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§1. Introduction

1.1. Q-Fano 3-folds

A Q-Fano 3-fold is a projective 3-fold X with at worst terminal
singularities and ample anticanonical divisor −KX . Here, bearing in
mind Mori’s fundamental notion of extremal ray, we assume also that
X is Q-factorial and has rank 1, that is, PicX � Z or equivalently,
ClX ⊗Q � Q. We define the Fano and Q-Fano index of X by:

qF(X) := max{q ∈ Z | −KX ∼ qA with A a Weil divisor},
qQ(X) := max{q ∈ Z | −KX ∼Q qA with A a Weil divisor},

where ∼ is linear equivalence and ∼Q is Q-linear equivalence. Clearly,
qF(X) divides qQ(X), and the two coincide unless KX + qA ∈ ClX is
a nontrivial torsion element. An important invariant of a Q-Fano 3-fold
is its genus g(X) := dim |−KX | − 1.

1.2. Background facts

Kaori Suzuki [Suz04] restricts the Q-Fano index of X to one of

(1.2.1) qQ(X) ∈ {1, . . . , 11, 13, 17, 19}.
See also [Pro10b, Lemma 3.3]. Moreover, the following results are due
to the first author.
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1.2.2. Theorem ([Pro10b]). Let X be a Q-Fano 3-fold of Q-Fano
index q := qQ(X) ≥ 9. Then ClX � Z.

(i) If q = 19 then X � P(3, 4, 5, 7).
(ii) If q = 17 then X � P(2, 3, 5, 7).
(iii) If q = 13 and g(X) > 4 then X � P(1, 3, 4, 5).
(iv) If q = 11 and g(X) > 10 then X � P(1, 2, 3, 5).
(v) q �= 10.

1.2.3. Theorem ([Pro10c]). Let X be a Q-Fano 3-fold of Q-Fano
index q.

(vi) If q = 9 and g(X) > 4 then X � X6 ⊂ P(1, 2, 3, 4, 5).
(vii) If q = 8 and g(X) > 10 then X � X6 ⊂ P(1, 2, 32, 5) or

X10 ⊂ P(1, 2, 3, 5, 7).
(viii) If q = 7 and g(X) > 17 then X � P(12, 2, 3).
(ix) If q = 6 and g(X) > 15 then X � X6 ⊂ P(12, 2, 3, 5).
(x) If q = 5 and g(X) > 18 then X � P(13, 2) or X4 ⊂ P(12, 22, 3).
(xi) If q = 4 and g(X) > 21 then X � P3 or X4 ⊂ P(13, 2, 3).
(xii) If q = 3 and g(X) > 20 then X � X2 ⊂ P4 or X3 ⊂ P(14, 2).

Here we study the case qQ(X) = 2.

1.2.4. Theorem ([BS07b]). The Hilbert series of Q-Fano 3-folds
with q = qQ(X) = qF(X) = 2 belong to at most 1492 cases.

The online database [GRDB] lists the numerical type of candidates
(the data going into the Hilbert series of their graded rings).

1.3. Main results

1.3.1. Main Theorem. Let X be a Q-Fano 3-fold of rank 1 with
qQ(X) = qF(X) = 2 and KX not Cartier. Let A be a Weil divisor on
X such that −KX = 2A.

Then dim |A| ≤ 4. Moreover, if dim |A| = 4, then X belongs to the
single irreducible family constructed in 6.3.7 (see also 1.5).

1.3.2. Corollary. A Q-Fano 3-fold with qQ(X) = qF(X) = 2 and
KX not Cartier has g(X) ≤ 16.

Remark 1.3.3. If KX is Cartier and qF(X) = 2, then X is a del
Pezzo variety [Fuj90]. Two cases with ClX � Z have dim |A| > 4:

(a) the complete intersection of two quadrics X = X2·2 ⊂ P5, with
dim |A| = 5 and g(X) = 19; and

(b) X = X5 ⊂ P6 a section of the Grassmannian Gr(2, 5) ⊂ P9 by
a subspace of codimension 3, with dim |A| = 6 and g(X) = 23.
In this case X must be smooth by [Pro10a, Cor. 5.3].
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1.4. Strategy of proof

Sections 4–5 contain the proof of Main Theorem 1.3.1. The
Kawamata blowup of a 1

r (2, a, r− a) point initiates a Sarkisov link end-
ing in a fibre space or a Q-Fano 3-fold with q ≥ 3; the assumption
dim |A| ≥ 4 leads to a manageable case division. The auxiliary Sec-
tion 3 treats the cases with q ≥ 3, most of which lead to a contradiction,
with just one surviving in Section 5 to characterize our Main Example.

1.5. The Main Example

Section 6 gives several constructions of the exceptional family of
Main Theorem 1.3.1, Q-Fanos X with ClX = Z · A, KX = −2A and
dim |A| = 4. They arise from the simplest type of Sarkisov link:

(1.5.1)

E ⊂ X1 ⊃ F

��� ���
P ∈ X Q ⊃ Γ5 � P0

starting from the nonsingular quadric hypersurface Q ⊂ P4, a point
P0 ∈ Q and an irreducible curve Γ5 ⊂ E0 of degree 5 contained in the
tangent hyperplane section E0 = Q ∩ TP0Q, with multP0 Γ5 = 3. We
make the symbolic blowup X1 → Q of Γ5, then contract the birational
transform E1 � E0 � P(2, 1, 1) ⊂ X1 of E0 to a 1

3 (1, 2, 2) orbifold point.
The symbolic blowup of Γ ⊂ E0 ⊂ Q is the relative Proj of the

symbolic algebra A =
⊕ I [n]

Γ . For a singular curve Γ contained in a
nodal surface, this is a local graded ring construction with a universal
description, studied in much more detail and generality in Tom Ducat’s
thesis [Du15]. Compare [Du14].

1.6. Discussion

The study of Q-Fanos divides into birational and biregular consid-
erations. Biregular methods study projective embedding by multiples of
A, or more precisely, generators and relations for the Gorenstein graded
ring R(X,A). This is effective when R(X,A) has small codimension,
especially if it is a hypersurface or codimension 2 complete intersection,
etc. In contrast, birational methods are powerful when the linear sys-
tem |A| is large, implying a low canonical threshold, and allowing us to
impose noncanonical singularities on |A| and study X via the resulting
Sarkisov link, aiming for a birational construction or a nonexistence re-
sult. The interest of this paper is as a meeting point of the two methods.

1.7. The fabulous half-elephant; more cases with q = 2

A surface section F ∈ |A| of a Q-Fano 3-fold X of index 2 is a del
Pezzo surface (sometimes very singular). In a few cases where F has the
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simplest orbifold points such as 1
3 (2, 2) or

1
5 (2, 4), Reid and Suzuki [RS03]

study such surfaces in terms of cascades of projections from nonsingular
points. This foreshadows one construction of our Main Example in Sec-
tion 6, and hints at other cases that might make interesting challenges,
especially the X with dim |A| = 3 or 2. Del Pezzo surfaces with only
1
3 (2, 2) orbifold points are classified in current work of Alessio Corti and
Liana Heuberger [CH15]. Kuzma Khrabrov [Kh14] has partial results
on Q-Fano 3-folds X of index 2 with dim |A| ≥ 2.

§2. The method

2.1. Construction of a Sarkisov link [Ale94]

Let M be a linear system on X with no fixed part, and canonical
threshold c := ct(X,M). Assume −(KX+cM) is ample. Then (X, cM)
is canonical but not terminal, so we can pull out an irreducible divisor

E ⊂ X̃ by an extremal divisorial extraction f : X̃ → X, such that X̃ has

only terminal Q-factorial singularities, ρ(X̃/X) = 1, and f is (K+cM)-
crepant:

(2.1.1) K
X̃
+ cM̃ = f∗(KX + cM).

As in [Ale94], running a (K + cM)-MMP on X̃ gives a Sarkisov link of
type I or II:

(2.1.2)

X̃ ��� X
f ���

f���
X X̂

where X̃ and X have only Q-factorial terminal singularities, ρ(X̃) =

ρ(X) = 2, X̃ ��� X is a chain of log flips, and f is a Mori extremal

contraction, either a divisorial contraction to a Q-Fano 3-fold X̂, or a

Mori fibre space over a curve or surface X̂. In either case, ρ(X̂) = 1.

We write D̃ and D for the birational transform on X̃ and X of a divisor
or linear system D on X.

Assume that KX + λM + Ξ ∼Q 0 for some λ > c and an effective
Q-divisor Ξ. We can write

(2.1.3) K
X̃
+ λM̃+ Ξ̃ + aE ∼Q f

∗(KX + λM+ Ξ)∼Q 0,

where a > 0 is the log discrepancy of f . Note that if KX +λM+Ξ ∼ 0

then it is a Cartier divisor; we can assume that the mobile system M̃
has no common divisor with Ξ̃. Then K

X̃
, λM̃ and Ξ̃ are all integral

Weil divisors, and therefore a is an integer.
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Remark 2.1.4. We use the extremal extraction X̃ → X with ray
R and exceptional surface E to initiate a Sarkisov link. By (2.1.1),

K
X̃
+ cM̃ is nef and big, with

(2.1.5) K
X̃
·R < 0, (K

X̃
+ cM̃) ·R = 0, so that M̃ ·R > 0.

The MMP that constructs the Sarkisov link proceeds by increasing λ in
K + λM. Each step makes K + λM bigger on the ray R, so on the
exceptional surface E and its birational transforms. Thus the MMP can
never contract the birational transform of E.

2.2. Case f not birational

Assume that f is not birational. Then X̂ is either a smooth rational
curve or a del Pezzo surface with at worst Du Val singularities and

ρ(X̂) = 1 [MP08]. We also have f(E) = X̂ by Remark 2.1.4, or because
no multiple nE of the exceptional divisor E of f moves on X. In this
case we write F for a general fiber of f . Let Θ be an ample Weil divisor

on X̂ whose class generates Cl X̂ modulo torsion. If X̂ is a surface with
K2

X̂
= 1, we take Θ = −K

X̂
.

2.2.1. For X̂ a surface, one of the following holds:

(i) −K
X̂
·Θ = 3, −K

X̂
∼ 3Θ, X̂ � P2 and dim |Θ| = 2;

(ii) −K
X̂
·Θ = 2, −K

X̂
∼ 4Θ, X̂ � P(1, 1, 2) and dim |Θ| = 1;

(iii) −K
X̂
·Θ = 1, −K

X̂
∼ dΘ, where d := K2

X̂
≤ 6, and the mini-

mal resolution of X̂ is a blowup of P2 at 9− d points in almost
general position. In this case, dim |Θ| = 0 or 1. Moreover,
by Kawamata–Viehweg vanishing and orbifold Riemann–Roch
[YPG], for an ample Weil divisor B ∼Q tΘ we have

(2.2.2) dim |B| ≤ t(t+ d)

2d
.

2.3. Case f birational

Assume that the contraction f is birational. In this case, X̂ is
a Q-Fano 3-fold and f contracts a unique exceptional divisor F . Re-
mark 2.1.4 implies that E �= F (or argue that E = F would imply

that X ��� X̂ is an isomorphism in codimension, leading to a contra-

diction). Write F̃ ⊂ X̃ and F := f(F̃ ) for its birational transform. Set

q̂ := qQ(X̂). For a divisor D on X, we put D̂ := f∗D.
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2.4. Computer search for Q-Fano 3-folds

All Q-Fano 3-folds belong to a finite number of algebraic families
[Kaw92]. In fact, Kawamata’s proof implies that the possible “candi-
date” Q-Fano 3-folds can be listed, although the volume of computation
makes computer searches inevitable. This method was used in [Suz04],
[BS07a], [BS07b], [Pro07], [Pro10b], [Pro10c]. See [GRDB] for explicit
lists.

We outline the algorithm, starting with a useful remark.

Remark 2.4.1. The local analytic Weil divisor class group of a
3-fold Q-factorial terminal point P ∈ X is cyclic Cl(X,P ) � Z/r, and
is generated by the canonical divisor KX [Kaw88, Lemma 5.1]. In par-
ticular, if X is a Q-Fano 3-fold, its local Gorenstein index r at every
terminal point is coprime to the Q-Fano index q = qF(X).

2.4.2. Let X be a Q-Fano 3-fold. For simplicity we assume that
q := qQ(X) = qF(X) ≥ 3 (the only case we need in this section). Let
A be a Weil divisor such that −KX ∼ qA and B(X) = {(rP , bP )} the
basket of orbifold points of X [YPG].

Step 1. We have the equality

(2.4.3) −KX · c2(X) +
∑
P∈B

rP − 1

rP
= 24,

where −KX · c2(X) > 0 [Kaw92]. Hence there is only a finite (but
huge) number of possibilities for the basket B(X) and −KX · c2(X). Let
r := lcm({rP }) be the Gorenstein index of X.

Step 2. (1.2.1) says that q ∈ {3, . . . , 11, 13, 17, 19}. Remark 2.4.1
implies that gcd(q, r) = 1, which eliminates some possibilities.

Step 3. In each case we compute A3 by the formula

A3 =
12

(q − 1)(q − 2)

(
1− A · c2

12
+

∑
P∈B

cP (−A)
)
.

(see [Suz04]), where cP is the correction term in the orbifold Riemann–
Roch formula [YPG]. The number rA3 must be an integer [Suz04,
Lemma 1.2].

Step 4. Next, the Bogomolov–Miyaoka inequality (see [Kaw92])
implies that

(2.4.4)
(
4q2 − 3q

)
A3 ≤ −4KX · c2(X)

[Suz04, Prop. 2.2].
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Step 5. Finally, the Kawamata–Viehweg vanishing theorem gives
χ(tA) = h0(tA) = 0 for −q < t < 0. We check this condition using
orbifold Riemann–Roch [YPG], [BRZ].

§3. On Q-Fano 3-folds of Fano index ≥ 3

3.1. A result of Fujita

A polarized variety is a pair (X,S) consisting of a projective variety
X and an ample Cartier divisor S on X. Its Δ-genus is defined as follows
[Fuj90]:

(3.1.1) Δ(X,S) = dimX + SdimX − h0(X,OX(S)).

It is known that Δ(X,S) ≥ 0 and Fujita [Fuj90] classifies polarized
varieties of small Δ-genera. We use the following easy consequence of
Fujita’s classification.

3.1.2. Lemma. Let X be a Q-Fano 3-fold and S an ample Weil
divisor on X such that dim |S| > 0, |S| has no fixed components, and
−KX∼QλS with λ ≥ 2. Assume that the pair (X, |S|) is terminal. Then
one of the following holds:

(i) X � P3, λ = 4, dim |S| = 3;
(ii) X � P3, λ = 2, dim |S| = 9;
(iii) X � X2 ⊂ P4 is a smooth quadric, λ = 3, dim |S| = 4;
(iv) X is a del Pezzo 3-fold of degree 1 ≤ d ≤ 5, λ = 2, dim |S| =

d+ 1;
(v) X � P(13, 2), λ = 5/2, dim |S| = 6.

Proof. Replace S with a general member of |S|. Since (X, |S|) is
terminal, the surface S is smooth and contained in the smooth locus of
X [Ale94, 1.22]. By the adjunction formula we have −KS ∼ (λ− 1)S|S .
Hence S is a (smooth) del Pezzo surface and (λ − 1)2S3 = K2

S . Since
Hi(X,OX) = 0 and Hi(S,OS(S)) = 0 for i > 0, by Riemann–Roch we
have

(3.1.3) h0(X,OX(S)) = h0(S,OS(S)) + 1 =
λ

2
S3 + 2.

Therefore,

(3.1.4) Δ(X,S) = 3+S3− λ

2
S3−2 = 1+

(2− λ)S3

2
= 1+

(2− λ)K2
S

2(λ− 1)2
.

If S � P2, thenOS(S) = OP2(l), where 3 = (λ−1)l ≥ l. Then Δ(X,S) =
0 and [Fuj90, Th. 5.10 and 5.15] gives cases (i) and (v). If S � P1 × P1,
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then OS(S) = OP1×P1(k, k), where k(λ − 1) = 2. So, λ = 2 or 3,
Δ(X,S) = 0, and [Fuj90, Th. 5.10 and 5.15] gives cases (ii) or (iii).
Finally, if S �� P2, P1 × P1, then KS is a primitive element of PicS.
Hence λ = 2 and Δ(X,S) = 1. Then we have case (iv) [Fuj90, Ch. 1,
§9]. Q.E.D.

Lemma 3.2 ([Pro10b, Th. 1.4 (vii)]). Let X be a Q-Fano 3-fold
with terminal singularities and with q := qQ(X) ≥ 5. Let A be a Weil
divisor such that −KX ∼Q qA. If dim |A| ≥ 2, then X � P(13, 2).

Proof. We first consider the case rkClX = 1 and qQ(X) = qF(X)
(in particular, X is a Q-Fano 3-fold and −KX ∼ qA). Running a com-
puter search as in 2.4 gives −K3

X ≥ 125/2. Then by [Pro07] we have
X � P(13, 2).

Next consider the case rkClX > 1 and qQ(X) = qF(X). We get a
contradiction in this case. Run the MMP. The property −KX ∼ qA is
preserved. At the end we get a Q-Fano 3-fold X with KX ∼ qA and

dim |A| ≥ 2. By (1.2.1) we have qQ(X) = qF(X) = q. By the above
X � P(13, 2) and dim |A| = dim |A| = 2. Let P ∈ X be the point of type
1
2 (1, 1, 1). Consider the final step g : X̃ → X of the MMP, a divisorial

contraction, and let Ẽ ⊂ X̃ be its exceptional divisor. There are the
following possibilities:

(a) g(Ẽ) = P . Then K
X̃

∼Q g
∗KX + 1

2 Ẽ, Ẽ � P2, and OẼ(Ẽ) �
OP2(−2) [Kaw96]. Hence, OẼ(−K

X̃
) � OP2(1). We get a

contradiction because −K
X̃

is divisible by q ≥ 5.

(b) g(Ẽ) is either a smooth point or a curve. In this case g(Ẽ) �⊂
Bs |A| = {P}. On the other hand, g is a K

X̃
-negative contrac-

tion, a contradiction.

Finally assume that the torsion part of ClX is nontrivial. Every
torsion element ξ1 ∈ ClX of order n1 > 1 defines a μn1

-cover π1 : X1 →
X that is étale in codimension 2. Repeating the procedure we get a
sequence

(3.2.1) Xm
πm−−→ Xm−1

πm−1−−−→ · · · π2−→ X1
π1−→ X.

with each πk a μnk
-cover that is étale in codimension 2 and ClXm

torsion free. By the above, Xm � P(13, 2). Since

(3.2.2) h0(Xm, π∗A) = h0(X,A) = 3,

μnm
acts trivially on H0(Xm, π∗A) = H0(OP(13,2)(1)). On the other

hand, we can take independent sections x1, x2, x3 ∈ H0(OP(13,2)(1)) as
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orbinates at the 1
2 (1, 1, 1)-point Pm ∈ Xm. This contradicts that the

point (Xm, Pm)/μnm
is terminal. Q.E.D.

In a similar way to Lemma 3.2, one can prove the following.

Lemma 3.3 ([Pro10b, Th. 1.4 (vi)]). Let X be a Q-Fano 3-fold with
terminal singularities and with q := qQ(X) ≥ 7. Let A be a Weil divisor
such that −KX ∼Q qA. If dim |A| ≥ 1, then X � P(12, 2, 3).

Proposition 3.4. Let X be a Q-Fano 3-fold and let q := qQ(X). Let
M be a linear system on X such that dimM ≥ 4 and −KX ∼ 2M+Ξ,
where Ξ is a nonzero effective Weil divisor. Then ClX � Z·Ξ, q = 2n+1
is odd, and M ∼ nΞ. Moreover, one of the following holds:

(i) q = 13, X � P(1, 3, 4, 5);
(ii) q = 11, X � P(1, 2, 3, 5);
(iii) q = 9, X � X6 ⊂ P(1, 2, 3, 4, 5);
(iv) q = 7, X � P(12, 2, 3);
(v) q = 5, X � X4 ⊂ P(12, 22, 3);
(vi) q = 5, X � P(13, 2);
(vii) q = 3, X � X2 ⊂ P4.

Proof. By assumption q ≥ 3. If q ≥ 9, then the assertion follows by
[Pro10b, Prop. 3.6] and Theorem 1.2.3 (vi). So assume that 3 ≤ q ≤ 8.

Let A be a Weil divisor with −KX ∼Q qA and n the integer such
that M∼Q nA. If ClX is torsion free, we can run the computer search

2.4. We get q �= 4 and g(X̂) ≥ 21. Then by Theorem 1.2.3 we get one
of cases (iv)–(vii). Thus from now on we assume that ClX contains a
nontrivial torsion element.

We may assume that M has no fixed part. If the pair (X,M) is
terminal, then X is in (vi) or (vii) by Lemma 3.1.2. Assume that (X,M)
is not terminal. Apply Construction 2.1 to (X,M). We can write

K
X̃
+ 2M̃+ Ξ̃ + aẼ ∼ f∗(KX + 2M+ Ξ) ∼ 0,

where a ∈ Z>0. Hence,

(3.4.1) KX + 2M+ Ξ+ aE ∼ 0.

First consider the case of 2.2 where f is not birational. In particular,

X̂ is either P1 or a del Pezzo surface as in 2.2.1.
Assume that M is f -horizontal. Restricting the relation (3.4.1) to

a general fiber F of f we get

(3.4.2) −KF ∼Q 2M|F + Ξ|F + aE|F ,
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where the divisors M|F and E|F are ample. This is possible only if

F � P2, X̂ � P1, OF (M) � OF (E) � OP2(1), and a = 1. From the
exact sequence

(3.4.3) 0 → OX(M− F ) → OX(M) → OF (M) → 0

we get

(3.4.4) h0(OX(M− F )) ≥ h0(OX(M))− h0(OF (M)) ≥ 2.

Thus M � F + L, where L ∈ |M − F | is a mobile divisor. Hence
there is a decomposition −KX ∼ 2F + 2L + Ξ. In particular, q ≥ 5
and F ∼Q L ∼Q A. This implies that f has no multiple fibers. So, the
group ClX is torsion free. Since OF (E) � OP2(1), the class of E is not

divisible in ClX. Hence ClX is also torsion free, a contradiction.

Therefore, M is f -vertical. Then M = f
∗B, where B is a linear

system of Weil divisors on X̂ with dimB ≥ 4. We use the notation

of 2.2. Let G = f
∗
Θ. We can write B ∼Q tΘ for some t ∈ Z>0. Then

(3.4.5) −KX ∼Q 2tG+ Ξ+ aE,

so 8 ≥ q ≥ 2t + 1 and t ≤ 3. If X̂ � P1, we obviously have dimB ≤ 2.

Therefore, X̂ is a surface. Now we use 2.2.1.
If t = 1, then dimB ≤ 2, a contradiction. Consider the case t = 2.

Then dimB ≥ 4 only in the case X̂ � P2. Then q ≥ 5, G ∼Q A,
and m = 2. Since dim |G| ≥ 2, by Lemma 3.2 we have X � P(13, 2).
Consider the case t = 3. Then q ≥ 7 and G ∼Q A. Since dimB ≥ 4,

we have either X̂ � P2, X̂ � P(1, 1, 2), or K2
X̂

= 1. In either case

dim |G| ≥ 1 (recall that if K2
X̂

= 1, we take Θ = −K
X̂
). By Lemma 3.3

we get X � P(12, 2, 3).
Now assume that f is birational. We have

(3.4.6) −K
X̂

∼ 2M̂+ Ξ̂ + aÊ,

where, as usual, we write Λ̂ = f∗Λ for the birational transform of X̂ of
a divisor (or a linear system) Λ on X.

Clearly, dimM̂ ≥ dimM. If (X̂,M̂) is not terminal, we can repeat

the procedure 2.1 and continue. Thus we may assume that (X̂,M̂) is as

in (i)–(vii). In particular, Cl X̂ is torsion free and Ξ̂ + aÊ ∼ Θ̂, where

Θ̂ is the ample generator of Cl X̂. So, Ξ̂ = 0, a = 1, and Ê ∼ Θ̂. In

particular, the class of Ẽ is a primitive element of Cl X̃ � Z⊕Z. In this
case, ClX is also torsion free. Q.E.D.
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§4. Proof of Main Theorem 1.3.1

Let X be a Q-Fano 3-fold such that −KX ∼ 2A for a primitive
element A ∈ ClX. Assume that dim |A| ≥ 4 and KX is not Cartier.
We apply Construction 2.1 with M := |A|, λ = 2 and Ξ = 0. By
Lemma 3.1.2 the pair (X,M) is not terminal. Hence in the notation
of (2.1.3), the discrepancy a > 0. On the other hand, a is an integer.
Therefore, a ≥ 1.

Lemma 4.1. The map f in (2.1.2) is birational.

Proof. Suppose that f is not birational. Let F be a general fiber

of f . If M is f -vertical, then M = f
∗B̂, where B̂ is a linear system on

X̂ whose class generates Cl X̂/Tors. But then dimM = dim B̂ ≤ 2 by
2.2.1, contradicting our assumption.

Thus M is f -horizontal. Then −KF = 2M|F + aE|F . This implies

that F � P2, that is, f is generically a P2-bundle and OF (M) � OP2(1).
From the exact sequence

(4.1.1) 0 → OX(M− F ) → OX(M) → OF (M) → 0

we get

(4.1.2) h0(OX(M− F )) ≥ 2.

Therefore, M � F + L, where F and L are mobile divisors. This con-
tradicts qQ(X) = 2. Q.E.D.

4.2. Notation

When f is birational, X̂ is a Q-Fano. Recall that we write Λ̂ = f∗Λ
for the birational transform on X̂ of a divisor (or a linear system) Λ on
X. We have

(4.2.1) −K
X̂

∼ 2M̂+ aÊ with a > 0, dimM̂ ≥ 4.

By Proposition 3.4 the class of Ê is the ample generator of Cl X̂ � Z, q̂ =

2n+ 1, and M̂ ⊂ |nÊ|. Moreover, X̂ belongs to one of the possibilities
listed in Proposition 3.4.

Assume first that q̂ > 3. We consider the case q̂ = 3 in the next
section. We make frequent use of the following easy observation.

Remark 4.2.2. In the notation of 4.2, assume that there is a mem-

ber M̂ ∈ M̂ such that M̂ = L̂1 + L̂2, where L̂1 and L̂2 are effective

ample Weil divisors. Then either Supp L̂1 = Ê or Supp L̂2 = Ê.
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Indeed, we can write

(4.2.3) M∼Q L1 + L2 + γF ,

where Li is the birational transform of L̂i and γ ≥ 0. Therefore,

(4.2.4) M ∼ f∗χ−1
∗ M∼Q f∗χ−1

∗ L1 + f∗χ−1
∗ L2 + γF.

Since the class of A is a primitive element of ClX, we have either
f∗χ−1

∗ L1 = 0 or f∗χ−1
∗ L2 = 0 (and γ = 0).

4.2.5. Corollary. Assume that we have dim |nÊ| = 4 in the no-
tation of 4.2. Then for any partition n = n1 + n2, ni ∈ Z either

dim |n1Ê| ≤ 0 or dim |n2Ê| ≤ 0.

Proof. In this case M̂ = |nÊ| is a complete linear system. Hence,

one can take L̂i ∈ |niÊ|. Q.E.D.

We consider the cases of Proposition 3.4 separately.

4.2.6. Cases (i), (iii) and (v). Then dim |nÊ| = 4 and n is even.
Apply Corollary 4.2.5 with n1 = n2 = n/2. We get a contradiction

because dim |niÊ| > 0.

4.2.7. Case (ii), X̂ � P(1, 2, 3, 5). Then n = 5 and dim |nÊ| = 5.

Thus M̂ ⊂ |5Ê| is a subsystem of codimension ≤ 1. Since dim 2Ê| = 1,

we can take L̂1 ∈ |2Ê| so that L̂1 �= 2Ê. Since dim |3Ê| = 2, there exists

a one dimensional family of divisors L̂2 ∈ |3Ê| such that L̂1+L̂2 ∈ M̂. So

we may assume that L̂2 �= 3Ê. By Remark 4.2.2 we get a contradiction.

4.2.8. Case (iv), that is, X̂ � P(12, 2, 3). Then n = 3 and

dim |nÊ| = 6. Thus M̂ ⊂ |3Ê| is a subsystem of codimension ≤ 2.

Since dim |Ê| = 1, —we can take L̂1 ∈ |Ê| so that L̂1 �= Ê. Since

dim |2Ê| = 3, there exists a one dimensional family of divisors L̂2 ∈ |2Ê|
such that L̂1 + L̂2 ∈ M̂. So we may assume that L̂2 �= 2Ê. By Remark
4.2.2 we get a contradiction.

4.2.9. Case (vi), X̂ � P(13, 2). Then n = 2 and dim |nÊ| = 6.

Thus M̂ ⊂ |2Ê| is a subsystem of codimension ≤ 2.
Assume that f(F ) is a curve. Then

KX = f
∗
K

X̂
+ F and E = f

∗
Ê − γF .

Since any member of |Ê| is smooth in codimension one, γ ≤ 1. Moreover,
since nE is not mobile for any n, we have γ > 0. Hence, γ = 1. So,

KX + 5E + 4F = f
∗
(K

X̂
+ 5Ê) ∼ 0.
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This implies that −KX is divisible by 4, a contradiction.

Hence f(F ) ∈ X̂ is a point, say P̂ . If P̂ ∈ X̂ is the point of index 2,
then f is the blowup of the maximal ideal [Kaw96]. In this case X has
exactly two extremal contractions: f and the P1-bundle induced by the
projection P(13, 2) ��� P2. On the other hand, the second contraction

must be birational, a contradiction. Hence P ∈ X̂ is a smooth point.

Let L̂ := |Ê|. Take a general member L̂1 ∈ L̂. Dimension counting

shows that there exists L̂2 ∈ L̂ such that L̂1 + L̂2 ∈ M̂. If L̂2 �= Ê, we

get a contradiction by Remark 4.2.2. Thus L̂2 = Ê for any choice of

L̂1 ∈ L̂. Therefore, Ê + L̂ ⊂ M̂ and we can write M∼Q L + E + γF ,
where γ ≥ 0. Then

(4.2.10) 0 ∼ KX + 2M+ E ∼Q KX + 2L+ 3E + 2γF .

Note that the only base point of L̂ is the point of index 2. Hence,

L ∼Q f
∗L̂. Let L̂′ ⊂ L̂ be the subsystem consisting of elements passing

through P̂ . Then we can write

(4.2.11) L′ ∼Q f
∗L̂′ − δF ∼Q L − δF , with δ > 0.

Therefore,

(4.2.12) 0∼Q KX + 2L+ 3E + 2γF ∼Q KX + 2L′
+ 3E + 2(δ + γ)F .

This gives us −KX ∼Q 2L′ + 2(δ + γ)F which contradicts qQ(X) = 2.

§5. Conclusion of the proof of Main Theorem 1.3.1

This section considers Case (vii), when X̂ = Q ⊂ P4 is a smooth

quadric. Then M̂ = |OQ(1)| is a complete linear system, and in partic-

ular is base point free. Thus M ∼Q f
∗M̂. We also have Ê ∈ |OQ(1)|

and f(F ) ⊂ Ê.

Lemma 5.1. Γ := f(F ) is a curve.

Proof. Assume that f(F ) is a point. Let M̂′ ⊂ M̂ be the sub-
system consisting of elements passing through f(F ). Then we can write

(5.1.1) M′ ∼Q f
∗M̂′ − δF ∼Q M− δF , with δ > 0.

Therefore,

(5.1.2)
0∼Q f

∗
(K

X̂
+ 2M̂′ + Ê)∼Q f

∗
(K

X̂
+ 2M̂+ Ê)

∼Q KX + 2M+ E ∼Q KX + 2M′
+ E + 2δF .
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This gives us −KX∼Q 2M′+2δF which contradicts qQ(X) = 2. Q.E.D.

Lemma 5.2. E � P(1, 1, 2), F2, or P1 × P1.

Proof. Clearly, Ê � P(1, 1, 2) or P1 × P1. In particular, the pair

(X̂, Ê) is plt. Since KX ∼Q f
∗
K

X̂
+ F and Ê is smooth at the generic

point of Γ, we have

(5.2.1) KX + E ∼ f
∗
(K

X̂
+ Ê).

Hence the pair (X,E) is plt and the divisor KX + E is Cartier. By

adjunction, the surface E has at worst Du Val singularities. Moreover,

KE = f
∗
|EKÊ , that is, the restriction fE is either an isomorphism or the

minimal resolution of Ê. Q.E.D.

Lemma 5.3. −KX is nef.

Proof. Recall that by our construction X has exactly two extremal
rays. Denote them by R1 and R2. One of them, say R1, is generated by
nontrivial fibers of f . Let C be an extremal curve on X that generates
R2. Assume that −KX is not nef. Then KX · C > 0 and C must be
a flipped curve (because a divisorial contraction must be K-negative in

our situation). Since −KX∼QE+2f
∗
Ê, we have E ·C < 0. In particular,

C ⊂ E. Since C is a flipped curve, it cannot be mobile on E, that is,
dim |C| = 0. By Lemma 5.2, the only possibility is that E � F2 and C
is the negative section of F2. But in this case C is contracted by f to a
point, that is, the class of C lies in R1, a contradiction. Q.E.D.

Lemma 5.4. KX is not Cartier at some point of E.

Proof. By (5.2.1) the divisor KX is Cartier outside E. Assume

that KX is Cartier near E. Since −KX is nef, the map X ��� X̃ is

either an isomorphism or a flop. In either case X̃ has the same type
of singularities as X, that is, K

X̃
is Cartier. By the classification of

extremal contractions of Gorenstein terminal 3-folds [Cut88] the divisor
2KX is Cartier. This contradicts the following remark. Q.E.D.

5.4.1. Corollary. The curve Γ has a singular point that is not a
local complete intersection.

Proof. Indeed otherwise by [KM92, Prop. 4.10.1] the map f is the
blowup of Γ and KX is Cartier. Q.E.D.

5.4.2. Corollary. Ê � P(1, 1, 2), the curve Γ is not a Cartier

divisor on Ê, and Γ is singular at the vertex of P(1, 1, 2).
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Lemma 5.5. deg Γ = 5.

Proof. Let Ĉ ⊂ Ê be a general hyperplane section. Since −KX is
nef,

(5.5.1) 0 ≤ −KX · C = −K
X̂
· Ĉ − (Γ · Ĉ)Ê = 6− deg Γ.

Since Γ is not a Cartier divisor on Ê, its degree should be odd. If
deg Γ �= 5, then Γ is either a line or a twisted cubic. In particular, it is
smooth, a contradiction. Q.E.D.

5.6. Thus deg Γ = 5 and Γ is singular. Then Γ can be given, in
coordinates u1, u2, v for E � P(1, 1, 2), by an equation γ = vα3 + β5,
where α3(u1, u2) and β5(u1, u2) are homogeneous polynomial of the in-
dicated degree. Thus P is a triple point of Γ and is its only singularity.
Thus Γ is as in Main Example 1.5 and the conclusion of Theorem 1.3.1.

By [KM92, Th. 4.9] the extraction f : X → Q = X̂ of Γ is unique up
to isomorphism over Q. Since ρ(X/Q) = 1, the Sarkisov link (1.5.1) is
uniquely determined. This completes the proof of Theorem 1.3.1.

§6. Examples

6.1. Symbolic blowup

This section is closely related to parts of Tom Ducat’s thesis [Du15],
and we acknowledge his help with our treatment.

Let Γ ⊂ M be a reduced singular curve in a nonsingular 3-fold. The
symbolic blowup of Γ inM is the relative Proj of the symbolic algebra, the

graded algebra
⊕

n≥0 I [n]
Γ , where I [n]

Γ is the nth symbolic power, that
is, the ideal in OQ of functions vanishing n times at the generic point
of Γ. In other words, in the primary decomposition of In

Γ , ignore the
embedded component at singular points P of Γ. (Primary decomposition
is built into the computer algebra packages.)

In our case, Γ is a curve contained in a 1
2 (1, 1) orbifold point P ∈

E0 ⊂ M as a Weil divisor, whose class generates the local class group
ClP E0 � Z/2. For simplicity, we treat Γ ⊂ E0 ⊂ M as germs around a
singular point P ∈ Γ in local analytic coordinates (but see 6.4). Write
C2

〈u1,u2〉 for the orbifold double cover of P ∈ E0, and

(6.1.1) (x1, x2, x3) = (u2
1, u1u2, u

2
2)

for the invariant monomials. Then M has local coordinates x1, x2, x3,
with g = x1x3 − x2

2 the local equation of E0, and Γ ⊂ E0 corresponds
to an invariant curve Γ : (γ = 0) ⊂ C2, with equation γ = γ(u1, u2) an
odd function of the orbinates.
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To see Γ ⊂ M in equations, first render into xi the invariant multi-
ples u1γ and u2γ of γ, say as

(6.1.2) u1γ = bx1 − ax2 = −f2 and u2γ = bx2 − ax3 = f1,

where a, b are functions of x1, x2, x3. Taking into account that a and b
are in the maximal ideal (x1, x2, x3) (because the curve Γ is singular at
P , and not locally planar), and with a little massaging, we can put the
generators of IΓ and the syzygies between them in the determinantal
form

∧2
M = (f1, f2, g), where

(6.1.3) M =

(
x1 x2 a2x2 + a3x3

x2 x3 b1x1 + b2x2

)
and M

⎛
⎝f1
f2
g

⎞
⎠ ≡ 0.

In this case, the symbolic algebra needs just one further generator
in degree 2, whose restriction to E0 is the local equation

(6.1.4) b2x1 − 2abx2 + a2x3

of the Cartier divisor 2Γ ⊂ E0. Rather than primary decomposition, we
derive this final generator and its relations by unprojection.

Replacing f1, f2, g by ξ1, ξ2, η in (6.1.3) gives

(6.1.5)

(
x1 x2 a2x2 + a3x3

x2 x3 b1x1 + b2x2

)⎛
⎝ξ1
ξ2
η

⎞
⎠ = 0.

Equations (6.1.5) define the blowup of the ideal IΓ = (f1, f2, g) as a
codimension 2 complete intersection in M × P2

〈ξ1,ξ2,η〉, containing the

“irrelevant” codimension 3 complete intersection V (ξ1, ξ2, η). However,
M has entries in (x1, x2, x3), so it also contains the codimension 2 com-
plete intersection V (x1, x2, x3) – the blowup of Γ must contain P2 over
the origin (because Γ is not a local complete intersection). We rearrange
(6.1.5) as

(6.1.6)

(
ξ1 ξ2 + a2η a3η
b1η ξ1 + b2η ξ2

)⎛
⎝x1

x2

x3

⎞
⎠ = 0.

The unprojection of V (x1, x2, x3) is given by the 4× 4 Pfaffians of

(6.1.7)

⎛
⎜⎜⎝
ζ ξ1 ξ2 + a2η a3η

b1η ξ1 + b2η ξ2
x3 −x2

x1

⎞
⎟⎟⎠ .
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Geometrically, this is the blowup of IΓ followed by the unprojection
contracting P2 over the origin to a point. We can also view it simply as
a practical means of writing down the generator h in degree 2 satisfying

(6.1.8) (x1, x2, x3)h =
∧2

(
f1 f2 + a2g a3g
b1g f1 + b2g f2

)
,

so that clearly h ∈ I [2]
Γ , without computer algebra. In computational

terms, this means that we can modify f2
1 , f1f2, f

2
2 modulo g · IΓ to make

them identically divisible by x3, x2, x1 respectively, with (say)

(6.1.9) f1f2 − b1a3g
2 = −x2h,

where h|E0
is the equation (6.1.4) defining 2Γ ⊂ E0.

Proposition 6.2. The symbolic algebra of IΓ is generated by ξ1, ξ2,
η in degree 1 (corresponding to f1, f2, g), and ζ in degree 2 (correspond-
ing to h). The ideal of relations is generated by the maximal Pfaffians
of (6.1.7).

Thus the symbolic blowup M1 → M of Γ is the codimension 3
Gorenstein subvariety

(6.2.1) M1 ⊂ M × P(1, 1, 1, 2)〈ξ1,ξ2,η,ζ〉

defined by the Pfaffians of (6.1.7). It has the following properties. If
Γ is nonsingular at P it is not applicable. If Γ is singular it defines
a morphism M1 → M which is the ordinary blowup of IΓ outside the
origin. The birational transform E1 ⊂ M1 is isomorphic to E0.

The fibre of M1 over the origin is P(2, 1)〈ζ,η〉 passing through Pζ ,

which is a 1
2 (1, 1, 1) orbifold point, and at most one more singular point.

If multP Γ ≥ 5 then Pη ∈ M1 has embedding dimension 3, so is not
terminal. If multP Γ = 3 then M1 is terminal, and in fact:

(1) M1 is quasismooth if Γ has 3 distinct tangent branches.
(2) M1 has a cA1 point if Γ has a double tangent branch.
(3) M1 has a cA2 point if Γ has a triple tangent branch.

In the local description, the cA1 and cA2 points of M1 are arbitrary.

Proof. Although the precise statement is somewhat involved, the
proof is easy. The generators and relations follow from the hyperplane
section principle: indeed, the symbolic algebra restricted to E0 is just
an algebra of Z/2 invariants, generated by u1γ, u2γ and γ2, and the
restriction map is surjective by our choice of generators ξ1, ξ2 and ζ.

The birational transform E1 → E0 is an isomorphism because the
symbolic algebra of the singular (nonplanar) curve Γ ⊂ M maps onto
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that of the Q-Cartier divisor on Γ ⊂ E0. The analysis of the singularities
is straightforward. The cases correspond to the different possibilities for
the cubic leading terms in γ coming from

(6.2.2) b1u
3
1 + b2u

2
1u2 − a2u1u

2
2 − a3u

3
2. Q.E.D.

Remark 6.2.3. In the case that Γ has distinct tangent branches,
its symbolic blowup can be done as an explicit construction in the non-
singular category that is folklore in the subject: blowing up P gives an
exceptional Π = P2 with normal bundle O(−1). The 3 branches of Γ
meet Π at noncollinear points, and blowing up Γ produces a dP6 with
a hexagon formed of the 3 blown up lines on Π together with the 3
lines joining them in Π, that are (−1,−1) curves. Flopping these takes
Π into Π′ = P2 with normal bundle O(−2) by a standard quadratic
transformation Π ��� Π′, and Π′ contracts to a 1

2 (1, 1, 1) point.

6.3. Two examples

We apply this to contruct two families of Q-Fano 3-folds X and Y
of index 2 with Cl = Z · A, each with a single 1

3 (1, 2, 2) orbifold point
and invariants

(6.3.1)
−KX = 2AX with A3

X = 10
3 , dim |AX | = 4,

−KY = 2AY with A3
Y = 7

3 , dim |AY | = 3.

Their Hilbert series come from this by the Ice Cream formula of [BRZ]:

(6.3.2)

PX,AX (t) = 1+t+t2

(1−t)4 + t2

(1−t)3(1−t3) = 1+2t+4t2+2t3+t4

(1−t)3(1−t3)

PY,AX (t) = 1+t2

(1−t)4 + t2

(1−t)3(1−t3) = 1+t+3t2+t3+t4

(1−t)3(1−t3) .

Example 6.3.3. Let E0 ⊂ P3 be the ordinary quadratic cone and
Γ7 ⊂ E0 ⊂ P3 a curve of degree 7 that is singular at the node P ∈ E0,
with multP Γ7 = 3. The symbolic blowup of Γ7 defines an extremal
extraction Y1 → P3, with the birational transform E1 ⊂ Y1 isomorphic
to E0 and to P(2, 1, 1).

Write B for the polarizing O(1) of P3 and its pullback to Y1, so that
E0 ∼ 2B, and let F ⊂ Y1 be the scroll over Γ7. Note that 2Γ7 ∼ 7B in
PicE0, so 2F ∼ 7B in PicE1. In ClY1 we have

(6.3.4) 2B = E1 + F and KY1 = −4B + F = −2B − E1.

We give Y1 the polarizing divisor A1 = B + 2
3E1. Then

(6.3.5) 3A1 = 3B + 2E1 = 7B − 2F
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so that 3A1 is a Cartier divisor restricting to a linearly trivial divisor
on E1, that is, OE1(3A1) � OE1 . Standard use of vanishing gives that
H0(Y1,OY1(3A1)) � H0(OE1) is surjective, so that |3A1| is a free linear
system, ample outside E1, so contracts E1 to a 1

3 (2, 1, 1) orbifold point
on a 3-fold Y .

Also, (6.3.4) gives

(6.3.6) KY1 − 1
3E1 = −2B − 4

3E1 = −2A1.

Hence −KY = 2A, with A an ample Weil divisor on Y . The contraction
Y1 → Y is the Kawamata blowup of 1

3 (2, 1, 1), with discrepancy 1
3E1.

Example 6.3.7. The Main Example of Theorem 1.3.1 is almost the
same. We start from the nonsingular quadric Q ⊂ P4 and the ordinary
quadratic cone obtained as the intersection E0 = TP,Q ∩ Q with its
tangent hyperplane at a point P ∈ Q. Let Γ5 ⊂ E0 be a irreducible
quintic curve, assumed singular at P (it follows that multP Γ = 3).

The symbolic blowup X1 → Q of Γ5 has exceptional scroll F , and
birational transform E1 � E0. As before, write B = O(1) for the
polarizing divisor of Q, so that E0 ∼ B, and also for its pullback to X1.
Thus in ClX1 we have

(6.3.8) B = E1 + F and KX1 = −3B + F = −2B − E1.

We give X1 the polarising divisor A1 = B + 2
3E1. Then 3A1 =

3B + 2E1 = 5B − 2F is a Cartier divisor with OE1(3A1) � OE1 with
surjective restriction H0(OX1(3A1)) � H0(OE1). Thus |3A1| is a free
linear system contracting E1 to a 1

3 (1, 2, 2) point. Now KX1 = −2B −
G1 = −2A1 +

1
3E1 so that −KX = 2A with A an ample Weil divisor,

and X1 → X is the Kawamata blowup, with discrepancy 1
3E1.

6.4. Alternative graded ring constructions

We can treat the examples of 6.3 in graded ring terms. This is how
we originally discovered them. Moreover, the algebra is interesting in
its own right, and displays features that are possibly typical for index 2
Fano constructions.

The construction of Y is immediate. Its Hilbert series (6.3.2) is

(6.4.1)
1− 2t2 − 3t3 + 3t4 + 2t5 − t7

(1− t)4(1− t2)2(1− t3)
,
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indicating the codimension 3 subvariety Y ⊂ P(14, 22, 3)〈x0...3,y1,y2,z〉 de-
fined by the maximal Pfaffians of a 5× 5 matrix of degrees

(6.4.2)

(
3 2 2 2
2 2 2
1 1
1

)
, typically

⎛
⎜⎜⎝
z y1 y2 + a2 a3

b1 y1 + b2 y2
x3 −x2

x1

⎞
⎟⎟⎠ ,

with a2, a3, b1, b2 general quadratic forms in x0, x1, x2, x3. Every Y in
this family is given in this way.

One can follow the argument back to see that in this case Γ7 ⊂ P3

is defined by
∧2

M = 0 where

(6.4.3) M =

(
x1 x2 a2x2 + a3x3

x2 x3 b1x1 + b2x2

)
,

and the yi in degree 2 are the rational forms solving

(6.4.4) M

⎛
⎝y1
y2
1

⎞
⎠ = 0.

Plausible though it may seem at first sight, it is a mistake to confuse
the codimension 2 variety Y 4,4 ⊂ P(14, 22) defined by these equations
with the symbolic blowup Y1 of Γ7. The latter is a relative construction
over P3, and is contained in P3 × P2, so it has the ratios f1 : f2 : g as
regular functions, where g = x1x3 − x2

2 is the equation of E0. It is not
simply polarized or projectively Gorenstein. As we have seen, Y1 has
just one orbifold point of type 1

2 (1, 1, 1).

In contrast, Y 4,4 contains P(1, 2, 2)〈x0,y1,y2〉 with ideal (x1, x2, x3),

and has P1
〈y1,y2〉 as

1
2 (1, 1) orbifold locus, so is not terminal. It is clearly

obtained from Y ⊂ P(14, 22, 3) by eliminating z. Putting back z is
a Type I or Kustin–Miller unprojection, with the Pfaffians of (6.4.2)
giving the linear relations for z, so is perfectly valid as a construction
of Y . However, the birational relation between Y and Y 4,4 involves
first the weighted blowup of the 1

3 (1, 2, 2) point with the given weights
(1, 2, 2), not the Kawamata blowup with weights (2, 1, 1), and this takes
us outside the Mori category. A similar thing happens in many other
constructions or attempted constructions of index 2 Q-Fanos.

There is a similar narrative for the Main Example X, starting from

Γ5 ⊂ E0 ⊂ Q. The Hilbert series PX has the form N(t)
(1−t)5(1−t2)2(1−t3)
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with numerator

(6.4.5)

N(t) = 1− t2 − 4t3 − 4t4

+ 4t4 + 8t5 + 4t6

− 4t6 − 4t7 − t8 + t10.

We keep the masked terms −4t4 + 4t4 to indicates that R(X,A) needs
4 relations in degree 4. In fact, in order to have 1

3 (1, 2, 2)x4,y1,y2 at Pz,
there must be 4 relations zxi = ci to eliminate x0, . . . , x3 there.

Now eliminating z projects X to X ⊂ P(15, 22) in codimension 3,
with the Hilbert series

(6.4.6)
1− t2 − 4t3 + 4t4 + t5 − t7

(1− t)5(1− t2)2
,

which corresponds to the Pfaffians of a skew 5× 5 matrix of degrees

(6.4.7)

(
1 1 1 2
1 1 2
1 2
2

)
, typically

⎛
⎜⎜⎝
x0 x1 x2 a

x2 x3 b
x4 −y1

y2

⎞
⎟⎟⎠ .

Here we choose coordinates on P4 with Q : x0x4 − x1x3 + x2
2 = 0 and

P = (1, 0, . . . , 0), making TP,Q : x4 = 0 and E0 : x1x3 = x2
2. Let

Γ5 ⊂ E0 ⊂ P3 be an irreducible curve of degree 5, assumed to be singular
at P .

In (6.4.7), a and b are quadratic forms in x0...4. The conditions that
X defined by the Pfaffians of (6.4.7) contains P(1, 2, 2)〈x4,y1,y2〉 defined

by the ideal (x0, . . . , x3) is that a, b do not contain x2
4. Then the 7

entries in the first two rows of (6.4.7) are in the ideal (x0, x1, x2, x3), so
it is a Jerry12. At the same time, the equations of Γ5 ⊂ E0 take the
determinantal format

∧2
M with M as in (6.1.3).

As before, unprojecting P(1, 2, 2)〈x4,y1,y2〉 ⊂ X is a contruction of X

as a Type I unprojection from X ⊃ P(1, 2, 2), but X itself again has a
line of 1

2 points, so is not Mori category.
The “double Jerry” calculations of [T&J, 9.2] gives the unprojection

variable z and most of its unprojection equations zxi = ci. Eliminating
the pivot m12 = x0 from the Pfaffians of (6.4.7), gives two equations

(6.4.8)

(
x1 x2 a
x2 x3 b

)⎛
⎝y2
y1
x4

⎞
⎠ = 0 with

a = a2x2 + a3x3,
b = b1x1 + b2x2,
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that we rearrange

(6.4.9)

(
b1x4 y2 + b2x4 y1
y2 y1 + a2x4 a3x4

)⎛
⎝x1

x2

x3

⎞
⎠ = 0.

From this we assemble a second Jerry12 matrix

(6.4.10)

⎛
⎜⎜⎝
−z b1x4 y2 + b2x4 y1

y2 y1 + a2x4 a3x4

x3 −x2

x1

⎞
⎟⎟⎠ ,

whose maximal Pfaffians provide the equations for x1z, x2z, x3z. The
final unprojection equation for x0z

(6.4.11) −x0z = (b1x1 + b2x2 − a2x3)y1 + a3(x3y2 + b1x2x4 + b2x3x4).

exists by the theory of Kustin–Miller unprojection, but we don’t know
any smart way of deducing it. It has to be calculated by a laborious
primary decomposition or colon ideal calculation, or by writing out the
Kustin–Miller complexes.

The Jerry12 matrix (6.4.10) defines a codimension 3 subvariety in
the family of our second example Y ⊂ P(14, 22, 3) (compare (6.4.2)),
but specialized to contain P2

〈x1,x2,x3〉 defined by the codimension 4 ideal

(x4, y1, y2, z). This is a third construction of our Main Example X.
To do this from scratch: in Example 6.3.3, suppose that the curve

Γ7 ⊂ E0 ⊂ P3 break up as the plane conic section (x0 = 0) plus a quintic
Γ5. Blowing up Γ7 transforms the plane (x0 = 0) into a copy of P2 with
normal bundle O(−1), that contracts to a point of the quadric Q ⊂ P4,
taking E0 and Γ5 ⊂ E0 isomorphically into the data for 6.3.7.

6.5. Summary: Three constructions of X

Our Main Example X can be obtained in three different ways

(1) The symbolic blowup of Γ5 ⊂ E0 ⊂ Q followed by the contrac-
tion of E1. Viewed from X, this is the Sarkisov link from its
1
3 (1, 2, 2) point P of Section 1.5; it is initiated by the Kawamata
blowup, that is the (2, 1, 1) weighted blowup of P .

(2) Construct the codimension 3 variety X ⊂ P(15, 22) given in the
Pfaffian form (6.4.7), containing P(1, 2, 2), then unproject this
plane. Viewed from X, this starts from the (1, 2, 2) weighted
blowup of P , which introduces a line of 1

2 (1, 1) orbifold points,
so takes us out of the Mori category.
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(3) Construct the codimension 3 variety Y ′ ⊂ P(14, 22, 3) as in
Example 6.3.3, but specialized to contain P2

〈x1,x2,x3〉. Its equa-
tions are the maximal Pfaffians of the Jerry12 matrix (6.4.10).
One checks that Y ′ has 4 ordinary nodes on P2 as its only
singularities for general choices of (a2, a3, b1, b2), so that it un-
projects to a quasismooth X. Viewed from X, this starts from
the ordinary blowup of a general point.
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