ)cl by Lemma 2.3.8. Hence, by
Remark 2.3.7, there exists k1, k2, . . . , kq ∈ I such that

fmax
kq

· · · fmax
k2

fmax
k1

(Nη) = ηcl(Nλ).

Also, by using Lemma 2.2.6 and condition (a) repeatedly, we deduce
that

fmax
kq

· · · fmax
k2

fmax
k1

(Nη) = N(fmax
kq

· · · fmax
k2

fmax
k1

η).

Combining these equalities, we obtain N(fmax
kq

· · · fmax
k2

fmax
k1

η) = ηcl(Nλ).

Since ηcl(Nλ) = Nηcl(λ), we get

(2.4.2) fmax
kq

· · · fmax
k2

fmax
k1

η = ηcl(λ) ∈ B(λ)cl.
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Therefore, by Theorem 2.2.3 (1), η = ec1k1
ec2k2

· · · ecqkq
ηcl(λ) ∈ B(λ)cl for

some c1, c2, . . . , cq ∈ Z≥0. Thus we have shown the inclusion B ⊂
B(λ)cl. In addition, we should remark that ηcl(λ) ∈ B by (2.4.2) and
condition (a).

Next, let us show the opposite inclusion B ⊃ B(λ)cl. Fix an element
η′ ∈ B(λ)cl arbitrarily. By Remark 2.3.7, there exists j1, j2, . . . , jp ∈ I
such that

emax
jp · · · emax

j2 emax
j1 η′ = ηcl(λ).

Therefore, by Theorem 2.2.3 (1), η′ = fd1
j1
fd2
j2

· · · fdp

jp
ηcl(λ) for some

d1, d2, . . . , dp ∈ Z≥0. Since ηcl(λ) ∈ B as shown above, it follows from
condition (a) that η′ ∈ B. Thus we have shown the inclusion B ⊃ B(λ)cl,
thereby completing the proof of the theorem. Q.E.D.

§3. Quantum Lakshmibai-Seshadri paths.

3.1. Quantum Bruhat graph.

In this subsection, we fix a subset J of I0. Set

WJ := 〈rj | j ∈ J〉 ⊂ W0.

It is well-known that each coset in W0/WJ has a unique element of
minimal length, called the minimal coset representative for the coset;
we denote by W J

0 ⊂ W0 the set of minimal coset representatives for
the cosets in W0/WJ , and by � · � = � · �J : W0 � W J

0
∼= W0/WJ the

canonical projection. Also, we set ΔJ := Δ0 ∩ (⊕
j∈J Zαj

)
, Δ±

J :=

Δ±
0 ∩ (⊕

j∈J Zαj

)
, and ρ := (1/2)

∑
α∈Δ+

0
α, ρJ := (1/2)

∑
α∈Δ+

J
α.

Definition 3.1.1. The (parabolic) quantum Bruhat graph is the
(Δ+

0 \Δ+
J )-labeled, directed graph with vertex set W J

0 and (Δ+
0 \Δ+

J )-

labeled, directed edges of the following form: �wrβ� β← w for w ∈ W J
0

and β ∈ Δ+
0 \Δ+

J such that either

(i) �(�wrβ�) = �(w) + 1, or
(ii) �(�wrβ�) = �(w)− 2〈ρ− ρJ , β

∨〉+ 1;

if (i) holds (resp., (ii) holds), then the edge is called a Bruhat edge (resp.,
a quantum edge).

Remark 3.1.2. If w ∈ W J
0 and β ∈ Δ+

0 \ Δ+
J satisfy the condition

that �(�wrβ�) = �(w) + 1, then wrβ ∈ W J
0 . Indeed, since �(wrβ) ≥

�(�wrβ�) = �(w)+1, it follows that wrβ is greater than w in the ordinary
Bruhat order. Therefore, by [BB, Proposition 2.5.1], �wrβ� is greater
than or equal to �w� = w in the ordinary Bruhat order. Since �(�wrβ�) =
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�(w)+1 by the assumption, there exists γ ∈ Δ+
0 such that �wrβ� = wrγ .

Now, we take a dominant integral weight Λ ∈ Pcl with respect to the
finite root system Δ0 such that

{
j ∈ I0 | 〈Λ, α∨

j 〉 = 0
}
= J ; note that

〈Λ, β∨〉 > 0 since β ∈ Δ+
0 \Δ+

J . Then we have wrβΛ = �wrβ�Λ = wrγΛ,
and hence rβΛ = rγΛ. It follows that 〈Λ, β∨〉β = 〈Λ, γ∨〉γ. Since β
and γ are both contained in Δ+

0 , and since 〈Λ, β∨〉 > 0, we deduce
that β = γ. Thus, we obtain �wrβ� = wrγ = wrβ, which implies that
wrβ ∈ W J

0 .

Remark 3.1.3. We know from [LS, Lemma 10.18] that the condition
(ii) above is equivalent to the following condition:

(iii) �(�wrβ�) = �(w) − 2〈ρ − ρJ , β
∨〉 + 1 and �(wrβ) = �(w) −

2〈ρ, β∨〉+ 1.

Let x, y ∈ W J
0 . A directed path d from y to x in the parabolic quan-

tum Bruhat graph is, by definition, a pair of a sequence w0, w1, . . . , wn

of elements in W J
0 and a sequence β1, β2, . . . , βn of elements in Δ+

0 \Δ+
J

such that

(3.1.1) d : x = w0
β1← w1

β2← · · · βn← wn = y.

A directed path d from y to x is said to be shortest if its length n
is minimal among all possible directed paths from y to x. Denote by
�(y, x) the length of a shortest directed path from y to x in the parabolic
quantum Bruhat graph.

3.2. Definition of quantum Lakshmibai-Seshadri paths.

In this subsection, we fix a level-zero dominant integral weight λ ∈∑
i∈I0

Z≥0�i, and set Λ := cl(λ) for simplicity of notation. Also, we set

J :=
{
j ∈ I0 | 〈Λ, α∨

j 〉 = 0
} ⊂ I0.

Definition 3.2.1. Let x, y ∈ W J
0 , and let σ ∈ Q be such that

0 < σ < 1. A directed σ-path from y to x is, by definition, a directed
path

x = w0
β1← w1

β2← w2
β3← · · · βn← wn = y

from y to x in the parabolic quantum Bruhat graph satisfying the con-
dition that

σ〈Λ, β∨
k 〉 ∈ Z for all 1 ≤ k ≤ n.

Definition 3.2.2. Denote by B̃(λ)cl (resp., B̂(λ)cl) the set of all
pairs η = (x ; σ) of a sequence x : x1, x2, . . . , xs of elements in W J

0 ,
with xk �= xk+1 for 1 ≤ k ≤ s − 1, and a sequence σ : 0 = σ0 < σ1 <
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· · · < σs = 1 of rational numbers satisfying the condition that there
exists a directed σk-path (resp., a directed σk-path of length �(xk+1, xk))

from xk+1 to xk for each 1 ≤ k ≤ s − 1; observe that B̂(λ)cl ⊂ B̃(λ)cl.

We call an element of B̃(λ)cl a quantum Lakshmibai-Seshadri path of
shape λ.

Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) be a rational path, that is,
a pair of a sequence x1, x2, . . . , xs of elements in W J

0 , with xk �= xk+1

for 1 ≤ k ≤ s−1, and a sequence 0 = σ0 < σ1 < · · · < σs = 1 of rational
numbers. We identify η with the following piecewise-linear, continuous
map η : [0, 1] → R⊗Z Pcl (cf. (2.3.1)):
(3.2.1)

η(t) =

k−1∑
l=1

(σl−σl−1)xlΛ+(t−σk−1)xkΛ for σk−1 ≤ t ≤ σk, 1 ≤ k ≤ s;

note that the map W J
0 → W0Λ, w �→ wΛ, is bijective. We will prove

that under this identification, both B̃(λ)cl and B̂(λ)cl can be regarded as
a subset of Pcl, int (see Proposition 4.1.12). Furthermore, we will prove

that both of the sets B̃(λ)cl ∪ {0} and B̂(λ)cl ∪ {0} are stable under the
action of the root operators (see Proposition 4.2.1).

§4. Main result.

4.1. Statement of the main result and some technical lem-
mas.

In this subsection and the next subsection, we fix a level-zero dom-
inant integral weight λ ∈ ∑

i∈I0
Z≥0�i. Set Λ := cl(λ), and

J :=
{
j ∈ I0 | 〈Λ, α∨

j 〉 = 0
} ⊂ I0.

The following theorem is the main result of this paper; it is obtained as
a by-product of an explicit description, given in §4.2, of the image of a
quantum LS path as a rational path under the action of root operators
on quantum LS paths.

Theorem 4.1.1. With the notation and setting above, we have

B̃(λ)cl = B̂(λ)cl = B(λ)cl.

In view of Theorem 2.4.1, in order to prove Theorem 4.1.1, it suf-

fices to prove that both B̃(λ)cl and B̂(λ)cl are contained in Pcl, int (see

Proposition 4.1.12 below), and that both of the sets B̃(λ)cl ∪ {0} and

B̂(λ)cl ∪ {0} are stable under the action of the root operators fj for
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all j ∈ I (see Proposition 4.2.1 below). To prove these, we need some
lemmas.

Lemma 4.1.2 ([LNSSS1, Proposition 5.11]). Let w ∈ W J
0 . If

w−1θ ∈ Δ−
0 , then there exists a quantum edge �rθw� −w−1θ←− w from

w to �rθw� in the parabolic quantum Bruhat graph.

Lemma 4.1.3 ([LNSSS1, Proposition 5.10 (1) and (3)]). Let w ∈
W J

0 and j ∈ I0. If w−1αj ∈ Δ0 \ΔJ , then rjw ∈ W J
0 .

Lemma 4.1.4. Let w ∈ W J
0 and β ∈ Δ+

0 \Δ+
J be such that �wrβ� β←

w. Let j ∈ I0.

(1) If 〈wΛ, α∨
j 〉 > 0 and wβ �= ±αj, then 〈wrβΛ, α∨

j 〉 > 0. Also,

both rj�wrβ� and rjw are contained in W J
0 , and rj�wrβ� β←

rjw.
(2) If 〈wrβΛ, α∨

j 〉 < 0 and wβ �= ±αj, then 〈wΛ, α∨
j 〉 < 0. Also,

both rj�wrβ� and rjw are contained in W J
0 , and rj�wrβ� β←

rjw.
(3) If 〈wrβΛ, α∨

j 〉 < 0 and 〈wΛ, α∨
j 〉 ≥ 0, then wβ = ±αj.

(4) If 〈wrβΛ, α∨
j 〉 ≤ 0 and 〈wΛ, α∨

j 〉 > 0, then wβ = ±αj.

Proof. (1) Since 〈wΛ, α∨
j 〉 > 0, we see that w−1αj ∈ Δ+

0 \Δ+
J . By

[LNSSS1, Proposition 5.10 (3)], there exists a Bruhat edge rjw
w−1αj←−

w in the parabolic quantum Bruhat graph, with rjw ∈ W J
0 . If the

edge �wrβ� β← w is a Bruhat (resp., quantum) edge, then it follows
from the left diagram of (5.3) (resp., (5.4)) in part (1) (resp., part (2))
of [LNSSS1, Lemma 5.14] that rj�wrβ� = �rjwrβ� ∈ W J

0 , and that

there exists a Bruhat (resp., quantum) edge rj�wrβ� β←− rjw and a

Bruhat edge rj�wrβ� 	wrβ
−1αj←− �wrβ� in the parabolic quantum Bruhat
graph. In particular, we have �wrβ�−1αj ∈ Δ+

0 \Δ+
J , which implies that

〈wrβΛ, α∨
j 〉 > 0. This proves part (1).

(2) Since 〈wrβΛ, α∨
j 〉 < 0, we see that �wrβ�−1αj ∈ Δ−

0 \Δ−
J . By

[LNSSS1, Proposition 5.10 (1)], there exists a Bruhat edge

�wrβ� −	wrβ
−1αj←− rj�wrβ� in the parabolic quantum Bruhat graph, with

rj�wrβ� ∈ W J
0 . If the edge �wrβ� β← w is a Bruhat (resp., quantum)

edge, then it follows from the right diagram of (5.3) (resp., (5.4)) in
part (1) (resp., part (2)) of [LNSSS1, Lemma 5.14] that rjw ∈ W J

0 , and

that there exists a Bruhat (resp., quantum) edge rj�wrβ� β←− rjw and a

Bruhat edge w
−w−1αj←− rjw in the parabolic quantum Bruhat graph. In
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particular, we have w−1αj ∈ Δ−
0 \Δ−

J , which implies that 〈wΛ, α∨
j 〉 < 0.

This proves part (2).
(3) (resp., (4)) Assume that 〈wrβΛ, α∨

j 〉 < 0 and 〈wΛ, α∨
j 〉 ≥ 0

(resp., 〈wrβΛ, α∨
j 〉 ≤ 0 and 〈wΛ, α∨

j 〉 > 0). Suppose that wβ �= ±αj .
Then it follows from part (2) (resp., (1)) that 〈wΛ, α∨

j 〉 < 0 (resp.,
〈wrβΛ, α∨

j 〉 > 0), which is a contradiction. Thus we obtain wβ = ±αj .
This completes the proof of Lemma 4.1.4. Q.E.D.

Lemma 4.1.5. Let w ∈ W J
0 and β ∈ Δ+

0 \Δ+
J be such that �wrβ� β←

w. Let z ∈ WJ be such that rθw = �rθw�z; note that zβ ∈ Δ+
0 \Δ+

J .

(1) If 〈wΛ, α∨
0 〉 > 0 and wβ �= ±θ, then 〈wrβΛ, α∨

0 〉 > 0 and

�rθwrβ� zβ← �rθw�.
(2) If 〈wrβΛ, α∨

0 〉 < 0 and wβ �= ±θ, then 〈wΛ, α∨
0 〉 < 0 and

�rθwrβ� zβ← �rθw�.
(3) If 〈wrβΛ, α∨

0 〉 < 0 and 〈wΛ, α∨
0 〉 ≥ 0, then wβ = ±θ.

(4) If 〈wrβΛ, α∨
0 〉 ≤ 0 and 〈wΛ, α∨

0 〉 > 0, then wβ = ±θ.

Proof. (1) Since 〈wΛ, α∨
0 〉 > 0, we see that w−1θ ∈ Δ−

0 \Δ−
J . By

[LNSSS1, Proposition 5.11 (1)], there exists a quantum edge �rθw� −w−1θ←−
w in the parabolic quantum Bruhat graph. If the edge �wrβ� β← w is
a Bruhat (resp., quantum) edge, then it follows from the left diagram
of (5.5) or (5.6) (resp., (5.7) or (5.8)) in part (3) (resp., part (4)) of

[LNSSS1, Lemma 5.14] that there exists an edge �rθwrβ� zβ← �rθw� and

a quantum edge �rθwrβ� −	wrβ
−1θ←− �wrβ� in the parabolic quantum
Bruhat graph. In particular, we have �wrβ�−1θ ∈ Δ−

0 \ Δ−
J , which

implies that 〈wrβΛ, α∨
0 〉 > 0. This proves part (1).

(2) Since 〈wrβΛ, α∨
0 〉 < 0, we see that �wrβ�−1θ ∈ Δ+

0 \ Δ+
J . By

[LNSSS1, Proposition 5.11 (3)], there exists a quantum edge

�wrβ� z′	wrβ
−1θ←− �rθwrβ� in the parabolic quantum Bruhat graph, where

z′ ∈ WJ is defined by: rθ�wrβ� = �rθwrβ�z′. If the edge �wrβ� β← w
is a Bruhat (resp., quantum) edge, then it follows from the right dia-
gram of (5.5) or (5.6) (resp., (5.7) or (5.8)) in part (3) (resp., part (4))

of [LNSSS1, Lemma 5.14] that there exists an edge �rθwrβ� zβ← �rθw�
and a quantum edge w

zw−1θ←− �rθw� in the parabolic quantum Bruhat
graph. In particular, we have w−1θ ∈ Δ+

0 \ Δ+
J , which implies that

〈wΛ, α∨
0 〉 < 0. This proves part (2).
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Parts (3) and (4) can be shown by using parts (2) and (1) in the same
way as parts (3) and (4) of Lemma 4.1.4, respectively. This completes
the proof of Lemma 4.1.5. Q.E.D.

Lemma 4.1.6. Let λ, Λ, and J be as above. Let x, y ∈ W J
0 , and

let σ ∈ Q be such that 0 < σ < 1. Assume that there exists a directed
σ-path from y to x as follows:

x = w0
β1← w1

β2← w2
β3← · · · βn← wn = y.

Then, σ(xΛ− yΛ) is contained in Q0 :=
⊕

j∈I0
Zαj .

Proof. We have

σ(xΛ− yΛ) =
n∑

k=1

σ(wk−1Λ− wkΛ) =
n∑

k=1

σ(wkrβk
Λ− wkΛ)

= −
n∑

k=1

σ〈Λ, β∨
k 〉wkβk.

It follows from the definition of a directed σ-path that σ〈Λ, β∨
k 〉 ∈ Z

for all 1 ≤ k ≤ n. Also, it is obvious that wkβk ∈ Q0 for all 1 ≤ k ≤
n. Therefore, we conclude that σ(xΛ − yΛ) ∈ Q0. This proves the
lemma. Q.E.D.

Lemma 4.1.7. Let λ, Λ, and J be as above. If η ∈ B̃(λ)cl, then
η(1) is contained in Λ +Q0, and hence in Pcl.

Proof. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̃(λ)cl. Then
we have (see (3.2.1))

η(1) = xsΛ +
s−1∑
k=1

σk(xkΛ− xk+1Λ).

It is obvious that xsΛ ∈ Λ+Q0. Also, it follows from Lemma 4.1.6 that
σk(xkΛ − xk+1Λ) ∈ Q0 for each 1 ≤ k ≤ s − 1. Therefore, we conclude
that η(1) ∈ Λ +Q0. This proves the lemma. Q.E.D.

In what follows, we set sj := rj for j ∈ I0, and s0 := rθ ∈ W0, in
order to state our results and write their proofs in a way independent of
whether j = 0 or not.

Lemma 4.1.8. Let λ, Λ, and J be as above. Let x, y ∈ W J
0 , and

assume that there exists a directed path

(4.1.1) x = w0
β1← w1

β2← w2
β3← · · · βn← wn = y.
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from y to x. Let j ∈ I.

(1) If there exists 1 ≤ p ≤ n such that 〈wkΛ, α
∨
j 〉 < 0 for all

0 ≤ k ≤ p − 1 and 〈wpΛ, α
∨
j 〉 ≥ 0, then �sjwp−1� = wp, and

there exists a directed path from y to �sjx� of the form:
(4.1.2)

�sjx� = �sjw0� z1β1← · · · zp−1βp−1← �sjwp−1� = wp
βp+1← · · · βn← wn = y.

Here, if j ∈ I0, then we define zk ∈ WJ to be the identity
element for all 1 ≤ k ≤ p−1; if j = 0, then we define zk ∈ WJ

by rθwk = �rθwk�zk for each 1 ≤ k ≤ p− 1.
(2) If the directed path (4.1.1) from y to x is shortest, i.e., �(y, x) =

n, then the directed path (4.1.2) from y to �sjx� is also shortest,
i.e., �(y, �sjx�) = n− 1.

(3) If the directed path (4.1.1) is a directed σ-path from y to x for
some rational number 0 < σ < 1, then the directed path (4.1.2)
is a directed σ-path from y to �sjx�.

Proof. (1) We give a proof only for the case j ∈ I0. The proof for
the case j = 0 is similar; replace αj and α∨

j by −θ and −θ∨, respectively,
and use Lemma 4.1.5 instead of Lemma 4.1.4. First, let us check that
wkβk �= ±αj for any 1 ≤ k ≤ p − 1. Suppose, contrary to our claim,
that wkβk = ±αj for some 1 ≤ k ≤ p− 1. Then,

wk−1Λ = wkrβk
Λ = rwkβk

wkΛ = sjwkΛ,

and hence 〈wk−1Λ, α
∨
j 〉 = 〈sjwkΛ, α

∨
j 〉 = −〈wkΛ, α

∨
j 〉 > 0, which con-

tradicts our assumption. Thus, wkβk �= ±αj for any 1 ≤ k ≤ p−1. It fol-

lows from Lemma 4.1.4 (2) and our assumption that �sjwk−1� βk← �sjwk�
for all 1 ≤ k ≤ p− 1. Also, since 〈wp−1Λ, α

∨
j 〉 < 0 and 〈wpΛ, α

∨
j 〉 ≥ 0,

it follows from Lemma 4.1.4 (3) that wpβp = ±αj , and hence

sjwp−1Λ = sjwprβpΛ = sjrwpβpwpΛ = sjsjwpΛ = wpΛ.

Thus, we obtain a directed path of the form (4.1.2) from y to �sjx�.
This proves part (1).

(2) Assume that �(y, x) = n. By the argument above, we have
�(y, �sjx�) ≤ n − 1. Suppose, for a contradiction, that �(y, �sjx�) <
n− 1, and take a directed path

�sjx� = z0
γ1← z1

γ2← z2
γ3← · · · γl← zl = y

from y to �sjx� whose length l is less than n − 1. Let us show that

x
γ← �sjx� for some γ ∈ Δ+

0 \ Δ+
J . Assume first that j ∈ I0. Since



Quantum LS paths and root operators 285

〈xΛ, α∨
j 〉 < 0 by the assumption, we have x−1αj ∈ Δ−

0 \Δ−
J , and hence

�(x) = �(sjx)+1. Also, since x ∈ W J
0 , it follows from Lemma 4.1.3 that

sjx ∈ W J
0 . Therefore, if we set γ := x−1sjαj = −x−1αj ∈ Δ+

0 \Δ+
J , then

we obtain x
γ← sjx = �sjx�. Assume next that j = 0. Since 〈xΛ, −θ∨〉 =

〈xΛ, α∨
0 〉 < 0 by the assumption, we have x−1θ ∈ Δ+

0 \Δ+
J . Define an

element v ∈ WJ by rθx = �rθx�v. Then we see that γ := vx−1θ is
contained in Δ+

0 \Δ+
J , and that

��s0x�rγ� = ��rθx�rγ� = �rθxv−1rvx−1θ�
= �rθxv−1vx−1rθxv

−1� = �xv−1� = x

since x ∈ W J
0 and v ∈ WJ . Also, note that �s0x�−1θ = �rθx�−1θ =

vx−1rθθ = −γ ∈ Δ−
0 \ Δ−

J . Therefore, we deduce from Lemma 4.1.2
that

x = ��s0x�rγ� γ← �rθx� = �s0x�.
Thus, we obtain a directed path

x
γ← �sjx� = z0

γ1← z1
γ2← z2

γ3← · · · γl← zl = y

from y to x whose length is l + 1 < n = �(y, x). This contradicts the
definition of �(y, x). This proves part (2).

(3) We should remark that 〈Λ, zkβ∨
k 〉 = 〈Λ, β∨

k 〉 for each 1 ≤ k ≤
p−1, since zk ∈ WJ . Hence the assertion of part (3) follows immediately
from the definition of a directed σ-path. This completes the proof of
Lemma 4.1.8. Q.E.D.

The following lemma can be shown in the same way as Lemma 4.1.8.
If j ∈ I0, then use Lemma 4.1.4 (1) and (4) instead of Lemma 4.1.4 (2)
and (3), respectively; if j = 0, then use Lemma 4.1.5 (1) and (4) instead
of Lemma 4.1.5 (2) and (3), respectively.

Lemma 4.1.9. Keep the notation and setting of Lemma 4.1.8.

(1) If there exists 1 ≤ p ≤ n such that 〈wkΛ, α
∨
j 〉 > 0 for all

p ≤ k ≤ n and 〈wp−1Λ, α
∨
j 〉 ≤ 0, then wp−1 = �sjwp�, and

there exists a directed path from �sjy� to x of the form:
(4.1.3)

x = w0
β1← · · · βp−1← wp−1 = �sjwp� zp+1βp+1← · · · znβn← �sjwn� = �sjy�.
Here, if j ∈ I0, then we define zk ∈ WJ to be the identity
element for all p+1 ≤ k ≤ n; if j = 0, then we define zk ∈ WJ

by rθwk = �rθwk�zk for each p+ 1 ≤ k ≤ n.
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(2) If the directed path (4.1.1) from y to x is shortest, i.e., �(y, x) =
n, then the directed path (4.1.3) from �sjy� to x is also shortest,
i.e., �(�sjy�, x) = n− 1.

(3) If the directed path (4.1.1) is a directed σ-path from y to x for
some rational number 0 < σ < 1, then the directed path (4.1.3)
is a directed σ-path from �sjy� to x.

Lemma 4.1.10. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̃(λ)cl.
Let j ∈ I and 1 ≤ u ≤ s− 1 be such that 〈xu+1Λ, α

∨
j 〉 > 0. Let

xu = w0
β1← w1

β2← w2
β3← · · · βn← wn = xu+1

be a directed σu-path from xu+1 to xu. If there exists 0 ≤ k < n such
that 〈wkΛ, α

∨
j 〉 ≤ 0, then Hη

j (σu) ∈ Z. In particular, if 〈xuΛ, α
∨
j 〉 ≤ 0,

then Hη
j (σu) ∈ Z.

Proof. We see from the definition that

η′ := (x1, x2, . . . , xu, xu+1 ; σ0, σ1, . . . , σu, σs)

is an element of B̃(λ)cl. Also, observe that η
′(t) = η(t) for 0 ≤ t ≤ σu+1,

and hence Hη′
j (t) = Hη

j (t) for 0 ≤ t ≤ σu+1. It follows that

Hη
j (σu) = Hη′

j (σu) = Hη′
j (1)− (1− σu)〈xu+1Λ, α

∨
j 〉.

Since η′(1) ∈ Pcl (and hence Hη′
j (1) ∈ Z) by Lemma 4.1.7, it suffices to

show that (1− σu)〈xu+1Λ, α
∨
j 〉 ∈ Z.

We deduce from Lemma 4.1.9 that there exists a directed σu-path
from �sjxu+1� to xu. Therefore,

η′′ = (x1, x2, . . . , xu, �sjxu+1� ; σ0, σ1, . . . , σu, σs)

is also an element of B̃(λ)cl. Since both η′(1) and η′′(1) are contained in
Λ +Q0 by Lemma 4.1.7, we have η′(1)− η′′(1) ∈ Q0. Also, we have

(Q0 �) η′(1)− η′′(1) = (1− σu)xu+1Λ− (1− σu)sjxu+1Λ

=

{
(1− σu)〈xu+1Λ, α

∨
j 〉αj if j ∈ I0,

(1− σu)〈xu+1Λ, α
∨
j 〉(−θ) if j = 0.

Here we remark that θ = δ−α0 =
∑

j∈I0
ajαj , and the greatest common

divisor of the aj , j ∈ I0, is equal to 1. From these, we conclude that
(1 − σu)〈xu+1Λ, α

∨
j 〉 ∈ Z, thereby completing the proof of the lemma.

Q.E.D.
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The following lemma can be shown in the same way as Lemma 4.1.10;
noting that π′ := (xu, xu+1 . . . , xs; σ0, σu, σu+1, . . . , σs) is an element

of B̃(λ)cl, use π′ instead of η′ and the fact that Hπ′
j (1) −Hπ′

j (1 − t) =

Hη
j (1)−Hη

j (1− t) for 0 ≤ t ≤ 1− σu−1.

Lemma 4.1.11. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̃(λ)cl.
Let j ∈ I and 1 ≤ u ≤ s− 1 be such that 〈xuΛ, α

∨
j 〉 < 0. Let

xu = w0
β1← w1

β2← w2
β3← · · · βn← wn = xu+1

be a directed σu-path from xu+1 to xu. If there exists 0 < k ≤ n such that
〈wkΛ, α

∨
j 〉 ≥ 0, then Hη

j (σu) ∈ Z. In particular, if 〈xu+1Λ, α
∨
j 〉 ≥ 0,

then Hη
j (σu) ∈ Z.

Proposition 4.1.12. Let λ ∈ ∑
i∈I0

Z≥0�i be as above. Both

B̃(λ)cl and B̂(λ)cl are contained in Pcl, int under the identification (3.2.1)
of a rational path with a piecewise-linear, continuous map.

Proof. Since B̂(λ)cl ⊂ B̃(λ)cl by the definitions, it suffices to show

that B̃(λ)cl ⊂ Pcl, int. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̃(λ)cl.

We have shown that η(1) ∈ Pcl for every η ∈ B̃(λ)cl (see Lemma 4.1.7).
It remains to show that for every j ∈ I, all local minima of the function
Hη

j (t) are integers. Fix j ∈ I, and assume that the function Hη
j (t)

attains a local minimum at t′ ∈ [0, 1]; we may assume that t′ = σu for
some 0 ≤ u ≤ s. If u = 0 (resp., u = s), then Hη

j (t
′) = Hη

j (0) = 0 ∈ Z

(resp., Hη
j (t

′) = Hη
j (1) ∈ Z) since η(0) = 0 (resp., η(1) ∈ Pcl). If

0 < u < s, then we have either of the following: 〈xuΛ, α
∨
j 〉 ≤ 0 and

〈xu+1Λ, α
∨
j 〉 > 0, or 〈xuΛ, α

∨
j 〉 < 0 and 〈xu+1Λ, α

∨
j 〉 ≥ 0. Therefore, it

follows from Lemma 4.1.10 or 4.1.11 that Hη
j (σu) ∈ Z. This proves the

proposition. Q.E.D.

Lemma 4.1.13. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̃(λ)cl.
Let j ∈ I and 1 ≤ u ≤ s−1 be such that 〈xu+1Λ, α

∨
j 〉 > 0 and Hη

j (σu) �∈
Z. Let

(4.1.4) xu = w0
β1← w1

β2← w2
β3← · · · βn← wn = xu+1

be a directed σu-path from xu+1 to xu. Then, 〈wkΛ, α
∨
j 〉 > 0 for all

0 ≤ k ≤ n, and there exists a directed σu-path from �sjxu+1� to �sjxu�
of the form:

(4.1.5) �sjxu� = �sjw0� z1β1← �sjw1� z2β2← · · · znβn← �sjwn� = �sjxu+1�.
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Here, if j ∈ I0, then we define zk ∈ WJ to be the identity element for
all 1 ≤ k ≤ n; if j = 0, then we define zk ∈ WJ by rθwk = �rθwk�zk for
each 1 ≤ k ≤ n. Moreover, if (4.1.4) is a shortest directed path from
xu+1 to xu, i.e., �(xu+1, xu) = n, then (4.1.5) is a shortest directed path
from �sjxu+1� to �sjxu�, i.e., �(�sjxu+1�, �sjxu�) = n.

Proof. It follows from Lemma 4.1.10 that if Hη
j (σu) �∈ Z, then

〈wkΛ, α
∨
j 〉 > 0 for all 0 ≤ k ≤ n (in particular, 〈xuΛ, α

∨
j 〉 > 0).

Assume that j ∈ I0 (resp., j = 0), and suppose, for a contradic-
tion, that wkβk = ±αj (resp., = ±θ) for some 1 ≤ k ≤ n. Then,
wk−1Λ = wkrβk

Λ = rwkβk
wkΛ = sjwkΛ, and hence 〈wk−1Λ, α

∨
j 〉 =

〈sjwkΛ, α
∨
j 〉 = −〈wkΛ, α

∨
j 〉, which contradicts the fact that 〈wk−1Λ, α

∨
j 〉

> 0 and 〈wkΛ, α
∨
j 〉 > 0. Thus, we conclude that wkβk �= ±αj (resp.,

�= ±θ) for any 1 ≤ k ≤ n. Therefore, we deduce from Lemma 4.1.4 (1)
(resp., Lemma 4.1.5 (1)) that there exists a directed path of the form
(4.1.5) from �sjxu+1� to �sjxu�. Because the directed path (4.1.4) is a
directed σu-path, we have σu〈Λ, β∨

k 〉 ∈ Z. Also, it follows immediately
that σu〈Λ, zβ∨

k 〉 = σu〈Λ, β∨
k 〉 ∈ Z since z ∈ WJ . Hence the directed

path (4.1.5) is a directed σu-path from �sjxu+1� to �sjxu�.
Now, we assume that �(xu+1, xu) = n, and suppose, for a contra-

diction, that there exists a directed path

(4.1.6) �sjxu� = z0
γ1← z1

γ2← z2
γ3← · · · γl← zl = �sjxu+1�

from �sjxu+1� to �sjxu� whose length l is less than n. Let us show that

�sjxu+1� γ← xu+1 for some γ ∈ Δ+
0 \ Δ+

J . Assume first that j ∈ I0.

Since 〈xu+1Λ, α
∨
j 〉 > 0, we have γ := x−1

u+1αj ∈ Δ+
0 \ Δ+

J , and hence

�(sjxu+1) = �(xu+1) + 1. Also, by Lemma 4.1.3, sjxu+1 ∈ W J
0 . Since

sjxu+1 = xu+1rγ , we obtain �sjxu+1� = sjxu+1
γ← xu+1. Assume next

that j = 0. Since 〈xu+1Λ, θ
∨〉 = −〈xu+1Λ, α

∨
0 〉 < 0 by the assumption,

it follows that x−1
u+1θ ∈ Δ−

0 \ Δ−
J . Therefore, if we set γ := −x−1

u+1θ ∈
Δ+

0 \Δ+
J , then s0xu+1 = rθxu+1 = xu+1rγ , and we obtain �s0xu+1� γ←

xu+1 by Lemma 4.1.2. By concatenating the directed path (4.1.6) and

�sjxu+1� γ← xu+1, we obtain a directed path from xu+1 to �sjxu� whose
length is l+1. Since 〈xu+1Λ, α

∨
j 〉 > 0 and 〈sjxuΛ, α

∨
j 〉 = −〈xuΛ, α

∨
j 〉 <

0, we deduce from Lemma 4.1.8 (1) that there exists a directed path from
xu+1 to �sj�sjxu�� = xu whose length is (l + 1)− 1 = l. However, this
contradicts the fact that n = �(xu+1, xu) since l < n. This proves the
lemma. Q.E.D.
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4.2. Explicit description of the image of a quantum LS
path under the action of root operators.

In the course of the proof of the following proposition, we obtain
an explicit description of the image of a quantum LS path as a rational
path under the action of root operators; this description is similar to the
one given in [L1].

Proposition 4.2.1. Both of the sets B̃(λ)∪{0} and B̂(λ)∪{0} are
stable under the action of the root operators fj for all j ∈ I.

Proof. Fix j ∈ I. Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈
B̃(λ)cl, and assume that fjη �= 0. It follows that the point t0 = max

{
t ∈

[0, 1] | Hη
j (t) = mη

j

}
is equal to σu for some 0 ≤ u < s. Let u ≤ m < s

be such that σm < t1 ≤ σm+1; recall that t1 = min
{
t ∈ [t0, 1] | Hη

j (t) =

mη
j + 1

}
. Note that the function Hη

j (t) is strictly increasing on [t0, t1],

which implies that 〈xpΛ, α
∨
j 〉 > 0 for all u+ 1 ≤ p ≤ m+ 1.

Case 1. Assume that xu �= �sjxu+1� or u = 0, and that σm < t1 <
σm+1. Then we deduce from the definition of the root operator fj (for
the case j = 0, see also Remark 2.2.2; cf. [L2, Proposition 4.7 a)]) that

fjη = (x1, x2, . . . , xu, �sjxu+1�, . . . ,
�sjxm�, �sjxm+1�, xm+1, xm+2, . . . , xs ;

σ0, σ1, . . . , σu, . . . , σm, t1, σm+1, . . . , σs);

note that �sjxp� �= �sjxp+1� for any u+1 ≤ p ≤ m, and that �sjxm+1� �=
xm+1 since 〈xm+1Λ, α

∨
j 〉 > 0 as mentioned above. In order to prove that

fjη ∈ B̃(λ)cl, we need to verify that

(i) there exists a directed σu-path from �sjxu+1� to xu (when
u > 0);

(ii) there exists a directed σp-path from �sjxp+1� to �sjxp� for each
u+ 1 ≤ p ≤ m;

(iii) there exists a directed t1-path from xm+1 to �sjxm+1�.
Also, we will show that if η ∈ B̂(λ)cl, then the directed paths in (i)–
(iii) above can be chosen from the shortest ones, which implies that

fjη ∈ B̂(λ)cl.
(i) We deduce from the definition of t0 = σu that 〈xuΛ, α

∨
j 〉 ≤ 0 and

〈xu+1Λ, α
∨
j 〉 > 0. Since η ∈ B̃(λ)cl, there exists a directed σu-path from

xu+1 to xu. Hence it follows from Lemma 4.1.9 (1), (3) that there exists
a directed σu-path from �sjxu+1� to xu. Furthermore, we see from the

definition of B̂(λ)cl and Lemma 4.1.9 (2) that if η ∈ B̂(λ)cl, then there
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exists a directed σu-path from �sjxu+1� to xu whose length is equal to
�(�sjxu+1�, xu).

(ii) Recall thatHη
j (t) is strictly increasing on [t0, t1], and thatHη

j (t0) =

mη
j and Hη

j (t1) = mη
j + 1. Hence it follows that Hη

j (σp) /∈ Z for any
u+1 ≤ p ≤ m. Therefore, we deduce from Lemma 4.1.13 that there ex-
ists a directed σp-path from �sjxp+1� to �sjxp� for each u+1 ≤ p ≤ m.

Furthermore, we see from the definition of B̂(λ)cl and Lemma 4.1.13 that

if η ∈ B̂(λ)cl, then for each u+1 ≤ p ≤ m, there exists a directed σp-path
from �sjxp+1� to �sjxp� whose length is equal to �(�sjxp+1�, �sjxp�).

(iii) Since 〈xm+1Λ, α
∨
j 〉 > 0, by the same argument as in the second

paragraph of the proof of Lemma 4.1.13, we obtain �sjxm+1� γ← xm+1,
with

γ :=

{
x−1
m+1αj if j ∈ I0,

x−1
m+1(−θ) if j = 0;

note that the directed path �sjxm+1� γ← xm+1 is obviously shortest
since its length is equal to 1. Let us show that t1〈Λ, γ∨〉 ∈ Z. It is
easily checked that 〈Λ, γ∨〉 = 〈xm+1Λ, α

∨
j 〉. Also, we have η(t1) =

t1xm+1Λ +
∑m

k=1 σk(xkΛ− xk+1Λ), and hence

Z � mη
j + 1 = Hη

j (t1) = t1〈xm+1Λ, α
∨
j 〉+

m∑
k=1

〈σk(xkΛ− xk+1Λ), α
∨
j 〉.

Since σk(xkΛ − xk+1Λ) ∈ Q0 for each 1 ≤ k ≤ m by Lemma 4.1.6,
it follows from the equation above that t1〈xm+1Λ, α

∨
j 〉 ∈ Z, and hence

t1〈Λ, γ∨〉 ∈ Z. Thus, we have verified that there exists a directed t1-path
from xm+1 to �sjxm+1� whose length is equal to �(xm+1, �sjxm+1�) = 1.

Combining these, we conclude that fjη is an element of B̃(λ)cl, and

that if η ∈ B̂(λ)cl, then fjη ∈ B̂(λ)cl.
Case 2. Assume that xu �= �sjxu+1� or u = 0, and that t1 = σm+1.

Then we deduce from the definition of the root operator fj (for the case
j = 0, see also Remark 2.2.2; cf. [L2, Proposition 4.7 a) and Remark 4.8])
that

fjη = (x1, x2, . . . , xu, �sjxu+1�, . . . ,
�sjxm�, �sjxm+1�, xm+2, . . . , xs ;

σ0, σ1, . . . , σu, . . . , σm, t1 = σm+1, . . . , σs).

First, we observe that 〈xm+2Λ, α
∨
j 〉 ≥ 0. Indeed, suppose, contrary to

our claim, that 〈xm+2Λ, α
∨
j 〉 < 0. Since Hη

j (σm+1) = Hη
j (t1) = mη

j + 1,

it follows immediately that Hη
j (σm+1+ ε) < mη

j +1 for sufficiently small
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ε > 0, and hence that the minimum M of the function Hη
j (t) on [t1, 1] is

(strictly) less than mη
j + 1. Here we recall from Proposition 4.1.12 that

all local minima of the function Hη
j (t) are integers. Hence we deduce

that M = mη
j , which contradicts the definition of t0. Thus, we obtain

〈xm+2Λ, α
∨
j 〉 ≥ 0. Since 〈xm+1Λ, α

∨
j 〉 > 0, and hence 〈sjxm+1Λ, α

∨
j 〉 <

0, it follows that �sjxm+1� �= xm+2.

Now, in order to prove that fjη ∈ B̃(λ)cl, we need to verify that

(i) there exists a directed σu-path from �sjxu+1� to xu (when
u > 0);

(ii) there exists a directed σp-path from �sjxp+1� to �sjxp� for each
u+ 1 ≤ p ≤ m;

(iv) there exists a directed σm+1-path from xm+2 to �sjxm+1� (when
m+ 1 < s).

We can verify (i) and (ii) by the same argument as for (i) and (ii) in
Case 1, respectively. Hence it remains to show (iv). Also, in order to

prove that η ∈ B̂(λ)cl implies fjη ∈ B̂(λ)cl, it suffices to check that the
directed paths in (i), (ii), and (iv) above can be chosen from the shortest
ones. We can show this claim for (i) and (ii) in the same way as for (i)
and (ii) in Case 1, respectively. So, it remains to show it for (iv).

(iv) As in the proof of (iii) in Case 1, it can be shown that there
exists a directed t1-path (and hence directed σm+1-path since t1 = σm+1

by the assumption) from xm+1 to �sjxm+1� whose length is equal to 1.
Also, it follows from the definition that there exists a directed σm+1-
path from xm+2 to xm+1. Concatenating these directed σm+1-paths, we
obtain a directed σm+1-path from xm+2 to �sjxm+1�. Thus, we have

proved that fjη ∈ B̃(λ)cl.

Assume now that η ∈ B̂(λ)cl, and set n := �(xm+2, xm+1). We
see from the argument above that there exists a directed σm+1-path
from xm+2 to �sjxm+1� whose length is equal to n + 1. Suppose,
for a contradiction, that there exists a directed path from xm+2 to
�sjxm+1� whose length l is less than n+1. Since 〈sjxm+1Λ, α

∨
j 〉 < 0 and

〈xm+2Λ, α
∨
j 〉 ≥ 0 as seen above, we deduce from Lemma 4.1.8 that there

exists a directed path from xm+2 to �sj�sjxm+1�� = �xm+1� = xm+1

whose length is equal to l−1 < n, which contradicts n = �(xm+2, xm+1).

Thus, we have proved that if η ∈ B̂(λ)cl, then fjη ∈ B̂(λ)cl.
Case 3. Assume that xu = �sjxu+1� and σm < t1 < σm+1. Then

we deduce from the definition of the root operator fj (for the case j = 0,
see also Remark 2.2.2; cf. [L2, Proposition 4.7 a) and Remark 4.8]) that

fjη = (x1, x2, . . . , xu = �sjxu+1�, �sjxu+2�, . . . ,
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�sjxm�, �sjxm+1�, xm+1, xm+2, . . . , xs ;

σ0, σ1, . . . , σu−1, σu+1, . . . , σm, t1, σm+1, . . . , σs);

note that �sjxm+1� �= xm+1 since 〈xm+1Λ, α
∨
j 〉 > 0. In order to prove

that fjη ∈ B̃(λ)cl, we need to verify that

(ii) there exists a directed σp-path from �sjxp+1� to �sjxp� for each
u+ 1 ≤ p ≤ m;

(iii) there exists a directed t1-path from xm+1 to �sjxm+1�.
We can verify (ii) and (iii) by the same argument as for (ii) and (iii) in
Case 1, respectively. Also, in the same way as in the proofs of (ii) and

(iii) in Case 1, respectively, we can check that if η ∈ B̂(λ)cl, then the
directed paths in (ii) and (iii) above can be chosen from the shortest

ones. Thus we have proved that fjη ∈ B̃(λ)cl, and that η ∈ B̂(λ)cl
implies fjη ∈ B̂(λ)cl.

Case 4. Assume that xu = �sjxu+1� and t1 = σm+1. Then we
deduce from the definition of the root operator fj (for the case j = 0,
see also Remark 2.2.2; cf. [L2, Proposition 4.7 a) and Remark 4.8]) that

fjη = (x1, x2, . . . , xu = �sjxu+1�, �sjxu+2�, . . . ,
�sjxm�, �sjxm+1�, xm+2, . . . , xs ;

σ0, σ1, . . . , σu−1, σu+1, . . . , σm, t1 = σm+1, . . . , σs);

note that �sjxm+1� �= xm+2 since 〈sjxm+1Λ, α
∨
j 〉 < 0 and 〈xm+2Λ, α

∨
j 〉 ≥

0 (see Case 2 above). In order to prove that fjη ∈ B̃(λ)cl, we need to
verify that

(ii) there exists a directed σp-path from �sjxp+1� to �sjxp� for each
u+ 1 ≤ p ≤ m;

(iv) there exists a directed σm+1-path from xm+2 to �sjxm+1� (when
m+ 1 < s).

We can verify (ii) and (iv) by the same argument as for (ii) in Case 1
and (iv) in Case 2, respectively. Also, as in the proofs of (ii) in Case 1

and (iv) in Case 2, respectively, we can check that if η ∈ B̂(λ)cl, then
the directed paths in (ii) and (iv) above can be chosen from the shortest

ones. Thus we have proved that fjη ∈ B̃(λ)cl, and that η ∈ B̂(λ)cl
implies fjη ∈ B̂(λ)cl.

This completes the proof of Proposition 4.2.1. Q.E.D.

Combining Theorem 2.4.1 with Propositions 4.1.12 and 4.2.1, we
obtain Theorem 4.1.1.
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